Impact of Manufacturing Servitization on Factor Productivity of Industrial Sector Using Global Value Chain
Abstract
:1. Introduction
2. Theoretical Mechanism and Construction of Hypotheses
3. Materials and Methods
3.1. Source of Data Collection
3.2. Construction of Regression Function
3.3. Selection of Variables
3.3.1. Explained Variable
3.3.2. Core Explanatory Variable
3.3.3. Control Variable
- (1)
- Industry size, which is measured by the ratio of the output value of each manufacturing sector to the total output value of each sector.
- (2)
- Export intensity refers to the proportion of the export delivery value of each department in the total output value of the department.
- (3)
- The proportion of state capital (CAPD) is the ratio of state-owned capital to the paid-in capital of the department.
- (4)
- The proportion of foreign capital (CAPF) is measured by the ratio of foreign capital of the department to the paid-in capital.
4. Results and Discussion
4.1. The Impact of Manufacturing Servitization on Total Factor Productivity from the Perspective of the GVC Division
4.2. Productivity Effects of Service Factors
4.3. Effect of Service Factor Input Heterogeneity on Productivity
4.4. Robustness Test
4.4.1. Endogenous Problem
4.4.2. Indicator Replacement
4.4.3. Quantile Regression
5. Conclusions and Policy Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Sun, S.; Jiang, M.; Dai, Y. Research on the promoting effect of servitization on export technological sophistication of manufacturing enterprises. PLoS ONE 2021, 16, e0255891. [Google Scholar] [CrossRef] [PubMed]
- Dolata, U. Apple, Amazon, Google, Facebook, Microsoft: Market Concentration-Competition-Innovation Strategies; SOI Discussion Paper; University of Stuttgart: Stuttgart, Germany, 2017. [Google Scholar]
- Peng, B.; Zheng, C.; Wei, G.; Elahi, E. The cultivation mechanism of green technology innovation in manufacturing industry: From the perspective of ecological niche. J. Clean. Prod. 2020, 252, 119711. [Google Scholar] [CrossRef]
- Peng, B.; Yan, W.; Elahi, E.; Wan, A. Does the green credit policy affect the scale of corporate debt financing? Evidence from listed companies in heavy pollution industries in China. Environ. Sci. Pollut. Res. 2021, 29, 13755–13767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, H. Interactive Relationship among urban expansion, economic development, and population growth since the reform and opening up in China: An analysis based on a Vector Error Correction Model. Land 2019, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lee, J.M.; Lee, C. The challenges and opportunities of a global health crisis: The management and business implications of COVID-19 from an Asian perspective. Asian Bus. Manag. 2020, 19, 277–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Zhang, Y.; Sun, Y.; Yang, H. Impacts of the COVID-19 pandemic on fish trade and the coping strategies: An initial assessment from China’s perspective. Mar. Policy 2021, 133, 104748. [Google Scholar] [CrossRef]
- Lin, B.; Xu, B. How to promote the growth of new energy industry at different stages? Energy Policy 2018, 118, 390–403. [Google Scholar] [CrossRef]
- Peng, B.; Wang, Y.; Zahid, S.; Wei, G.; Elahi, E. Platform ecological circle for cold chain logistics enterprises: The value co-creation analysis. Ind. Manag. Data Syst. 2020, 120, 675–691. [Google Scholar] [CrossRef]
- Wang, N.; Lee, J.C.K.; Zhang, J.; Chen, H.; Li, H. Evaluation of Urban circular economy development: An empirical research of 40 cities in China. J. Clean. Prod. 2018, 180, 876–887. [Google Scholar] [CrossRef]
- Zhang, Q.; Mu, R.; Zhang, Z.; Hu, Y.; Liu, C.; Zhang, L.; Yu, X. Competitiveness evaluation of high-quality manufacturing development in the Yangtze River economic belt. Int. J. Sustain. Dev. Plan. 2020, 15, 875–883. [Google Scholar] [CrossRef]
- Hoekman, B. Trade wars and the World Trade Organization: Causes, consequences, and change. Asian Econ. Policy Rev. 2020, 15, 98–114. [Google Scholar] [CrossRef]
- Peng, B.; Tu, Y.; Elahi, E.; Wei, G. Extended Producer Responsibility and corporate performance: Effects of environmental regulation and environmental strategy. J. Environ. Manag. 2018, 218, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Xia, M.; Zhang, Q.; Elahi, E.; Zhou, Y.; Zhang, H. The impact of public appeals on the performance of environmental governance in China: A perspective of provincial panel data. J. Clean. Prod. 2019, 231, 290–296. [Google Scholar] [CrossRef]
- Vandermerwe, S.; Rada, J. Servitization of business: Adding value by adding services. Eur. Manag. J. 1988, 6, 314–324. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Q.; Huang, Z. Research on the strategic decision-making model of manufacturing servitization. In Proceedings of the 2014 11th International Conference on Service Systems and Service Management (ICSSSM), Beijing, China, 25–27 June 2014; pp. 1–6. [Google Scholar]
- Zhou, C.; Liu, X.; Xue, F.; Bo, H.; Li, K. Research on static service BOM transformation for complex products. Adv. Eng. Inform. 2018, 36, 146–162. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, J.; Lin, Y.; Li, Y.; Yu, H.; Liu, Y. Smart manufacturing based on cyber-physical systems and beyond. J. Intell. Manuf. 2017, 30, 2805–2817. [Google Scholar] [CrossRef] [Green Version]
- Man, T.W.; Lau, T.; Chan, K. The competitiveness of small and medium enterprises: A conceptualization with focus on entrepreneurial competencies. J. Bus. Ventur. 2002, 17, 123–142. [Google Scholar] [CrossRef]
- Kim, N.; Shim, C. Social capital, knowledge sharing and innovation of small- and medium-sized enterprises in a tourism cluster. Int. J. Contemp. Hosp. Manag. 2018, 30, 2417–2437. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Hao, H.; Fu, G.; Nie, F.; Zhang, W. Root causes of coal mine accidents: Characteristics of safety culture deficiencies based on accident statistics. Process Saf. Environ. Prot. 2020, 136, 78–91. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Zhang, H.; Abid, M. Use of artificial neural networks to rescue agrochemical-based health hazards: A resource optimisation method for cleaner crop production. J. Clean. Prod. 2019, 238, 117900. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Zhang, H.; Nazeer, M. Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy 2019, 83, 461–474. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Weijun, C.; Zhang, H. The public policy of agricultural land allotment to agrarians and its impact on crop productivity in Punjab province of Pakistan. Land Use Policy 2019, 90, 104324. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Elahi, E.; Zhixin, Z.; Khalid, Z.; Xu, H. Application of an artificial neural network to optimise energy inputs: An energy-and cost-saving strategy for commercial poultry farms. Energy 2022, 244, 123169. [Google Scholar] [CrossRef]
- Xin-Gang, Z.; You, Z. Technological progress and industrial performance: A case study of solar photovoltaic industry. Renew. Sustain. Energy Rev. 2018, 81, 929–936. [Google Scholar] [CrossRef]
- Wang, S. Servitization and Global Value Chain Upgrading in China—Based on the perspective of Export Sophistication and Products Quality. In Proceedings of the 22nd Annual Conference on Global Economic Analysis, Warsaw, Poland, 19–21 June 2019. [Google Scholar]
- Fang, E.; Palmatier, R.W.; Steenkamp, J.-B.E. Effect of service transition strategies on firm value. J. Mark. 2008, 72, 1–14. [Google Scholar] [CrossRef]
- Shen, L.; Sun, C.; Ali, M. Role of Servitization, Digitalization, and Innovation Performance in Manufacturing Enterprises. Sustainability 2021, 13, 9878. [Google Scholar] [CrossRef]
- Kohtamäki, M.; Parida, V.; Patel, P.C.; Gebauer, H. The relationship between digitalization and servitization: The role of servitization in capturing the financial potential of digitalization. Technol. Forecast. Soc. Chang. 2019, 151, 119804. [Google Scholar] [CrossRef]
- Gaofeng, T.S.Z.; Shoulian, T.; Ming, H.; Yan, L.; Yiwei, T. A Study on China’s Manufacturing Servitization Development Strategy. Chin. J. Eng. Sci. 2017, 19, 89–94. [Google Scholar]
- Lu, P.; Liu, J.; Wang, Y.; Ruan, L. Can industrial agglomeration improve regional green total factor productivity in China? An empirical analysis based on spatial econometrics. Growth Chang. 2021, 52, 1011–1039. [Google Scholar] [CrossRef]
- Kano, L.; Tsang, E.W.; Yeung, H.W.-C. Global value chains: A review of the multi-disciplinary literature. J. Int. Bus. Stud. 2020, 51, 577–622. [Google Scholar] [CrossRef]
- Free, C.; Hecimovic, A. Global supply chains after COVID-19: The end of the road for neoliberal globalisation? Account. Audit. Account. J. 2021, 34, 58–84. [Google Scholar] [CrossRef]
- Wang, F.; Cai, W.; Elahi, E. Do Green Finance and Environmental Regulation Play a Crucial Role in the Reduction of CO2 Emissions? An Empirical Analysis of 126 Chinese Cities. Sustainability 2021, 13, 13014. [Google Scholar] [CrossRef]
- Xiang, D.; Zhou, L.; Yu, Z. Differences in Service Input Sources, Manufacturing Servitization and GVC Upgrading. J. Financ. Econ. 2019, 45, 30–43. [Google Scholar]
- Kergroach, S. National innovation policies for technology upgrading through GVCs: A cross-country comparison. Technol. Forecast. Soc. Chang. 2018, 145, 258–272. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, S.; Wang, Y.; Ding, X.; Miao, S. Research on the Leakage-Hunting Behavior and Influence Effect of Private Entrepreneurs: The Predicament and Cracking Strategies of Private Enterprises in the Era of Transition. J. Chin. Hum. Resour. Manag. 2020, 11, 50–72. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y. The Impacts of Offshore and Onshore Outsourcing on China’s Upgrading in Global Value Chains: Evidence from Its Manufacturing and Service Sectors. Struct. Change Econ. Dyn. 2021, 59, 263–280. [Google Scholar] [CrossRef]
- Elahi, E.; Abid, M.; Zhang, L.; Haq, S.U.; Sahito, J.G.M. Agricultural advisory and financial services; farm level access, outreach and impact in a mixed cropping district of Punjab, Pakistan. Land Use Policy 2018, 71, 249–260. [Google Scholar] [CrossRef]
- Frank, A.G.; Mendes, G.H.; Ayala, N.F.; Ghezzi, A. Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technol. Forecast. Soc. Chang. 2019, 141, 341–351. [Google Scholar] [CrossRef]
- Kamal, M.M.; Sivarajah, U.; Bigdeli, A.Z.; Missi, F.; Koliousis, Y. Servitization implementation in the manufacturing organisations: Classification of strategies, definitions, benefits and challenges. Int. J. Inf. Manag. 2020, 55, 102206. [Google Scholar] [CrossRef]
- Peng, B.; Li, Y.; Elahi, E.; Wei, G. Dynamic evolution of ecological carrying capacity based on the ecological footprint theory: A case study of Jiangsu province. Ecol. Indic. 2018, 99, 19–26. [Google Scholar] [CrossRef]
- Zhao, X.; Peng, B.; Elahi, E.; Zheng, C.; Wan, A. Optimization of Chinese coal-fired power plants for cleaner production using Bayesian network. J. Clean. Prod. 2020, 273, 122837. [Google Scholar] [CrossRef]
- Zhong, Z.; Peng, B.; Xu, L.; Andrews, A.; Elahi, E. Analysis of regional energy economic efficiency and its influencing factors: A case study of Yangtze river urban agglomeration. Sustain. Energy Technol. Assess. 2020, 41, 100784. [Google Scholar] [CrossRef]
- Nishimura, H.; Ambashi, M.; Iwasaki, F.; Maeda, M. Harnessing New Technologies for Social and Economic Progress Towards ASEAN. In Transforming and Deepening the ASEAN Community; Kimura, F., Anbumozhi, V., Nishimura, H., Eds.; ERIA: Jakarta, Indonesia, 2019; pp. 50–71. [Google Scholar]
- Obashi, A.; Kimura, F. New Developments in International Production Networks: Impact of Digital Technologies. Asian Econ. J. 2021, 35, 115–141. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2021, 117, 102255. [Google Scholar] [CrossRef]
- Elahi, E.; Zhang, H.; Lirong, X.; Khalid, Z.; Xu, H. Understanding cognitive and socio-psychological factors determining farmers’ intentions to use improved grassland: Implications of land use policy for sustainable pasture production. Land Use Policy 2021, 102, 105250. [Google Scholar] [CrossRef]
- Elahi, E.; Zhang, L.; Abid, M.; Javed, M.T.; Xinru, H. Direct and indirect effects of wastewater use and herd environment on the occurrence of animal diseases and animal health in Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 6819–6832. [Google Scholar] [CrossRef]
- Elahi, E.; Abid, M.; Zhang, H.; Cui, W.; Hasson, S.U. Domestic water buffaloes: Access to surface water, disease prevalence and associated economic losses. Prev. Veter. Med. 2018, 154, 102–112. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Jha, S.K.; Zhang, H. Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability. Energy 2019, 183, 191–204. [Google Scholar] [CrossRef]
- Abbas, A.; Minli, Y.; Elahi, E.; Yousaf, K.; Ahmad, R.; Iqbal, T. Quantification of mechanization index and its impact on crop productivity and socioeconomic factors. Int. Agric. Eng. J. 2017, 26, 49–54. [Google Scholar]
- Abbas, A.; Iqbal, T.; Ahmad, M.; Yousaf, K.; Elahi, E.; Yang, M. Implementation of a novel approach for the evaluation of energy efficiency, management needs and sustainability of wheat production. Fresenius Environ. Bull. 2018, 27, 6695–6703. [Google Scholar]
- Abbas, A.; Yang, M.; Yousaf, K.; Ahmad, M.; Elahi, E.; Iqbal, T. Improving energy use efficiency of corn production by using data envelopment analysis (a non-parametric approach). Fresenius Environ. Bull. 2018, 27, 4725–4733. [Google Scholar]
- Zhang, J.; Wu, G.; Zhang, J. Estimation of China’s inter-provincial physical capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Wang, Z.; Wei, S.-J.; Zhu, K. Quantifying International Production Sharing at the Bilateral and Sector Levels; Working Paper 19677; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- Chen, W.; Chen, Y.; Hao, Y.; Chen, S. Producer Services Openness and the Development of Servitization: The Perspective of Two-Way Openness. Discret. Dyn. Nat. Soc. 2021, 2021, 8717130. [Google Scholar] [CrossRef]
- Greening, L.A.; Greene, D.L.; Difiglio, C. Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Ge, J.; Lei, Y. Carbon emissions from the service sector: An input-output application to Beijing, China. Clim. Res. 2014, 60, 13–24. [Google Scholar] [CrossRef]
- Peng, B.; Wang, Y.; Elahi, E.; Wei, G. Behavioral game and simulation analysis of extended producer responsibility system’s implementation under environmental regulations. Environ. Sci. Pollut. Res. 2019, 26, 17644–17654. [Google Scholar] [CrossRef]
- Tu, Y.; Peng, B.; Wei, G.; Elahi, E.; Yu, T. Regional environmental regulation efficiency: Spatiotemporal characteristics and influencing factors. Environ. Sci. Pollut. Res. 2019, 26, 37152–37161. [Google Scholar] [CrossRef]
- Peng, B.; Chen, H.; Elahi, E.; Wei, G. Study on the spatial differentiation of environmental governance performance of Yangtze river urban agglomeration in Jiangsu province of China. Land Use Policy 2020, 99, 105063. [Google Scholar] [CrossRef]
- Wu, B.; Peng, B.; Wei, W.; Ehsan, E. A comparative analysis on the international discourse power evaluation of global climate governance. Environ. Dev. Sustain. 2021, 23, 12505–12526. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, B.; Elahi, E.; Wan, A. Does the extended producer responsibility system promote the green technological innovation of enterprises? An empirical study based on the difference-in-differences model. J. Clean. Prod. 2021, 319, 128631. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, X.; Elahi, E.; Wan, A. Evolution of spatial–temporal characteristics and financial development as an influencing factor of green ecology. Environ. Dev. Sustain. 2021, 24, 789–809. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T.; Xu, Y. Comparisons of four categories of waste recycling in China’s paper industry based on physical input–output life-cycle assessment model. Waste Manag. 2012, 32, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, G.; Dedola, L.; Leduc, S. International Risk Sharing and the Transmission of Productivity Shocks. Rev. Econ. Stud. 2008, 75, 443–473. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Nelson, J.D. Recent Developments in Bus Rapid Transit: A Review of the Literature. Transp. Rev. 2011, 31, 69–96. [Google Scholar] [CrossRef]
- Baldwin, R.E. Global Supply Chains: Why They Emerged, Why They Matter, and Where They are Going. In Global Value Chains in a Changing World; WTO: Geneva, Switzerland, 2013. [Google Scholar]
- Wongprawmas, R.; Canavari, M.; Waisarayutt, C. A multi-stakeholder perspective on the adoption of good agricultural practices in the Thai fresh produce industry. Br. Food J. 2015, 117, 2234–2249. [Google Scholar] [CrossRef]
- Lotfi, Z.; Mukhtar, M.; Sahran, S.; Taeizadeh, A. Information Sharing in Supply Chain Management. Procedia Technol. 2013, 11, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Mody, A. New International Environment for Intellectual Property Rights. In Intellectual Property Rights in Science, Technology, and Economic Performance; Routledge: Oxfordshire, UK, 2019; pp. 203–239. [Google Scholar]
- Heim, I.; Kalyuzhnova, Y.; Li, W.; Liu, K. Value co-creation between foreign firms and indigenous small-and medium-sized enterprises (SMEs) in Kazakhstan’s oil and gas industry: The role of information technology spillovers. Thunderbird Int. Bus. Rev. 2019, 61, 911–927. [Google Scholar] [CrossRef] [Green Version]
- Narteh, B.; Acheampong, G. Foreign participation and internationalization intensity of African enterprises. Int. Mark. Rev. 2018, 35, 560–579. [Google Scholar] [CrossRef]
- Li, G.; Hou, Y.; Wu, A. Fourth Industrial Revolution: Technological drivers, impacts and coping methods. Chin. Geogr. Sci. 2017, 27, 626–637. [Google Scholar] [CrossRef] [Green Version]
- Sundram, S.; Venkateswaran, P.; Jain, V.; Yu, Y.; Yapanto, L.M.; Raisal, I.; Gupta, A.; Regin, R. The Impact of Knowledge Management on The Performance of Employees: The Case of Small Medium Enterprises. Product. Manag. 2020, 25, 554–567. [Google Scholar]
- Gu, H.; Cao, Y.; Elahi, E.; Jha, S.K. Human health damages related to air pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 13115–13125. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Yan, W.; Elahi, E.; Cao, Y. Air pollution risks human mental health: An implication of two-stages least squares estimation of interaction effects. Environ. Sci. Pollut. Res. 2019, 27, 2036–2043. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Bian, F.; Elahi, E. Impact of availability of grandparents’ care on birth in working women: An empirical analysis based on data of Chinese dynamic labour force. Child. Youth Serv. Rev. 2020, 121, 105859. [Google Scholar] [CrossRef]
- Wang, Y. Exploring the Trust and Innovation Mechanisms in M&A of China’s State Owned Enterprises with Mixed Ownership; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Fernandez-Stark, K.; Gereffi, G. Global Value Chain Analysis: A Primer, 2nd ed.; Duke University Press: Durham, NC, USA, 2019; pp. 54–76. [Google Scholar]
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
tfp | tfp | tfp | tfp | tfp | |
gvc_pos | 0.721 ** (0.251) | 0.679 *** (0.211) | 0.616 ** (0.273) | 0.485 ** (0.222) | 0.491 ** (0.224) |
ser | 0.812 *** (0.221) | 0.815 *** (0.251) | 0.836 ** (0.289) | ||
gvc_pos *ser | 0.074 ** (0.178) | ||||
capd | 0.068 (0.071) | 0.039 (0.058) | 0.027 (0.076) | ||
capf | −0.293 * (0.151) | −0.335 ** (0.136) | −0.338 ** (0.135) | ||
expd | 0.161 ** (0.076) | 0.077 * (0.105) | 0.076 * (0.102) | ||
size | −0.250 (0.319) | −0.434 (0.334) | −0.413 (0.335) | ||
Year effect | Yes | Yes | Yes | Yes | Yes |
Industry effect | Yes | Yes | Yes | Yes | Yes |
Constant | 1.297 *** (0.0189) | 1.497 *** (0.2667) | 1.015 *** (0.0762) | 1.387 *** (0.253) | 1.367 *** (0.262) |
R2 | 0.684 | 0.691 | 0.671 | 0.679 | 0.680 |
Total number of observations | 255 | 255 | 255 | 255 | 255 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
tfp | tfp | tfp | tfp | |
gvc_pos | 0.603 *** (0.205) | 0.623 *** (0.209) | 0.684 *** (0.326) | 0.752 ** (0.379) |
ser_dw | 0.576 *** (0.143) | 0.573 *** (0.147) | ||
ser_fw | 0.118 * (0.062) | 0.119 * (0.063) | ||
gvc_pos*ser_dw | 0.078 (0.174) | |||
gvc_pos*ser_fw | 0.069 ** (0.076) | |||
capd | 0.073 (0.072) | 0.075 (0.073) | 0.031 (0.085) | 0.0329 (0.087) |
capf | −0.314 * (0.152) | −0.307 * (0.158) | −0.299 ** (0.141) | −0.298 * (0.145) |
expd | 0.142 * (0.071) | 0.142 * (0.070) | 0.129 * (0.065) | 0.131 * (0.747) |
size | −0.234 (0.296) | −0.235 (0.295) | −0.255 (0.333) | −0.252 (0.338) |
Year effect | Yes | Yes | Yes | Yes |
Industry effect | Yes | Yes | Yes | Yes |
constant | 1.3584 *** (0.2924) | 1.4706 *** (0.2441) | 1.4789 *** (0.2849) | 1.4754 *** (0.2921) |
R2 | 0.6931 | 0.6965 | 0.6988 | 0.6986 |
Total number of observations | 255 | 255 | 255 | 255 |
Variables | Domestic Service Factor Input | Foreign Service Factor Input | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
Distribution | Transport | IT | Finance | Business | Distribution | Transport | IT | Finance | Business | |
gvc_pos | 0.780 *** (0.235) | 0.674 *** (0.217) | 0.636 *** (0.201) | 0.627 ** (0.217) | 0.520 *** (0.162) | 0.515 ** (0.225) | 0.598 ** (0.251) | 0.671 *** (0.216) | 0.593 ** (0.260) | 0.338 ** (0.216) |
retser | −0.107 (0.138) | 0.332 *** (0.064) | ||||||||
traser | 0.043 (0.839) | −0.211 (0.312) | ||||||||
itser | 0.168 * (0.081) | −0.075 (0.043) | ||||||||
finser | 0.158 *** (0.053) | 0.072 * (0.036) | ||||||||
busser | 0.189 ** (0.063) | 0.288 *** (0.096) | ||||||||
gvc_pos* ser_dw | 0.046 (0.112) | 0.034 (0.496) | 0.027 ** (0.045) | 0.142 ** (0.008) | 0.227 ** (0.429) | |||||
gvc_pos* ser_fw | 0.175 ** (0.297) | −0.012 (0.053) | −0.047 * (0.099) | 0.668 ** (0.169) | 0.172 *** (0.255) | |||||
capd | 0.064 (0.077) | 0.068 (0.071) | 0.081 (0.069) | 0.053 (0.078) | 0.036 (0.082) | 0.043 (0.053) | 0.046 (0.079) | 0.069 (0.071) | −0.029 (0.067) | 0.010 (0.079) |
capf | −265 (0.152) | −0.295 * (0.157) | −0.308 * (0.148) | −0.243 (0.151) | −0.279 * (0.158) | −0.269 * (0.131) | −0.362 ** (0.146) | −0.282 * (0.151) | −0.291 * (0.147) | −0.351 ** (0.143) |
expd | 0.165 * (0.079) | 0.161 * (0.077) | 0.141 * (0.075) | 0.157 * (0.085) | 0.121 (0.092) | 0.050 (0.096) | 0.106 * (0.051) | 0.165 * (0.078) | −0.030 (0.061) | 0.126 (0.101) |
size | −0.279 (0.304) | −0.243 (0.271) | −0.273 (0.299) | −0.335 (0.321) | −0.213 * (0.339) | −0.480 (0.309) | −0.513 (0.320) | −0.232 (0.327) | −0.637 ** (0.299) | −0.506 (0.347) |
Year effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
constant | 1.505 *** (0.263) | 1.489 *** (0.231) | 1.496 *** (0.243) | 1.499 *** (0.280) | 1.356 *** (0.302) | 1.376 *** (0.246) | 1.912 *** (0.555) | 1.480 *** (0.275) | 1.586 *** (0.245) | 1.458 *** (0.300) |
R2 | 0.693 | 0.692 | 0.695 | 0.697 | 0.698 | 0.684 | 0.594 | 0.693 | 0.587 | 0.638 |
Total number of observations | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 |
Variables | 2SLS_IV | OLS_FE | Quantile Regression | |||
---|---|---|---|---|---|---|
(1) Lag Phase I | (2) Lag Two Periods | (3) Indicator Replacement | (4) 25% | (5) 50% | (6) 75% | |
gvc_pos | 0.593 ** (0.291) | 0.295 *** (0.094) | 0.154 ** (0.063) | 0.205 (0.442) | 0.099 * (0.551) | 0.143 * (0.078) |
ser | 0.125 ** (0.061) | 0.249 * (0.192) | 0.365 ** (0.147) | −0.258 * (0.119) | 0.415 *** (0.122) | 0.639 *** (0.175) |
gvc_pos*ser | 0.446 ** (0.305) | 0.124 *** (0.376) | 0.168 ** (0.066) | 0.173 (0.175) | 0.053 * (0.218) | 0.624 * (0.313) |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 1.489 *** (0.294) | 1.492 *** (0.193) | 0.847 *** (0.153) | 1.292 *** (0.058) | 1.287 *** (0.082) | 1.457 *** (0.099) |
R2 | 0.681 | 0.537 | 0.119 | 0.168 | 0.163 | 0.188 |
Total number of observations | 238 | 221 | 255 | 255 | 255 | 255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J. Impact of Manufacturing Servitization on Factor Productivity of Industrial Sector Using Global Value Chain. Sustainability 2022, 14, 5354. https://doi.org/10.3390/su14095354
Zhang J. Impact of Manufacturing Servitization on Factor Productivity of Industrial Sector Using Global Value Chain. Sustainability. 2022; 14(9):5354. https://doi.org/10.3390/su14095354
Chicago/Turabian StyleZhang, Jingxing. 2022. "Impact of Manufacturing Servitization on Factor Productivity of Industrial Sector Using Global Value Chain" Sustainability 14, no. 9: 5354. https://doi.org/10.3390/su14095354