Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Data Preparation
2.1.1. PM2.5 and PM10
2.1.2. Meteorological Data
Rainfall
Wind Speed
Temperature
Relative Humidity
Air Pressure
2.1.3. Land Use
2.1.4. Traffic Load
2.2. LUR Model
2.3. Model Validation
2.4. Estimated PM2.5 and PM10 Concentration Map
3. Results
3.1. PM2.5
3.1.1. Variables Selection
3.1.2. PM2.5 LUR Model
3.1.3. Validation
3.2. PM10
3.2.1. Variable Selection
3.2.2. PM10 LUR Model
3.2.3. Validation
3.3. Estimated PM2.5 and PM10 Concentration Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Y.; Zhao, A.; Matsunaga, T.; Yamaguchi, Y.; Zang, S.; Li, Z.; Yu, T.; Gu, X. Underlying causes of PM2.5-induced premature mortality and potential health benefits of air pollution control in South and Southeast Asia from 1999 to 2014. Environ. Int. 2018, 121, 814–823. [Google Scholar] [CrossRef] [PubMed]
- WHO. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 2 February 2022).
- Buadong, D.; Jinsart, W.; Funatagawa, I.; Karita, K.; Yano, E. Association between PM10 and O3 levels and hospital visits for cardiovascular diseases in Bangkok, Thailand. J. Epidemiol. 2009, 19, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phosri, A.; Ueda, K.; Phung, V.L.H.; Tawatsupa, B.; Honda, A.; Takano, H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci. Total Environ. 2019, 651, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Ostro, B.; Chestnut, L.; Vichit-Vadakan, N.; Laixuthai, A. The Impact of Particulate Matter on Daily Mortality in Bangkok, Thailand. J. Air Waste Manag. Assoc. 2011, 49, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Vajanapoom, N.; Shy, C.M.; Neas, L.M.; Loomis, D. Associations of particulate matter and daily mortality in Bangkok, Thailand. Southeast Asian J. Trop. Med. Public Health 2002, 33, 389–399. [Google Scholar]
- Vichit-Vadakan, N.; Vajanapoom, N.; Ostro, B. Part 3. Estimating the effects of air pollution on mortality in Bangkok, Thailand. In Research Report; Health Effects Institute: Boston, MA, USA, 2010; pp. 231–268. [Google Scholar]
- Cheewinsiriwat, P. Estimation of nitrogen dioxide concentrations in Inner Bangkok using Land Use Regression modeling and GIS. Appl. Geomat. 2016, 8, 107–116. [Google Scholar] [CrossRef]
- Chalermpong, S.; Thaithatkul, P.; Anuchitchanchai, O.; Sanghatawatana, P. Land use regression modeling for fine particulate matters in Bangkok, Thailand, using time-variant predictors: Effects of seasonal factors, open biomass burning, and traffic-related factors. Atmos. Environ. 2021, 246, 118128. [Google Scholar] [CrossRef]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Van Reeuwijk, H.; Smallbone, K.; Van Der Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction. Sci. Total Environ. 2015, 514, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 2015, 116, 272–280. [Google Scholar] [CrossRef]
- Shi, T.; Hu, Y.; Liu, M.; Li, C.; Zhang, C.; Liu, C. Land use regression modelling of PM2.5 spatial variations in different seasons in urban areas. Sci. Total Environ. 2020, 743, 140744. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z.R. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-Y.; Tsai, C.-C.; Wu, C.-F.; Chang, L.-T.; Chuang, K.-J.; Chuang, H.-C.; Young, L.-H. Development of land-use regression models to estimate particle mass and number concentrations in Taichung, Taiwan. Atmos. Environ. 2021, 252, 118303. [Google Scholar] [CrossRef]
- Fritsch, M.; Behm, S. Agglomeration and infrastructure effects in land use regression models for air pollution–Specification, estimation, and interpretations. Atmos. Environ. 2021, 253, 118337. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef]
- Sahsuvaroglu, T.; Arain, A.; Kanaroglou, P.; Finkelstein, N.; Newbold, B.; Jerrett, M.; Beckerman, B.; Brook, J.; Finkelstein, M.; Gilbert, N.L. A Land Use Regression Model for Predicting Ambient Concentrations of Nitrogen Dioxide in Hamilton, Ontario, Canada. J. Air Waste Manag. Assoc. 2012, 56, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Dirgawati, M.; Barnes, R.; Wheeler, A.J.; Arnold, A.-L.; McCaul, K.A.; Stuart, A.L.; Blake, D.; Hinwood, A.; Yeap, B.B.; Heyworth, J.S. Development of Land Use Regression models for predicting exposure to NO2 and NOx in Metropolitan Perth, Western Australia. Environ. Model. Softw. 2015, 74, 258–267. [Google Scholar] [CrossRef]
- Wolf, K.; Cyrys, J.; Harciníková, T.; Gu, J.; Kusch, T.; Hampel, R.; Schneider, A.; Peters, A. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci. Total Environ. 2017, 579, 1531–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khreis, H.; de Hoogh, K.; Nieuwenhuijsen, M.J. Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environ. Int. 2018, 114, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, J.; Peng, J.; Li, W.; Xu, G.; Dong, C. Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environ. Sci. Pollut. Res. 2015, 22, 7045–7061. [Google Scholar] [CrossRef]
- Han, L.; Zhao, J.; Gao, Y.; Gu, Z.; Xin, K.; Zhang, J. Spatial distribution characteristics of PM2.5 and PM10 in Xi’an City predicted by land use regression models. Sustain. Cities Soc. 2020, 61, 102329. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Booker, D.; Zhao, S.; Tang, J.; Jiang, H.; Shen, J.; Chen, D.; Li, J.; Jones, K.C.; Zhang, G. The application of land use regression model to investigate spatiotemporal variations of PM2.5 in Guangzhou, China: Implications for the public health benefits of PM2.5 reduction. Sci. Total Environ. 2021, 778, 146305. [Google Scholar] [CrossRef] [PubMed]
- Sukitpaneenit, M.; Stettler, M. High spatial resolution traffic flow and emissions based on taxi GPS data in Bangkok, Thailand. In Proceedings of the ERSA 2019, Lyon, France, 29 August 2019; p. 405. [Google Scholar]
- Wong, P.Y.; Lee, H.Y.; Chen, Y.C.; Zeng, Y.T.; Chern, Y.R.; Chen, N.T.; Candice Lung, S.C.; Su, H.J.; Wu, C.D. Using a land use regression model with machine learning to estimate ground level PM2.5. Environ. Pollut. 2021, 277, 116846. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Pengjan, S.; Fan, C.; Bonnet, S.; Garivait, S. Assessment of the PM2.5/PM10 ratio in the Bangkok Metropolitan Region during 2011–2017. J. Sustain. Energy Environ. 2019, 10, 75–84. [Google Scholar]
- Liu, Z.; Shen, L.; Yan, C.; Du, J.; Li, Y.; Zhao, H. Analysis of the influence of precipitation and wind on PM2.5 and PM10 in the atmosphere. Adv. Meteorol. 2020, 2020, 5039613. [Google Scholar] [CrossRef]
- Banerjee, P.; Satheesh, S.K.; Moorthy, K.K.; Nanjundiah, R.S.; Nair, V.S. Long-range transport of mineral dust to the northeast Indian Ocean: Regional versus remote sources and the implications. J. Clim. 2019, 32, 1525–1549. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Chen, Z.; Zeng, G.; Hu, C.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Li, Z.; et al. The application of semicircular-buffer-based land use regression models incorporating wind direction in predicting quarterly NO2 and PM10 concentrations. Atmos. Environ. 2015, 103, 18–24. [Google Scholar] [CrossRef]
- Wimolwattanapun, W.; Hopke, P.K.; Pongkiatkul, P. Source apportionment and potential source locations of PM2.5 and PM2.5–10 at residential sites in metropolitan Bangkok. Atmos. Pollut. Res. 2011, 2, 172–181. [Google Scholar] [CrossRef] [Green Version]
Rainfall | Wind Speed | Temperature | Humidity | Air Pressure | |
---|---|---|---|---|---|
PM2.5 Concentration | −0.218 ** | −0.295 ** | −0.475 ** | −0.557 ** | 0.711 ** |
Land Use Type | Selected Radius from the Monitoring Stations | Correlation |
---|---|---|
Residential | N/A | Not significant at 0.05 |
Commercial | 200 | 0.070 * |
Industrial | 400 | 0.096 ** |
Government | 800 | −0.078 * |
Transportation | 200 | −0.065 * |
Open Space | 400 | −0.093 ** |
Agriculture | N/A | Not significant at 0.05 |
Water Bodies | 800 | 0.110 ** |
Radius from the Monitoring Stations | |||||
---|---|---|---|---|---|
200 | 400 | 600 | 800 | 1000 | |
PM2.5 Concentration | −0.049 | −0.055 | −0.016 | −0.016 | 0.023 |
Rainfall | Wind Speed | Temperature | Humidity | Air Pressure | |
---|---|---|---|---|---|
PM10 Concentration | −0.221 ** | −0.032 | −0.469 ** | −0.563 ** | 0.682 ** |
Land Use Type | Selected Radius from the Monitoring Stations | Correlation |
---|---|---|
Residential | 200 | 0.115 ** |
Commercial | 200 | −0.119 ** |
Industrial | 600 | 0.163 ** |
Government | 400 | 0.102 ** |
Transportation | 200 | 0.073 * |
Open Space | 800 | 0.117 ** |
Agriculture | 200 | −0.158 ** |
Water Bodies | 400 | 0.080 ** |
Radius from the Monitoring Stations | |||||
---|---|---|---|---|---|
200 | 400 | 600 | 800 | 1000 | |
PM10 Concentration | −0.040 | −0.065 * | 0.053 | −0.020 | 0.059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheewinsiriwat, P.; Duangyiwa, C.; Sukitpaneenit, M.; Stettler, M.E.J. Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand. Sustainability 2022, 14, 5367. https://doi.org/10.3390/su14095367
Cheewinsiriwat P, Duangyiwa C, Sukitpaneenit M, Stettler MEJ. Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand. Sustainability. 2022; 14(9):5367. https://doi.org/10.3390/su14095367
Chicago/Turabian StyleCheewinsiriwat, Pannee, Chanita Duangyiwa, Manlika Sukitpaneenit, and Marc E. J. Stettler. 2022. "Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand" Sustainability 14, no. 9: 5367. https://doi.org/10.3390/su14095367
APA StyleCheewinsiriwat, P., Duangyiwa, C., Sukitpaneenit, M., & Stettler, M. E. J. (2022). Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand. Sustainability, 14(9), 5367. https://doi.org/10.3390/su14095367