Microwave-Assisted Exploration of Yellow Natural Dyes for Nylon Fabric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dye Extraction and Irradiation Process
2.3. Fabric Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, C.-C.; Chang, C.-E. A Study on Sustainable Design for Indigo Dyeing Color in the Visual Aspect of Clothing. Sustainability 2021, 13, 3686. [Google Scholar] [CrossRef]
- Haji, A.; Vadood, M. Environmentally Benign Dyeing of Polyester Fabric with Madder: Modelling by Artificial Neural Network and Fuzzy Logic Optimized by Genetic Algorithm. Fibers Polym. 2021, 22, 3351–3357. [Google Scholar] [CrossRef]
- Sk, M.S.; Mia, R.; Ahmed, B.; Rahman, A.; Palash, M.M.R. Effect of neutralizers and silicone softeners on phenolic yellowing phenomenon of OBA treated cotton knitted fabric. Heliyon 2021, 7, e08320. [Google Scholar] [CrossRef]
- Haque, M.A.; Mia, R.; Mahmud, S.T.; Bakar, M.A.; Ahmed, T.; Farsee, M.S.; Hossain, M.I. Sustainable dyeing and functionalization of wool fabrics with black rice extract. Resour. Environ. Sustain. 2022, 7, 100045. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Y.; Zhang, Q.; Wang, D.; Wang, S.; Jiao, M. Study on structure and properties of natural indigo spun-dyed viscose fiber. e-Polymers 2021, 21, 327–335. [Google Scholar] [CrossRef]
- Mahdi, M.; Tuj-Zohra, F.; Ahmed, S. Dyeing of shoe upper leather with extracted dye from acacia nilotica plant bark-An eco-friendly initiative. Prog. Color Colorants Coat. 2020, 14, 241–258. [Google Scholar]
- Wang, H.; Zhang, G.; Mia, R.; Wang, W.; Xie, L.; Lü, S.; Mahmud, S.; Liu, H. Bioreduction (Ag+ to Ag0) and stabilization of silver nanocatalyst using hyaluronate biopolymer for azo-contaminated wastewater treatment. J. Alloys Compd. 2021, 894, 162502. [Google Scholar] [CrossRef]
- Shahid-ul-Islam; Rather, L.J.; Shabbir, M.; Sheikh, J.; Bukhari, M.N.; Khan, M.A.; Mohammad, F. Exploiting the potential of polyphenolic biomordants in environmentally friendly coloration of wool with natural dye from Butea monosperma flower extract. J. Nat. Fibers 2019, 16, 512–523. [Google Scholar] [CrossRef]
- Ahmed, T.; Mia, R.; Toki, G.F.I.; Jahan, J.; Hasan, M.M.; Tasin, M.A.S.; Farsee, M.S.; Ahmed, S. Evaluation of sizing parameters on cotton using the modified sizing agent. Clean. Eng. Technol. 2021, 5, 100320. [Google Scholar] [CrossRef]
- Abou Oualid, H.; Abdellaoui, Y.; Laabd, M.; El Ouardi, M.; Brahmi, Y.; Iazza, M.; Abou Oualid, J. Eco-efficient green seaweed codium decorticatum biosorbent for textile dyes: Characterization, mechanism, recyclability, and RSM optimization. ACS Omega 2020, 5, 22192–22207. [Google Scholar] [CrossRef]
- Zayed, M.; Ghazal, H.; Othman, H.; Hassabo, A.G. Psidium Guajava leave extract for improving ultraviolet protection and antibacterial properties of cellulosic fabrics. Biointerf. Res. Appl. Chem. 2022, 12, 3811–3835. [Google Scholar]
- Kovačević, Z.; Sutlović, A.; Matin, A.; Bischof, S. Natural Dyeing of Cellulose and Protein Fibers with the Flower Extract of Spartium junceum L. Plant. Materials 2021, 14, 4091. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fang, J.; Liao, S.; Mia, R.; Li, W.; Gao, C.; Tian, D.; Li, W. A smart chitosan nonwoven fabric coated with coumarin-based fluorophore for selective detection and efficient adsorption of mercury (II) in water. Sens. Actuators B Chem. 2021, 342, 130064. [Google Scholar] [CrossRef]
- Shabbir, M.; Islam, S.U.; Bukhari, M.N.; Rather, L.J.; Khan, M.A.; Mohammad, F. Application of Terminalia chebula natural dye on wool fiber—evaluation of color and fastness properties. Text. Cloth. Sustain. 2017, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.; Ahmed, T.; Mia, R.; Zahbin, M.R.; Sarker, R.; Bhuiyan, K.H.; Toki, G.F.I. A feasibility study to analyze the behavior of heat settings on the cleaner production of knitted fabrics. Clean. Eng. Technol. 2022, 7, 100429. [Google Scholar] [CrossRef]
- Senapitakkul, V.; Vanitjinda, G.; Torgbo, S.; Pinmanee, P.; Nimchua, T.; Rungthaworn, P.; Sukatta, U.; Sukyai, P. Pretreatment of cellulose from sugarcane bagasse with xylanase for improving dyeability with natural dyes. ACS Omega 2020, 5, 28168–28177. [Google Scholar] [CrossRef]
- Kandasamy, N.; Kaliappan, K.; Palanisamy, T. Upcycling sawdust into colorant: Ecofriendly natural dyeing of fabrics with ultrasound assisted dye extract of Pterocarpus indicus Willd. Ind. Crops Prod. 2021, 171, 113969. [Google Scholar] [CrossRef]
- Adeel, S.; Salman, M.; Bukhari, S.A.; Kareem, K.; Hassan, A.; Zuber, M. Eco-friendly food products as source of natural colorant for wool yarn dyeing. J. Nat. Fibers 2018, 17, 635–649. [Google Scholar] [CrossRef]
- Srivastava, R.; Ahmed, H.; Dixit, R. Crocus sativus L.: A comprehensive review. Pharmacogn. Rev. 2010, 4, 200. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cao, J.; Deng, J.; Hou, X.; Hao, E.; Zhang, L.; Yu, H.; Li, P. Chemical characterization of flavonoids and alkaloids in safflower (Carthamus tinctorius L.) by comprehensive two-dimensional hydrophilic interaction chromatography coupled with hybrid linear ion trap Orbitrap mass spectrometry. Food Chem. X 2021, 12, 100143. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, C.; Xue, X.; Lu, H.; Wang, K.; Wu, L. Safflomin A: A novel chemical marker for Carthamus tinctorius L. (Safflower) monofloral honey. Food Chem. 2022, 366, 130584. [Google Scholar] [CrossRef]
- Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Lim, Y.-B.; Jeong, T.-J.; Choi, Y.-S.; Kim, C.-J. Wheat fiber colored with a safflower (Carthamus tinctorius L.) red pigment as a natural colorant and antioxidant in cooked sausages. LWT-Food Sci. Technol. 2015, 64, 350–355. [Google Scholar] [CrossRef]
- Adeel, S.; Naseer, K.; Javed, S.; Mahmmod, S.; Tang, R.-C.; Amin, N.; Naz, S. Microwave-assisted improvement in dyeing behavior of chemical and bio-mordanted silk fabric using safflower (Carthamus tinctorius L.) extract. J. Nat. Fibers 2020, 17, 55–65. [Google Scholar] [CrossRef]
- Haddar, W.; Baaka, N.; Meksi, N.; Ticha, M.B.; Guesmi, A.; Mhenni, M.F. Use of ultrasonic energy for enhancing the dyeing performances of polyamide fibers with olive vegetable water. Fibers Polym. 2015, 16, 1506–1511. [Google Scholar] [CrossRef]
- Saleem, M.A.; Pei, L.; Saleem, M.F.; Shahid, S.; Wang, J. Sustainable dyeing of nylon fabric with acid dyes in decamethylcyclopentasiloxane (D5) solvent for improving dye uptake and reducing raw material consumption. J. Clean. Prod. 2021, 279, 123480. [Google Scholar] [CrossRef]
- Yaqub, A.; Iqbal, Z.; Toyota, T.; Chaudhary, N.; Altaf, A.; Ahmad, S. Ultrasonic extraction of onion (Allium cepa) peel dye, its applications on silk fabric with bio-mordants and its antibacterial activity. Clin. Med. Biol. Chem. 2020, 8, 1–9. [Google Scholar]
- Chirila, L.; Popescu, A.; Cutrubinis, M.; Stanculescu, I.; Moise, V.I. The influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics. Radiat. Phys. Chem. 2018, 145, 97–103. [Google Scholar] [CrossRef]
- Haji, A.; Naebe, M. Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. J. Clean. Prod. 2020, 265, 121866. [Google Scholar] [CrossRef]
- Sk, S.; Mia, R.; Haque, M.; Shamim, A.M. Review on Extraction and Application of Natural Dyes. Text. Leather Rev. 2021, 4, 218–233. [Google Scholar]
- Adeel, S.; Habib, N.; Batool, F.; Rahman, A.; Ahmad, T.; Amin, N. Eco-friendly approach towards isolation of colorant from Esfand for bio-mordanted silk dyeing. Environ. Sci. Pollut. Res. 2021, 29, 13523–13533. [Google Scholar] [CrossRef]
- Ibrahim, N.; El-Gamal, A.; Gouda, M.; Mahrous, F. A new approach for natural dyeing and functional finishing of cotton cellulose. Carbohydr. Polym. 2010, 82, 1205–1211. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Adeel, S.; Batool, F.; Amin, N.; Ahmad, T.; Ozomay, M. Waste black tea leaves (Camelia sinensis) as a sustainable source of tannin natural colorant for bio-treated silk dyeing. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Mia, R.; Sk, M.S.; Oli, Z.B.S.; Ahmed, T.; Kabir, S.; Waqar, M.A. Functionalizing cotton fabrics through herbally synthesized nanosilver. Clean. Eng. Technol. 2021, 4, 100227. [Google Scholar] [CrossRef]
- Rahman, M.M.; Haque, T.M.A.; Sourav, N.S.; Rahman, S.; Yesmin, S.; Mia, R.; Al Noman, A.; Begum, K. Synthesis and investigation of dyeing properties of 8-hydroxyquinoline-based azo dyes. J. Iran. Chem. Soc. 2021, 18, 817–826. [Google Scholar] [CrossRef]
- Mia, R.; Islam, M.M.; Ahmed, T.; Waqar, M.A.; Khanam, N.J.; Sultana, S.; Bhuiyan, M.S.K.; Uddin, M.N. Natural dye extracted from Triadica sebifera in aqueous medium for sustainable dyeing and functionalizing of viscose fabric. Clean. Eng. Technol. 2022, 8, 100471. [Google Scholar] [CrossRef]
- Gala, S.; Sumarno, S.; Mahfud, M. Optimization of microwave-assisted extraction of natural dyes from jackfruit wood (Artocarpus heterophyllus Lamk) by response surface methodology. Eng. Appl. Sci. Res. 2022, 49, 29–35. [Google Scholar]
- Sharma, A.; Mazumdar, B.; Keshav, A. Valorization of unsalable Amaranthus tricolour leaves by microwave-assisted extraction of betacyanin and betaxanthin. Biomass Convers. Biorefinery 2021, 1–17. [Google Scholar] [CrossRef]
- Hosseinnezhad, M.; Gharanjig, K.; Jafari, R.; Imani, H.; Razani, N. Cleaner colorant extraction and environmentally wool dyeing using oak as eco-friendly mordant. Environ. Sci. Pollut. Res. 2021, 28, 7249–7260. [Google Scholar] [CrossRef]
- Jiang, H.; Guo, R.; Mia, R. Eco-friendly dyeing and finishing of organic cotton fabric using natural dye (gardenia yellow) reduced-stabilized nanosilver: Full factorial design. Cellulose 2022, 29, 2663–2679. [Google Scholar] [CrossRef]
Saffron | Safflower | ||||||
---|---|---|---|---|---|---|---|
Extraction Conditions | L* | a* | b* | Extraction Conditions | L* | a* | b* |
Acidic 6 min RE/RC | 80.42 | 2.85 | 45.11 | Acidic 6 min RE/RC | 52.96 | 14.36 | 46.65 |
Parameters | |||||||
Dyeing Conditions | L* | a* | b* | Dyeing Conditions | L* | a* | b* |
Time = 45 min | 70.14 | 5.43 | 34.72 | Time = 45 min | 63.90 | 8.57 | 29.90 |
Salt = 1 g/100 mL | 91.70 | −2.46 | 22.70 | Salt = 3 g/100 mL | 49.96 | 7.81 | 31.71 |
Pre-Mordanting | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mordants Used | L* | a* | b* | Light Fastness | Washing Fastness | Rubbing Fastness | Dry Cleaning | Perspiration | ||
Dry | Wet | Acid | Base | |||||||
Without-mordant | 80.42 | 2.85 | 45.11 | 3/4 | 3 | 3/4 | 3 | 3/4 | 3/4 | 3/4 |
Fe 9% | 93.83 | 2.25 | 17.55 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Al 1% | 76.42 | 3.05 | 19.74 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Pomegranate 7% | 90.24 | 1.73 | 31.86 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Turmeric 7% | 82.70 | 12.34 | 99.12 | 4/5 | 4 | 4/5 | 4 | 4/5 | 4/5 | 4/5 |
Post-mordanting | ||||||||||
Fe 7% | 87.70 | −1.67 | 44.09 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Al 1% | 94.91 | −2.41 | 9.74 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Pomegranate 7% | 79.82 | 15.22 | 92.95 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Turmeric 5% | 82.28 | 1.94 | 39.02 | 4/5 | 4 | 4/5 | 4 | 4/5 | 4/5 | 4/5 |
Pre-Mordanting | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mordants Used | L* | a* | b* | Light Fastness | Washing Fastness | Rubbing Fastness | Dry Cleaning | Perspiration | ||
Dry | Wet | Acidic | Basic | |||||||
Without-mordant | 52.96 | 14.36 | 46.65 | 3/4 | 3 | 3/4 | 3 | 3/4 | 3/4 | 3/4 |
Fe 5% | 67.16 | 4.20 | 29.85 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Al 1% | 57.08 | 7.34 | 31.81 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Pomegranate 5% | 59.45 | 11.39 | 37.80 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Turmeric 5% | 36.51 | 13.42 | 42.87 | 4/5 | 4 | 4/5 | 4 | 4/5 | 4/5 | 4/5 |
Post-mordanting | ||||||||||
Fe 5% | 72.14 | 5.12 | 30.11 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Al 3% | 71.71 | 2.86 | 29.65 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Pomegranate 3% | 62.03 | 8.30 | 33.64 | 5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 | 4/5 |
Turmeric 7% | 28.94 | 11.88 | 29.34 | 4/5 | 4 | 4/5 | 4 | 4/5 | 4/5 | 4/5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, F.U.; Adeel, S.; Haddar, W.; Bibi, R.; Azeem, M.; Mia, R.; Ahmed, B. Microwave-Assisted Exploration of Yellow Natural Dyes for Nylon Fabric. Sustainability 2022, 14, 5599. https://doi.org/10.3390/su14095599
Rehman FU, Adeel S, Haddar W, Bibi R, Azeem M, Mia R, Ahmed B. Microwave-Assisted Exploration of Yellow Natural Dyes for Nylon Fabric. Sustainability. 2022; 14(9):5599. https://doi.org/10.3390/su14095599
Chicago/Turabian StyleRehman, Fazal Ur, Shahid Adeel, Wafa Haddar, Razia Bibi, Muhammad Azeem, Rony Mia, and Bulbul Ahmed. 2022. "Microwave-Assisted Exploration of Yellow Natural Dyes for Nylon Fabric" Sustainability 14, no. 9: 5599. https://doi.org/10.3390/su14095599