Does Google Trends Show the Strength of Social Interest as a Predictor of Housing Price Dynamics?
Abstract
:1. Introduction
- Internet may offer excellent opportunities to develop into a society;
- ICT offers great opportunities which could be distributed very unevenly in society;
- It is becoming increasingly difficult to establish a relationship between cause and effect in the digital world;
- ICT alone does not cause a reduction in the use of natural resources by production and consumption;
- ICTs offer great potential for sustainable development, but the opportunity to reorient our activities toward a sustainable information society can be lost without discussion.
2. Materials and Methods
2.1. Study Area and Data Description
2.2. Methodology
- xt—vector of observations on the current values of all n variables model ,
- Dt—vector of deterministic components of equations,
- A0—matrix of parameters with the vector variables Dt, not containing zero elements,
- Ai—matrix of parameters with lagged variables of vector xt, not containing zero elements,
- et—vectors of stationary random disturbances et = [et1 et2 et3 … etn]T.
- forecasting a set of related variables where no unambiguous interpretation is required;
- examining if one variable is predictive of another (Granger causality tests basis);
- impulse response analysis, which looks at the response of one variable to a sudden but instantaneous change in another variable;
- decomposition of the forecast error variance, in which part of the variance of the forecast of each variable is attributed to the influence of the other variables.
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilty, L.M. Sustainable Development and the Information Society. In Human Choice and Computers: Issues of Choice and Quality of Life in the Information Society; Brunnstein, K., Berleur, J., Eds.; Springer Science & Business Media: Berlin, Germany, 2002; pp. 305–315. [Google Scholar]
- Thomas, C.F. Naturalizing Sustainability Discourse: Paradigm, Practices and Pedagogy of Thoreau, Leopold, Carson and Wilson; Arizona State University: Tempe, AZ, USA, 2015; ISBN 132172571X. [Google Scholar]
- Mensah, J. Sustainable Development: Meaning, History, Principles, Pillars, and Implications for Human Action: Literature Review. Available online: http://www.editorialmanager.com/cogentsocsci (accessed on 1 January 2019).
- Schaefer, A.; Crane, A. Addressing Sustainability and Consumption. J. Macromark. 2016, 25, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, E.; Fabietti, G. What Is Sustainability? A Review of the Concept and Its Applications. In Integrated Reporting: Concepts and Cases that Redefine Corporate Accountability; Springer: Berlin, Germany, 2013; pp. 21–40. [Google Scholar] [CrossRef]
- du Pisani, J.A. Sustainable Development—Historical Roots of the Concept. Environ. Sci. 2006, 3, 83–96. [Google Scholar] [CrossRef]
- Pawłowski, A. The Sustainable Development Revolution. Probl. Sustain. Dev. 2009, 4, 65–76. [Google Scholar]
- Sustainable Development: Principles, Frameworks, and Case Studies. Int. J. Sustain. High. Educ. 2011, 12, 434–438. [CrossRef]
- Mozaffar, Q. Sustainable Development: Concepts and Rankings. J. Dev. Stud. 2001, 3, 134–161. [Google Scholar]
- Berke, P.R.; Conroy, M.M. Are We Planning for Sustainable Development? J. Am. Plan. Assoc. 2000, 66, 21–33. [Google Scholar] [CrossRef]
- Jabareen, Y. A New Conceptual Framework for Sustainable Development. Environ. Dev. Sustain. 2006, 10, 179–192. [Google Scholar] [CrossRef]
- Gohring, W. The Memorandum” Sustainable Information Society. In Sh@ring—EnviroInfo; Minier, P., Susini, A., Eds.; Editions du Tricorne: Geneva, Switzerland, 2004. [Google Scholar]
- Protopopova, A. Effects of Sheltering on Physiology, Immune Function, Behavior, and the Welfare of Dogs. Physiol. Behav. 2016, 159, 95–103. [Google Scholar] [CrossRef]
- Museus, S.D.; Yi, V.; Saelua, N. The Impact of Culturally Engaging Campus Environments on Sense of Belonging. Rev. High. Educ. 2017, 40, 187–215. [Google Scholar] [CrossRef]
- Dovie, D.A. Assessment of How House Ownership Shapes Health Outcomes in Urban Ghana. Societies 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Leckie, S. Housing as a Human Right. Environ. Urban. 1989, 1, 90–108. [Google Scholar] [CrossRef] [Green Version]
- Case, K.E.; Quigley, J.M.; Shiller, R.J. Comparing Wealth Effects: The Stock Market versus the Housing Market. Adv. Macroecon. 2005, 10, 5. [Google Scholar] [CrossRef]
- Lis, P. Wahania Cykliczne Rynków Mieszkaniowych. In Aspekty Teoretyczne i Praktyczne; Wydawnictwo Adam Marszałek: Toruń, Poland, 2012. [Google Scholar]
- Ball, M. Housing Policy and Economic Power: The Political Economy of Owner Occupation; Routledge: London, UK, 2017; Volume 828, ISBN 1-135-83596-9. [Google Scholar]
- Galster, G. William Grigsby and the Analysis of Housing Sub-Markets and Filtering. Urban Stud. 1996, 33, 1797–1805. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 1 September 2016).
- Li, C.; Chen, L.J.; Chen, X.; Zhang, M.; Pang, C.P.; Chen, H. Retrospective Analysis of the Possibility of Predicting the COVID-19 Outbreak from Internet Searches and Social Media Data, China. Eurosurveillance 2020, 25, 2000199. [Google Scholar] [CrossRef]
- Verma, M.; Kishore, K.; Kumar, M.; Sondh, A.R.; Aggarwal, G.; Kathirvel, S. Google Search Trends Predicting Disease Outbreaks: An Analysis from India. Healthc Inf. Res. 2018, 24, 300–308. [Google Scholar] [CrossRef]
- Sun, S.; Wei, Y.; Tsui, K.-L.; Wang, S. Forecasting Tourist Arrivals with Machine Learning and Internet Search Index. Tour. Manag. 2019, 70, 1–10. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Liu, L. Modeling Method of Internet Public Information Data Mining Based on Probabilistic Topic Model. J. Supercomput. 2019, 75, 5882–5897. [Google Scholar] [CrossRef]
- Yang, S.; Santillana, M.; Kou, S.C. Accurate Estimation of Influenza Epidemics Using Google Search Data via ARGO. Proc. Natl. Acad. Sci. USA 2015, 112, 14473–14478. [Google Scholar] [CrossRef] [Green Version]
- Kardeş, E.; Kardeş, S. Google Searches for Bruxism, Teeth Grinding, and Teeth Clenching during the COVID-19 Pandemic. J. Orofac. Orthop. Fortschr. Der Kieferorthopädie 2021, 1–6. [Google Scholar] [CrossRef]
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The Use of Google Trends in Health Care Research: A Systematic Review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef] [Green Version]
- Hamulka, J.; Jeruszka-Bielak, M.; Górnicka, M.; Drywień, M.E.; Zielinska-Pukos, M.A. Dietary Supplements during COVID-19 Outbreak. Results of Google Trends Analysis Supported by PLife COVID-19 Online Studies. Nutrients 2020, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S. Exploring the Initial Impact of COVID-19 Sentiment on US Stock Market Using Big Data. Sustainability 2020, 12, 6648. [Google Scholar] [CrossRef]
- Lengyel, A. Tourism, Meditation, Sustainability. APSTRACT Appl. Stud. Agribus. Commer. 2016, 10, 81–92. [Google Scholar] [CrossRef]
- Önder, I.; Gunter, U. Forecasting Tourism Demand with Google Trends for a Major European City Destination. Tour. Anal. 2016, 21, 203–220. [Google Scholar] [CrossRef]
- Brzezicka, J.; Wisniewski, R. Translocality on the Real Estate Market. Land Use Policy 2016, 55, 166–181. [Google Scholar] [CrossRef]
- Cellmer, R.; Kobylińska, K.; Bełej, M. Application of Hierarchical Spatial Autoregressive Models to Develop Land Value Maps in Urbanized Areas. ISPRS Int. J. Geo-Inf. 2019, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Bełej, M. Synergistic Network Connectivity among Urban Areas Based on Non-Linear Model of Housing Prices Dynamics. Real Estate Manag. Valuat. 2018, 26, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Rącka, I.; Palicki, S.; Krajewska, M.; Szopińska, K.; Kempa, O. Changes on the Housing Market of the Downtown Area in Selected Polish Cities. Real Estate Manag. Valuat. 2017, 25, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Bieda, A. Parametric Model of Real Estate Valuation for Land Located in Different Land-Use Zones. Geomat. Environ. Eng. 2017, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Kokot, S.; Gnat, S. Simulative Verification of the Possibility of Using Multiple Regression Models for Real Estate Appraisal. Real Estate Manag. Valuat. 2019, 27, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Głuszak, M. Multinomial Logit Model of Housing Demand in Poland. Real Estate Manag. Valuat. 2015, 23, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Cellmer, R.; Trojanek, R. Towards Increasing Residential Market Transparency: Mapping Local Housing Prices and Dynamics. ISPRS Int. J. Geo-Inf. 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Tomal, M. House Price Convergence on the Primary and Secondary Markets: Evidence from Polish Provincial Capitals. Real Estate Manag. Valuat. 2019, 27, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, B. VAR, SVAR and SVEC Models: Implementation Within R Package Vars. J. Stat. Softw. 2008, 27, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Kusideł, E. Modele Wektorowo-Autoregresyjne–VAR–Metodologia i Zastosowania; Dane Panelowe i Modelowanie Wielowymiarowe w Badaniach Ekonomicznych; Suchecki, B., Ed.; Absolwent: Łódź, Poland, 2000; Volume 3. [Google Scholar]
- Milo, W.; Łapińska-Sobczak, N.; Malaczewski, M.; Szafrański, G.; Ulrichs, M.; Wośko, Z. Stabilność Rynków Finansowych a Wzrost Gospodarczy; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2010; ISBN 8371716087. [Google Scholar]
- Clements, M.P.; Mizon, G.E. Empirical Analysis of Macroeconomic Time Series: VAR and Structural Models. Eur. Econ. Rev. 1991, 35, 887–917. [Google Scholar] [CrossRef]
- Zivot, E.; Wang, J. Vector Autoregressive Models for Multivariate Time Series. Modeling Financ. Time Ser. S-PLUS® 2006, 385–429. [Google Scholar] [CrossRef]
- van Dam, A.; Frenken, K. Variety, Complexity and Economic Development. Res. Policy 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Min, S.-O.; Lee, Y.-S. Korean Housing Market Dynamics: A VAR Analysis with Sign Restrictions. J. Real Estate Anal. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Cellmer, R.; Bełej, M.; Cichulska, A. Identification of Cause-And-Effect Relationships in the Real Estate Market Using the Var Model and the Granger Test. Real Estate Manag. Valuat. 2019, 27, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Bose, E.; Hravnak, M.; Sereika, S.M. Vector Autoregressive (VAR) Models and Granger Causality in Time Series Analysis in Nursing Research: Dynamic Changes among Vital Signs Prior to Cardiorespiratory Instability Events as an Example. Nurs. Res. 2017, 66, 12. [Google Scholar] [CrossRef] [Green Version]
- Drachal, K. Causality in the Polish Housing Market: Evidence from Biggest Cities. Financ. Assets Investig. 2018, 9, 5–20. [Google Scholar] [CrossRef]
- Adkins, L. Using Gretl for Principles of Econometrics; Oklahoma State University, Department of Economics and Legal Studies in Business: Stillwater, OK, USA, 2014. [Google Scholar]
- Brooks, C. RATS Handbook to Accompany Introductory Econometrics for Finance; Cambridge Books: London, UK, 2008. [Google Scholar]
- Canova, F. Vector Autoregressive Models: Specification, Estimation, Inference, and Forecasting. In Handbook of Applied Econometrics Volume 1: Macroeconomics; John Wiley & Sons, Ltd.: New York, NY, USA, 1999; pp. 53–110. ISBN 9781405166423. [Google Scholar]
- Liew, V.K.-S. Which Lag Length Selection Criteria Should We Employ? Econ. Bull. 2004, 3, 1–9. [Google Scholar]
- Billah, B.; Hyndman, R.J.; Koehler, A.B. Empirical Information Criteria for Time Series Forecasting Model Selection. J. Stat. Comput. Simul. 2005, 75, 831–840. [Google Scholar] [CrossRef]
- Khan, D.M.; Yahya, N.; Kamel, N. Optimum Order Selection Criterion for Autoregressive Models of Bandlimited EEG Signals. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 389–394. [Google Scholar]
- Zeileis, A.; Leisch, F.; Hornik, K.; Kleiber, C. Strucchange: An R Package for Testing for Structural Change in Linear Regression Models. J. Stat. Softw. 2002, 7, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Matias, Y. Nowcasting with Google Trends. In Proceedings of the International Symposium on String Processing and Information Retrieval, Jerusalem, Israel, 7–9 October 2013; Springer: Berlin, Germany, 2013; p. 4. [Google Scholar]
- Bulczak, G.M. Use of Google Trends to Predict the Real Estate Market: Evidence from the United Kingdom. Int. Real Estate Rev. 2021, 24, 613–631. [Google Scholar] [CrossRef]
- Limnios, A.C.; You, H. Can Google Trends Improve Housing Market Forecasts? Curiosit. Interdiscip. J. Res. Innov. 2021, 1, 21987. [Google Scholar] [CrossRef]
- Askitas, N. Trend-Spotting in the Housing Market. Cityscape 2016, 18, 165–178. [Google Scholar] [CrossRef]
- Beracha, E.; Wintoki, M.B. Forecasting Residential Real Estate Price Changes from Online Search Activity. J. Real Estate Res. 2013, 35, 283–312. [Google Scholar] [CrossRef]
- Huarng, K.-H.; Hui-Kuang Yu, T.; Rodriguez-Garcia, M. Qualitative Analysis of Housing Demand Using Google Trends Data. Econ. Res. Ekon. Istraž. 2020, 33, 2007–2017. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.A.; Heathcote, J. Housing and the Business Cycle. Int. Econ. Rev. 2005, 46, 751–784. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Zhou, X. Research on the Influence of Regulatory Policies of Shanghai Real Estate on the House Price—Based on the Empirical Study of VAR Model. In Proceedings of the 2018 3rd International Conference on Education, E-learning and Management Technology (EEMT 2018), Bangkok, Thailand, 29–31 October 2018; Atlantis Press: Amsterdam, The Netherlands, 2018; pp. 140–145. [Google Scholar]
Coefficient | Std. Err. | t-Value | p-Value | |
---|---|---|---|---|
Intercept | 6.877 | 0.321 | 20.852 | <0.001 *** |
Log(RSV) | 0.462 | 0.079 | 5.801 | <0.001 *** |
R2 | 0.42 | |||
Adj R2 | 0.41 | |||
F-statistic | 33.65 on 1 and 46 df, p-value < 0.001 *** |
Criterion/Lags | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
AIC(n) | −1.591995 × 101 | −1.629301 × 101 | −1.642528 × 101 | −1.654289 × 101 | −1.645356 × 101 |
HQ(n) | −1.573676 × 101 | −1.604875 × 101 | −1.611996 × 101 | −1.617650 × 101 | −1.602611 × 101 |
SC(n) | −1.541329 × 101 | −1.561746 × 101 | −1.558084 × 101 | −1.552956 × 101 | −1.527134 × 101 |
FPE(n) | 1.224709 × 10−7 | 8.487537 × 10−8 | 7.516122 × 10−8 | 6.792835 × 10−8 | 7.605687 × 10−8 |
Coefficient | Std. Err. | t-Value | p-Value | |
---|---|---|---|---|
RSV.l1 | 1.888548 | 0.143355 | 13.174 | 9.61 × 10−16 *** |
SHM.l1 | −0.209884 | 0.219489 | −0.956 | 0.3450 |
RSV.l2 | −0.875653 | 0.143046 | −6.121 | 3.88 × 10−7 *** |
SHM.l2 | 0.156733 | 0.217738 | 0.720 | 0.4760 |
const | 0.412926 | 0.217399 | 1.899 | 0.0651 |
sd1 | 0.021728 | 0.007761 | 2.800 | 0.0080 ** |
sd2 | 0.008183 | 0.008306 | 0.985 | 0.3308 |
sd3 | 0.009807 | 0.007748 | 1.266 | 0.2133 |
R2 | 0.994 | |||
Adj R2 | 0.993 | |||
F-statistic | 858.1 on 7 and 38 DF, p-value = 2.2 × 10−16 |
Granger Causality | Instant Causality | |||
---|---|---|---|---|
F-Test | p-Value | Chi-Squared | p-Value | |
RSV → SHM | 10.178 | 0.0001212 *** | 0.008469 | 0.9267 |
SHM → RSV | 1.9589 | 0.1481 | 0.008469 | 0.9267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bełej, M. Does Google Trends Show the Strength of Social Interest as a Predictor of Housing Price Dynamics? Sustainability 2022, 14, 5601. https://doi.org/10.3390/su14095601
Bełej M. Does Google Trends Show the Strength of Social Interest as a Predictor of Housing Price Dynamics? Sustainability. 2022; 14(9):5601. https://doi.org/10.3390/su14095601
Chicago/Turabian StyleBełej, Mirosław. 2022. "Does Google Trends Show the Strength of Social Interest as a Predictor of Housing Price Dynamics?" Sustainability 14, no. 9: 5601. https://doi.org/10.3390/su14095601