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Abstract: The reliability of gas insulated switchgear (GIS) is very important for the safe operation
of power systems. However, the research on potential faults of GIS is mainly focused on partial
discharge, and the research on the intelligent detection technology of the mechanical state of GIS
is very scarce. Based on the abnormal vibration signals generated by a GIS fault, a fault diagnosis
method consisting of a frequency feature extraction method based on coherent function (CF) and
a multi-layer classifier was developed in this paper. First, the Fourier transform was used to analyze
the differences and consistency in the frequency spectrum of signals. Secondly, the frequency domain
commonalities of the vibration signals were extracted by using CF, and the vibration characteristics
were screened twice by using the correlation threshold and frequency threshold to further select the
vibration features for diagnosis. Then, a multi-layer classifier composed of two one-class support
vector machines (OCSVMs) and one support vector machine (SVM) was designed to classify the
faults of GIS. Finally, the feasibility of the feature extraction method was verified by experiments,
and compared with other classification methods, the stability and reliability of the proposed classifier
were verified, which indicates that the fault diagnosis method promotes the development of an
intelligent detection technology of the mechanical state in GIS.

Keywords: gas insulated switchgear; mechanical fault diagnosis; coherent coefficient; one-class
support vector machine; support vector machine

1. Introduction

As a piece of control and protection equipment in power system [1,2], gas insulated switchgear
(GIS) plays a significant role in high-voltage power grids. Discovering potential defects and hidden
danger in the process of operation of GIS equipment in time can ensure the reliability and security of
power grid operations.

The existing research on the reliability of GIS is mainly focused on the insulation fault diagnosis
through signal analysis, and many experts have conducted extensive research on this topic. The main
detection methods of partial discharge defects include the electrical method [3–5], acoustic method [6,7]
and chemical method [8,9]. Aiming at the condition monitoring and diagnosis of gas insulated structures,
a real-time measurement system combining signal acquisition, mode generation, feature extraction and
defect recognition was proposed [10]. The ultra high frequency (UHF) method was used to analyze the
characteristics of partial discharge, and short-time Fourier transform (STFT) [11] was used to describe
the time-frequency characteristics [12,13]. Combined weight function classification tools and K-means
clustering, and pulse parameters in both time and frequency domains were used to effectively identify
noise signals and discharge pulses [14].
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Compared with insulation faults, the development of intelligent diagnosis technology for
mechanical faults in GIS is very slow. Under the action of electromotive force generated by AC
current in conductors, the vibration signal in the fault changes correspondingly compared with
the normal situation. In order to realize the intelligent diagnosis of mechanical faults in GIS, it is
necessary to study in depth the characteristics of vibration signals of the GIS shell. The empirical mode
decomposition (EMD) [15] method was used to analyze the vibration signal, and the characteristic
matrix was defined to form the criterion of mechanical fault in GIS [16]. The full-acoustic acquisition
method was used to collect different mechanical fault data, and the acoustic characteristics of signal
was summarized to conduct fault diagnosis [17]. The transient vibration characteristics of GIS were
analyzed by using finite element simulation software ANSYS, and the theoretical basis of mechanical
defect detection technology in GIS based on vibration information was provided [18,19]. The vibration
mechanism of GIS was studied in depth, and by extracting features of vibration signals using spectrum
analysis, a method for detecting the mechanical state of GIS based on vibration information was
proposed [20,21]. A new algorithm, which is composed of the k-nearest neighbor algorithm and the
fuzzy c-means clustering algorithm, for the mechanical fault diagnosis of ultra-high voltage GIS was
proposed to realize the detection of the mechanical state of GIS [22].

Generally speaking, the aforementioned documents have made great contributions to the
development of mechanical fault diagnosis technology in GIS. However, due to the non-linearity,
signal dispersion and noise interference of the GIS system, it is difficult to extract features and screen
feature space. The features extracted from the aforementioned documents are insufficient, and the
problem is more prominent when the number of samples is large. In addition, the training process of
a single classifier is affected by the overall error rate, so the model may favor the majority class and
ignore the minority class. The feature extraction method based on coherent function (CF) [23] can
summarize the similarities of a spectrum and get the feature sets, and the union of all typical fault
feature sets is selected as the feature atlas of GIS fault description. Holistic learning [24,25] is very
common in machine learning [26,27]. A series of single weak classifiers are constructed and combined
to classify or predict new data by a weighted or unweighted voting method. One-class support vector
machines (OCSVM) [28–30] can solve the problem of unbalance between normal data and fault data;
beyond this, it can judge the unknown faults, and the feature has been applied in the field of fault
diagnosis. For example, system combining model-based diagnosis and data-driven anomaly classifiers
for fault isolation used OCSVM to identify unknown faults, and the validity of the method was verified
in the internal combustion engines [31,32]. SVM [33,34] can effectively divide the feature space and
better classify the fault conditions.

In this paper, a new feature extraction method based on CF was proposed, and a multi-layer
classifier composed of OCSVM and support vector machine (SVM) was constructed. The feasibility
of the feature extraction method was verified by experiments, and the advantages of the proposed
classifier were verified by comparing with the general classification methods such as Softmax [35], SVM,
back propagation neural networks (BPNN) [36] and naive Bayes (NB) [37]. The main contributions of
this paper can be summarized as follows:

(1) GIS mechanical fault is diagnosed by a holistic approach which integrates the vibration signal
acquisition system, feature extraction based on CF and a multi-level classifier composed of
OCSVMs and SVM;

(2) The CF is introduced into the feature screening process, and a method of feature extraction based
on CF with double thresholds is proposed, which provides a new idea for feature screening and
can fully describe characteristics of the vibration signal;

(3) A multi-layer classifier composed of OCSVM and SVM is designed to diagnose GIS faults.

The remainder of this paper is organized as follows: Section 2 introduces the vibration information
acquisition system of GIS, the experiment platform and the vibration signal analysis; Section 3 presents
the method of extracting vibration features; Section 4 discusses the establishment of GIS fault classifier;



Sensors 2019, 19, 1949 3 of 19

Section 5 discusses the parameters of the diagnosis model and the optimization of feature space,
and compares the method with other traditional diagnosis methods to prove the improvement in the
diagnosis accuracy. Finally, Section 6 summarizes the contributions of the paper.

2. Experiments and Vibration Data Analysis

2.1. Experiments

In order to collect the data needed for the study of mechanical fault detection technology in GIS,
a YD-81D acceleration sensor, DHF-7-3 charge amplifier and NI PCI-4472B acquisition card were
used to build the vibration signal acquisition system, and the parameters of the system are shown in
the Table 1.

Table 1. Parameters of the acquisition system.

Parameters Value

measuring range (g) ±0.5
sensitivity (V/g) 10

maximum output voltage (V) ±5
weight of a sensor (g) 10
sampling rate (kHz) 10

sampling time length (ms) 100

The experimental object is a 110 kV three-phase common-box GIS experimental platform, as shown
in Figure 1a. The types of faults simulated in this paper are shown in Figure 1b: (1) Isolation switch
fault—the fault can be simulated by adjusting the position of the isolation switch; (2) Looseness of flange
screw—the fault can be simulated by loosening three bolts used to fix flange; (3) Looseness of stone
bolt—the fault can be simulated by loosening two bolts supporting GIS in section A. The experimental
data recorded are shown in Table 2. The vibration data of each of the working conditions were collected
200 times with the alternating current (AC) of 50 Hz and 1000 A, forming the data set of the research in
this paper.
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Table 2. Summary of states of gas insulated switchgear (GIS) considered in this study.

Health Condition Category Label Description of State Data Illustrate

Healthy Class 1 Normal case 200 × 4 groups of GIS
vibration data were

collected under 1000 A
current and four classes

False
Class 2 Isolation switch fault
Class 3 Looseness of flange screw
Class 4 Looseness of stone bolt

2.2. Vibration Data Analysis

When AC flows into the conductor, the vibration information shows strong periodicity. The reason
is that the excitation source of the GIS vibration is electromagnetic force, of which the frequency is
twice that of the AC frequency [16]. Then, the traditional Fourier transform can be used to analyze the
amplitude-frequency distribution characteristics of the vibration signal, as showed in Figure 2.
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Figure 2. Vibration signal and its spectrum in different working conditions.

The main energy of the vibration signal is concentrated at the frequency around 1 kHz, and there
is less energy at the frequency of 0.1 kHz. The reason is that the GIS system exhibits strong nonlinearity,
and its natural frequency is about 1 kHz excited by the electromagnetic force of 100 Hz. When the
mechanical fault occurs to GIS, the change of natural frequency leads to differences in spectrum under
the same excitation, which are illustrated by the following remarkable differences: (1) the normal
case, the isolation switch fault, the looseness of flange screw and the looseness of stone bolt have
the highest frequency of vibration signal energy at 0.9 kHz, 1 kHz, 1.1 kHz and 1 kHz, respectively;
(2) the energy ratio of 0.7 kHz and 1.2 kHz in fault working conditions is less than that of the normal
case; (3) the energy at 2 kHz of vibration signal in flange fault is higher than that of other working
conditions. In order to further analyze the frequency domain characteristics of vibration signals in GIS,
three samples were taken from the vibration signals collected in each working conditions to perform
a Fourier transform to obtain the spectrum, as shown in Figure 3.
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Figure 3. Spectrum analysis of vibration signals in different working conditions.

It is observed that there is almost no energy distribution at the frequency point above 2500 Hz,
so the spectrum range is set below 2500 Hz, as shown in Figure 3a. Due to the serious overlap of
frequency points, the 700–1200 Hz frequency spectrum with more concentrated energy is further
selected for observation, as shown in Figure 3b. Figures 2 and 3 indicate the following conclusions:
(1) The signal spectrum in the same working condition has a very high similarity, and the energy
distribution at most frequency points is basically the same; (2) there is a great difference in the energy
distribution at frequency points between vibration signals in different working conditions; (3) the
vibration signals have energy distribution at most frequency points, and numerous frequency points
with low energy cannot be ignored. The above characteristics can be used to identify the fault types of
signals in different working conditions.

3. Feature Extraction Method of Vibration Signals

3.1. Principle of CF

In the field of signal processing, CF is commonly used to measure the degree of linear correlation
between two signals in each frequency component. In this paper, the CF is used for feature extraction.

Suppose there are two time-domain signals Sx(t) and Sy(t), the calculation methods of CF are as
follows [38]: (1) calculate Fourier spectrum Ax(f ) and Ay(f ) of Sx(t) and Sy(t), respectively; (2) calculate
self-power spectral density functions Sx(f ) and Sy(f ),{

Sx( f ) = Ax( f )Ax
∗( f )

Sy( f ) = Ay( f )Ay
∗( f )

(1)
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where Ax
*(f ) and Ay

*(f ) are the complex conjugation of Ax(f ) and Ay(f ), respectively; (3) calculate the
cross power spectral density function,

Sxy( f ) = Ay( f )Ax
∗( f ) (2)

(4) calculate the CF of Sx(t) and Sy(t),

Cxy( f ) =

∣∣∣Sxy( f )
∣∣∣2

Sx( f )Sy( f )
(3)

The range of Cxy(f ) is [0,1], and the larger the value of Cxy(f 0) at a certain frequency f 0, the greater
the coherence of signal Sx(t) and Sy(t) at the frequency of f 0. Sx(t) and Sy(t) are irrelevant when CF is
0 and completely coherent when CF is 1. There are two advantages of the CF: (1) CF can describe the
frequency commonality of two signals; (2) CF is not affected by absolute amplitude of the signals and
describes the amplitude similarity of two signals at the same frequency point.

Firstly, two groups of samples are taken out from the normal signals for CF calculation, and the
results are shown in Figure 4a. Then, a group of samples are extracted from the vibration signals of
the normal case and the isolation switch fault respectively for coherence analysis, and the results are
shown in Figure 4b.
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Figure 4. Comparison of coherent results.

As illustrated in Figure 4a, the waveforms of the vibration signals of the two groups of normal
samples are basically the same, while the waveforms of the two groups of signals in Figure 4b are
quite different (red is the normal case sample, blue is the isolation switch fault sample). The energy
distribution of the two samples is consistent at most frequency points in the same working condition
and has a large difference in different working conditions. The CF of two samples is calculated at the
frequency points which are multiples of 10 Hz. The results show that the coherence coefficients of
many frequency points are close to 1 in the same working condition, while the frequency points with
coherence coefficients close to 1 in different working conditions being few in number.

3.2. Design Ideas of Feature Construction

Based on the coherence analysis above, the relationship between two signals at a specific frequency
point can be described by the coherent coefficient between signals, thereby obtaining the relevant
frequency points describing the commonality of the two signals. However, considering the dispersion
of vibration signals and noise interference, it is necessary to calculate the coherence of a large number
of signals of the same working condition. This paper designs a feature extraction method based on
vibration information in different mechanical conditions, and the specific process is shown in Figure 5.
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Step 1: Collect m groups of vibration signal samples of a typical type of mechanical defect,
and perform a Fourier transform on each sample;

Step 2: Calculate the CF of each of two samples, set the strong correlation threshold Rth, judge the
coherence coefficient of the selected frequency points (multiples of 10 Hz) and the threshold Rth,
and define the frequency point whose coherence coefficient is larger than Rth as the potential common
characteristic frequency feature of this kind of working condition;

Step 3: Count the number of occurrences of each potential common frequency points, set the
frequency threshold N = Nth × C2

m, where Nth is the frequency threshold coefficient (Nth ∈ [0, 1]),
and define the potential common frequency points whose occurrence times are greater than the threshold
N as the clear common frequency points of the certain working condition to build feature space.

In this paper, the sample number m is 200, the strong correlation threshold Rth is 0.9, and the
frequency threshold coefficient Nth is 0.65. The coherent results of each working condition are shown
in Figure 6a: (1) the characteristic frequency points above 1.5 kHz and around 0.4 kHz exist only in
the flange loosening fault; (2) compared with the fault conditions, there are characteristic frequency
points of about 0.5 kHz in the normal condition, but not characteristic frequency points around 0.3 kHz;
(3) compared with other conditions, the condition of stone bolts loosening lacks the characteristic
frequency points near 0.8 kHz; (4) only the flange loosening and the stone bolts loosening fault have
characteristic frequency points near 0.6 kHz.
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Figure 6. Characteristic distribution under different faults.

Figure 6b shows the characteristic frequency curves in different working conditions. The feature
vector and the number of characteristic frequency points were quite different, and the union of feature
points was used as the final feature to diagnose fault types.

4. GIS Fault Diagnosis Method Based on SVM and OCSVM

4.1. SVM

SVM is a method to realize the idea of structural risk minimization. The sample space is linearly
partitioned by the optimal classification hyperplane. However, the problem of linearly indivisibility
is often encountered in practical problems. Therefore, the data samples need to be mapped into
high-dimensional feature space through non-linear transformation, so that it can be transformed into
a linear separable problem. Its classification principle is shown in Figure 7.
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For classification of two classes, suppose that the training set of n samples is
D = {(xi,yi)|i = 1,2, · · · ,n}, xi∈Rn, yi∈{−1,+1}, then the optimal classification hyperplane H [39] can
be expressed as:

W · x + b = 0 (4)

where W is the normal vector of the optimal classification hyperplane, and b is the constant term.
Two standard hyperplanes H1 (W · x + b = +1) and H2 (W · x + b = −1) are defined, which are

planes through the samples closest to the hyperplane and parallel to the classification hyperplane.
In order to maximize the classification interval of hyperplanes, the classification hyperplane is
constructed by the following formula to correctly classify all samples [40]: min

W
‖W‖2

2 = min
W

1
2 WTW

s.t.yi(W · xi + b) − 1 ≥ 0, i = 1, 2, · · ·, n
(5)

Using Lagrange function to solve the above formula, the dual problem of the original problem is
described as follows: 

max
a

Q(α) =
n∑

i=1
αi −

1
2

n∑
i=1

n∑
j=1

αiα jyiy j(xT
i x j)

s.t.
n∑

i=1
αiyi ≥ 0,αi ≥ 0

(6)

where αi(i=1,2, · · · ,n) are Lagrange multipliers, and the maximization of Q(α) depends on the training
set {xi

Txj} and {yiyj}. If αi
* is the optimal Lagrange multiplier, the optimal hyperplane function is:

f (x) = sgn(
n∑

i=1

α∗i yi(xT
i x) + b) (7)

where x is test data.

4.2. OCSVM

OCSVM is an anomaly detection algorithm based on machine learning. Unlike traditional SVM,
OCSVM only needs one class of samples to train an anomaly detection model, which maps training
data to high-dimensional feature space through kernel function and solves an optimal hyperplane in
feature space to achieve maximum separation between target data and coordinate origin, as shown
in Figure 8.
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The minimum objective function sought by OCSVM [41] can be described as:{
min 1

2‖ω‖
2 + 1

vlξi − ρ
s.t. f (x) = φ(xi)ω ≥ ρ− ξi, ξi ≥ 0

(8)

where i is the number of training samples, xi is the sample data, l is the number of training samples,
φ (xi) is the map of the original space to the feature space, ω and ρ are the normal vectors of the
hyperplane required in the feature space and compensation, respectively, the adjustable parameter
v∈ (0, 1) is the upper limit of the proportion of error samples in the total sample and the relaxation
variable ξi is the degree to which some error samples are misclassified.

The Lagrange function is introduced to get the following formula:

LP =
1
2
‖ω‖2 +

1
vl
ξi − ρ−

l∑
i=1

ξiβi −

l∑
i=1

(φ(xi)ω− ρ+ ξi)αi (9)

where αi and βi are Lagrange factors, and the dual problem is obtained by mapping the sample space
to the feature space through the Gauss kernel function [41].

K(xi, x j) =< φ(xi),φ(x j) >= exp(−g
∥∥∥xi − x j

∥∥∥2
)

minL = 1
2

l∑
i=1

l∑
j=1

αiα jK(xi, x j), s.t.0 ≤ αi ≤
1
vl

(10)

The analytical formula of ρ is obtained by solving Equation (10),

ρ =
l∑

i=1

αiK(xi, x j) (11)

The way to find the optimal hyperplane and get the OCSVM based anomaly detection model is
represented as Equation (12):

f (x) = sgn(
l∑

i=1

αiK(xi, x j) − ρ) (12)

For training data x, f (x) indicates that it is positively or negatively located in the hyperplane in
high-dimensional space. f (x) is a positive number and x belongs to a normal class; f (x) is a negative
number and x belongs to an abnormal class. Therefore, OCSVM can identify non-target samples
more accurately.
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4.3. Fault Diagnosis Process

The mechanical fault diagnosis technology of GIS proposed in this paper includes two parts:
feature extraction and fault diagnosis, and fault diagnosis is divided into state detection and fault
recognition. In state detection, the first OCSVM classifier is used to distinguish normal from abnormal
cases and solve the problem of unbalance between normal and fault data samples in actual detection.
The second OCSVM classifier is used to distinguish known faults from unknown faults and solve the
problem of misdiagnosis of unknown faults. In fault recognition, the fault types are judged by an SVM
classifier. The specific diagnosis process is shown in Figure 9.
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Firstly, 70% of the samples in a normal working condition are randomly selected as training set
A for OCSVM1 training; 70% of the samples in each known type of fault are randomly selected as
training set B for OCSVM2 training and SVM training; all remaining samples are used as test set C for
evaluating the performance of the diagnosis model.

Secondly, the data of test set C is diagnosed by the OCSVM1 model. The signal with the normal
test result is regarded as set C1, and the signal with the abnormal result is taken as the set C2.

Then, the C2 set is diagnosed by the OCSVM2 model. The signals which are detected as faults are
regarded as set C3 and other data is taken as unknown fault set C4.

Lastly, input C3 set into the SVM diagnosis model for fault type identification.

5. Diagnosis Results and Analysis

5.1. Discussion of Parameters

Rth and Nth are two very important parameters in the mechanical fault diagnosis technology
proposed in this paper, which jointly determine the feature space of different working conditions,
and then affect the final diagnosis results.

If Rth is too small, the difference in frequency energy distribution between signals cannot be
effectively distinguished, and it will cause excessive characteristic frequency points, which make it
difficult to select characteristic frequency points. If Rth is too large, the effect of dispersion between
signals is ignored.
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If Nth is too small, the characteristic frequency points will spread throughout the frequency
domain, and the meaning of feature extraction is lost. If Nth is too large, too few characteristic frequency
points will reduce the accuracy of fault diagnosis.

In order to discuss the values of parameters Rth and Nth, this paper selected [0.5, 0.95] as the value
range of Rth, [0.6, 0.95] as the range of Nth and 0.025 as the step size. Figure 10 shows the relationship
between diagnosis accuracy and two key parameters. The diagnosis accuracy is low when both Rth and
Nth take large or small values. When values of Rth and Nth are 0.65 and 0.9, respectively, the diagnosis
accuracy is the highest, which reaches 98.75%.
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In addition to Rth and Nth, the main parameters of the diagnosis model using radial basis function
(RBF) [42] kernel function are listed in Table 3.

Table 3. Parameters of the proposed method.

Description Value

gamma of radial basis function (RBF) in
OCSVM1 0.0217

nu of RBF in OCSVM1 0.66
totalSV in OCSVM1 93

rho in OCSVM1 92.3991
gamma of RBF in OCSVM2 0.02

nu of RBF in OCSVM2 0.04
totalSV in OCSVM2 17

rho in OCSVM2 16.7936
BoxConstraint in SVM (support vector

machine) 0.0003

CacheSize in SVM 1000
DeltaGradientTolerance in SVM 0.001

nu of RBF in SVM 0.5

5.2. Diagnosis Results

After the parameters are determined, 10 experiments were conducted to test the stability of the
diagnosis model, and the results are compared with the methods of Softmax, SVM, BPNN and NB.
Figure 11 shows the confusion matrix obtained from the first experiment by the proposed method.
The diagnosis accuracy of the normal case, isolation switch fault, looseness of flange screw and
looseness of stone bolt are 100%, 100%, 97.5% and 100%, respectively. The 0 sample is diagnosed as
unknown faults.
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 Figure 11. First diagnosis results (confusion matrix).

Figure 11 shows that the proposed method performs well in the first experiment. In order to
compare different methods, Tables 4 and 5 show the diagnosis accuracy and F-measure of different
methods in the first experiment. Figure 12 shows the comparison of different methods in terms of
accuracy and F-measure.

Table 4. Accuracy of the first experiment with different methods.

Test Method
Accuracy (%)

Normal Case Isolation
Switch Fault

Looseness of
Flange Screw

Looseness of
Stone Bolt All Conditions

Softmax 81.667 65.000 70.000 81.667 74.583
SVM 85.000 71.667 75.000 70.000 75.417

Back propagation neural
networks (BPNN) 81.667 70.000 76.667 76.667 76.250

Naive Bayes (NB) 81.667 86.667 85.000 86.667 85.000
OCSVM+SVM 100.000 100.000 97.500 100.000 98.75

Table 5. F-measure of first experiment with different methods.

Test Method
F-measure (%)

Normal Case Isolation
Switch Fault

Looseness of
Flange Screw

Looseness of
Stone Bolt All Conditions

Softmax 77.778 69.643 71.765 78.400 74.396
SVM 85.000 72.269 72.581 71.795 75.411

BPNN 81.667 67.742 78.632 77.311 76.338
NB 85.217 85.950 85.000 83.871 85.010

OCSVM+SVM 100.000 98.360 97.436 99.174 98.742
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Figure 12. Accuracy and F-measure of first test with different methods.

Tables 4 and 5, and Figure 12 exhibit that the accuracy and F-measure of the proposed method are
higher than other classification methods in each working condition, which shows that the method is
more suitable than standard deep learning for feature learning in the paper. The results of 10 random
experiments are shown in Figure 13.
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In 10 random experiments, the diagnosis accuracy of the proposed method is above 90%, which is
generally higher than Softmax, SVM, BPNN and NB. It is only slightly inferior to SVM in the Test 6 test,
which indicates that the method proposed in this paper is more stable and has a better diagnosis effect.

In order to further evaluate the diagnosis model, the average and standard deviation were used
as indicators to compare the diagnosis accuracy of each working condition with different methods.
The statistical results are shown in Figure 14 and Table 6.



Sensors 2019, 19, 1949 16 of 19

Sensors 2019, 19, x FOR PEER REVIEW 15 of 18 

 

Tables 4 and 5, and Figure 12 exhibit that the accuracy and F-measure of the proposed method 
are higher than other classification methods in each working condition, which shows that the method 
is more suitable than standard deep learning for feature learning in the paper. The results of 10 
random experiments are shown in Figure 13. 

 
Figure 13. Diagnosis results of 10 tests with different methods. 

In 10 random experiments, the diagnosis accuracy of the proposed method is above 90%, which 
is generally higher than Softmax, SVM, BPNN and NB. It is only slightly inferior to SVM in the Test 
6 test, which indicates that the method proposed in this paper is more stable and has a better 
diagnosis effect. 

In order to further evaluate the diagnosis model, the average and standard deviation were used 
as indicators to compare the diagnosis accuracy of each working condition with different methods. 
The statistical results are shown in Figure 14 and Table 6. 

 
Figure 14. Comparison of diagnosis mean values under different working conditions. 

Table 6. Diagnosis results (average and standard deviation). 

Test Method 
Mean and Standard Deviation of Accuracy (%) 

Normal Case 
Isolation 

Switch Fault 
Looseness of 
Flange Screw 

Looseness of 
Stone Bolt All Conditions 

Softmax 86.500 ± 6.007 77.500 ± 6.538 73.167 ± 5.119 79.000 ± 8.285 79.046 ± 4.147 
SVM 89.167 ± 6.249 81.833 ± 10.045 81.833 ± 11.988 81.833 ± 13.259 83.444 ± 9.847 

BPNN 76.000 ± 5.784 73.333 ± 6.894 73.000 ± 4.360 74.667 ± 7.106 74.254 ± 4.727 
NB 84.500 ± 5.215 84.500 ± 3.853 83.333 ± 3.514 88.667 ± 4.216 85.290 ± 3.670 

OCSVM+SVM 96.167 ± 4.648 95.667 ± 2.808 91.167 ± 2.727 96.000 ± 3.443 94.751 ± 3.088 

A
cc

ur
ac

y(
%

)

Figure 14. Comparison of diagnosis mean values under different working conditions.

Table 6. Diagnosis results (average and standard deviation).

Test Method
Mean and Standard Deviation of Accuracy (%)

Normal Case Isolation
Switch Fault

Looseness of
Flange Screw

Looseness of
Stone Bolt All Conditions

Softmax 86.500 ± 6.007 77.500 ± 6.538 73.167 ± 5.119 79.000 ± 8.285 79.046 ± 4.147
SVM 89.167 ± 6.249 81.833 ± 10.045 81.833 ± 11.988 81.833 ± 13.259 83.444 ± 9.847

BPNN 76.000 ± 5.784 73.333 ± 6.894 73.000 ± 4.360 74.667 ± 7.106 74.254 ± 4.727
NB 84.500 ± 5.215 84.500 ± 3.853 83.333 ± 3.514 88.667 ± 4.216 85.290 ± 3.670

OCSVM+SVM 96.167 ± 4.648 95.667 ± 2.808 91.167 ± 2.727 96.000 ± 3.443 94.751 ± 3.088

Figure 14 and Table 5 show that: (1) the average diagnosis accuracy of the proposed classifier
is higher than that of other methods and the standard deviation is lower than that of other methods,
which show that the proposed classifier is more stable and reliable; (2) considering the standard
deviation, the diagnosis accuracy of the proposed classifier may be lower than other methods, but it is
obviously superior to other methods overall, which shows that the method proposed in this paper is
more effective for the classification of mechanical working conditions in GIS, and the diagnosis model
is more reliable; (3) the feature extraction method proposed in this paper is effective and feasible.

To verify the ability of the diagnosis model to judge the unknown faults, the 20 groups of vibration
samples of two composite faults (a combination of isolation switch fault and looseness of stone bolt,
a combination of looseness of flange screw and looseness of stone bolt) were collected, respectively.
Diagnosis results are shown in Table 7.

Table 7. Diagnosis results of two composite faults.

Actual Working Condition Diagnosis Result

Normal Case Isolation
Switch Fault

Looseness of
Flange Screw

Looseness of
Stone Bolt

Unknown
Fault Type

Isolation switch fault and
looseness of stone bolt 0 2 0 1 17

Looseness of flange screw and
looseness of stone bolt 0 0 1 0 19

The diagnostic accuracy of the two composite faults are 85% and 95%, respectively, indicating that
the diagnosis model has a good ability to identify unknown faults.

6. Conclusions

It is important to improve the reliability of the operation of GIS equipment and find out the
potential defects in the operation in time. Thus, a holistic approach composed of a method to extract
features and a multi-layer classifier was proposed in this study. First, we developed the characteristic
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description method based on CF. Then, based on OCSVM and SVM, a multi-layer classifier was
constructed to conduct fault diagnosis.

The usefulness of feature learning was verified by a comparison among five machine learning
methods in a series of experiments. The experimental results indicated that the technique of using CF
for feature screening is feasible, and a new idea is provided for feature extraction. At the same time,
it also proves that the classifier proposed in the paper is more stable and reliable than other methods.
The fault diagnosis method proposed in this paper can play a certain role in the condition detection of
GIS and promote the development of intelligent detection technology of the mechanical state in GIS.
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