Transformation for Feature Upgrades or Higher Property Prices: Evidence from Industrial Land Regeneration in Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Industrial Land and Enterprises
2.2.2. Land Prices and Distribution
2.2.3. Classification of Industrial Land and Living Quarters
2.3. Methods
2.3.1. Method of Bivariate K-Function
2.3.2. Method of Discrete Choice Model
3. Results
3.1. Differences in Characteristics and Locations for Industrial Land Transformation
3.1.1. Differences in Characteristics between L1 and L2
3.1.2. Spatial Distribution of Industrial Land and Living Quarters
3.2. Positive Impact of Land Price on Industrial Land Transformation
3.3. Influence of Policy Factors and Industrial Parks on Industrial Land Transformation
3.4. Moderation Effects of Output on Industrial Land Transformation
4. Discussion
4.1. The Game Framework for Industrial Land Transformation
4.2. The Role of Industrial Land Leasing for Local Governments
4.3. The Regeneration Behavior of Industrial Enterprises
4.4. Targeted Guidance to Regulate Industrial Land Transformation
4.5. Highlights, Limitations, and Suggestions for Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, M. Revenue, time horizon, and land allocation in China. Land Use Policy 2017, 62, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Su, F.; Liu, M.; Cao, G. Land leasing and local public finance in China’s regional development: Evidence from prefecture-level cities. Urban Stud. 2010, 47, 2217–2236. [Google Scholar] [CrossRef]
- Zhang, L.; Nian, Y.; Pi, J.; Zhou, Y. Land policy, land supply structure and housing prices. China J. Econ. 2017, 4, 91–118. [Google Scholar] [CrossRef]
- Lin, Y.; Qin, Y.; Yang, Y.; Zhu, H. Can price regulation increase land-use intensity? Evidence from China’s industrial land market. Reg. Sci. Urban Econ. 2020, 81, 103501. [Google Scholar] [CrossRef]
- Alder, S.; Shao, L.; Zilibotti, F. Economic reforms and industrial policy in a panel of Chinese cities. J. Econ. Growth 2016, 21, 305–349. [Google Scholar] [CrossRef]
- Zhang, J. Interjurisdictional competition for FDI: The case of China’s “development zone fever”. Reg. Sci. Urban Econ. 2011, 41, 145–159. [Google Scholar] [CrossRef]
- Schminke, A.; van Biesebroeck, J. Using export market performance to evaluate regional preferential policies in China. Rev. World Econ. 2013, 149, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Tu, F.; Yu, X.; Ruan, J. Industrial land use efficiency under government intervention: Evidence from Hangzhou, China. Habitat Int. 2014, 43, 1–10. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, F.-R.; An, P.-L.; Dong, M.-L.; Wang, Z.-Y.; Zhao, T. Industrial land-use efficiency and planning in Shunyi, Beijing. Landsc. Urban Plan. 2008, 85, 40–48. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, A.; Su, H.; Su, S.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Huang, D.; Wan, W.; Dai, T.; Liang, J. Assessment of industrial land use intensity: A case study of Beijing economic-technological development area. Chin. Geogr. Sci. 2011, 21, 222–229. [Google Scholar] [CrossRef]
- Harvey, D. The geography of capitalist accumulation: A recpnstruction of the Marxian theory. Antipode 1975, 7, 9–21. [Google Scholar] [CrossRef]
- Lai, Y.; Tang, B. Institutional barriers to redevelopment of urban villages in China: A transaction cost perspective. Land Use Policy 2016, 58, 482–490. [Google Scholar] [CrossRef]
- Wang, W.; Rong, Z. Housing boom and firm innovation: Evidence from industrial firms in China. China Econ. Q. 2014, 13, 465–490. [Google Scholar] [CrossRef]
- Gao, J.; Chen, W.; Yuan, F. Spatial restructuring and the logic of industrial land redevelopment in urban China: I. Theoretical considerations. Land Use Policy 2017, 68, 604–613. [Google Scholar] [CrossRef]
- Tian, L.; Ma, W. Government intervention in city development of China: A tool of land supply. Land Use Policy 2009, 26, 599–609. [Google Scholar] [CrossRef]
- Gao, J.; Chen, W. Spatial restructuring and the logic of industrial land redevelopment in urban China: III. A case study of the redevelopment of a central state-owned enterprise in Nanjing. Cities 2020, 96, 604–613. [Google Scholar] [CrossRef]
- Gao, J.; Chen, W.; Liu, Y. Spatial restructuring and the logic of industrial land redevelopment in urban China: II. A case study of the redevelopment of a local state-owned enterprise in Nanjing. Land Use Policy 2018, 72, 372–380. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, Y. Effect of land prices on the spatial differentiation of housing prices: Evidence from cross-county analyses in China. J. Geogr. Sci. 2018, 28, 725–740. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Goodman, A.C. Relationship between urban land price and housing price: Evidence from 21 provincial capitals in China. Habitat Int. 2013, 40, 9–17. [Google Scholar] [CrossRef]
- Dubin, R.A. Predicting house prices using multiple listings data. J. Real Estate Financ. Econ. 1998, 17, 35–59. [Google Scholar] [CrossRef]
- Kuntz, M.; Helbich, M. Geostatistical mapping of real estate prices: An empirical comparison of kriging and cokriging. Int. J. Geogr. Inf. Sci. 2014, 28, 1904–1921. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Wu, Y.; Tian, G. Analyzing housing prices in Shanghai with open data: Amenity, accessibility and urban structure. Cities 2019, 91, 165–179. [Google Scholar] [CrossRef]
- Si, Z.; Shi, Y. The impacts of class 3A comprehensive hospitals on population distribution and housing price: Take children’s hospital of Fudan University for example. Econ. Geogr. 2013, 33, 74–81. [Google Scholar]
- Byth, K.; Ripley, B.D. On sampling spatial patterns by distance methods. Biometrics 1980, 36, 279–284. [Google Scholar] [CrossRef]
- Lotwick, H.W.; Silverman, B.W. Methods for analyzing spatial processes of several types of points. J. R. Stat. Soc. Ser. B 1982, 44, 406–413. [Google Scholar]
- Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–229. [Google Scholar] [CrossRef]
- Austin, S.B.; Melly, S.J.; Sanchez, B.N.; Patel, A.; Buka, S.; Gortmaker, S.L. Clustering of fast-food restaurants around schools: A novel application of spatial statistics to the study of food environments. Am. J. Public Health 2005, 95, 1575–1581. [Google Scholar] [CrossRef]
- Cuthbert, A.L.; Anderson, W.P. Using spatial statistics to examine the pattern of urban land development in Halifax-Dartmouth. Prof. Geogr. 2002, 54, 521–532. [Google Scholar] [CrossRef]
- Baddeley, A.; Turner, R. spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 2005, 12, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Itoh, R. Estimating the willingness to pay of industrial firms for Japanese industrial parks. Urban Stud. 2013, 50, 2753–2765. [Google Scholar] [CrossRef]
- Chau, K.W.; Wong, S.K. Externalities of urban renewal: A real option perspective. J. Real Estate Financ. Econ. 2014, 48, 546–560. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-C.; Liang, C.-M.; Chen, C.-Y. The impact of urban renewal on neighborhood housing prices in Taipei: An application of the difference-in-difference method. J. Hous. Built Environ. 2017, 32, 407–428. [Google Scholar] [CrossRef]
- Rossi-Hansberg, E.; Sarte, P.D.; Owens, R., III. Housing externalities. J. Political Econ. 2010, 118, 485–535. [Google Scholar] [CrossRef]
- van Duijn, M.; Rouwendal, J.; Boersema, R. Redevelopment of industrial heritage: Insights into external effects on house prices. Reg. Sci. Urban Econ. 2016, 57, 91–107. [Google Scholar] [CrossRef]
- Newey, W.K. Efficient estimation of limited dependent variable models with endogenous explanatory variables. J. Econom. 1987, 36, 231–250. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Yu, Z.; Tian, G. Amenity, accessibility and housing values in metropontan USA: A study of salt Lake county, utah. Cities 2016, 59, 113–125. [Google Scholar] [CrossRef]
- Zheng, S.; Kahn, M.E. Land and residential property markets in a booming economy: New evidence from Beijing. J. Urban Econ. 2008, 63, 743–757. [Google Scholar] [CrossRef]
- Wang, B.; Li, T.; Yao, Z. Institutional uncertainty, fragmented urbanization and spatial lock-in of the pen-urban area of China: A case of industrial land redevelopment in Panyu. Land Use Policy 2018, 72, 241–249. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, Q.; Tan, S.; Xiang, Z. Urban renewal to integrate fragmented rural industrialized areas: A case study of Nanhai District, Foshan City. City Plan. Rev. 2020, 44, 53–61, 89. [Google Scholar]
- Jiang, Z. Industrialization, local government efforts and land finance: A perspective of land finance in China. China Ind. Econ. 2014, 10, 33–45. [Google Scholar] [CrossRef]
- Lin, S.-W.; Ben, T.-M. Impact of government and industrial agglomeration on industrial land prices: A Taiwanese case study. Habitat Int. 2009, 33, 412–418. [Google Scholar] [CrossRef]
- Cao, G.; Feng, C.; Tao, R. Local “Land finance” in China’s urban expansion: Challenges and solutions. China World Econ. 2008, 16, 19–30. [Google Scholar] [CrossRef]
- Xu, N. What gave rise to China’s land finance? Land Use Policy 2019, 87, 104015. [Google Scholar] [CrossRef]
- Peng, S.; Wang, S.; Chen, C.; Wei, H.; Wang, J.; Wu, X. Analysis of the economic rationality of local government’s downtick of the industrial land: Evidence from the municipalities in Guangdong Province. J. Nat. Resour. 2015, 30, 1078–1091. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.; Wu, Y.; Skitmore, M. Industrial land price between China’s Pearl River Delta and Southeast Asian regions: Competition or coopetition? Land Use Policy 2017, 61, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Antonio, M.; Hortas-Rico, M.; Li, L. The causes of urban sprawl in spanish urban areas: A apatial approach. Spat. Econ. Anal. 2016, 11, 219–247. [Google Scholar] [CrossRef]
- Gao, J.; Wei, Y.D.; Chen, W.; Chen, J. Economic transition and urban land expansion in provincial China. Habitat Int. 2014, 44, 461–473. [Google Scholar] [CrossRef]
- Lin, G.C.S. Reproducing spaces of chinese urbanisation: New city-based and land-centred urban transformation. Urban Stud. 2007, 44, 1827–1855. [Google Scholar] [CrossRef]
- Ye, L.; Wu, A.M. Urbanization, land development, and land financing: Evidence from Chinese cities. J. Urban Aff. 2014, 36, 354–368. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, L.; Gao, Y.; Ling, Y.; Fan, C.; Hou, D.; Shen, T.; Zhou, W. How did industrial land supply respond to transitions in state strategy? An analysis of prefecture-level cities in China from 2007 to 2016. Land Use Policy 2019, 87, 104009. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Government intervention and land misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Shen, T.; Ai, G.; Cui, N.; Gu, H. Interactive behavior of local government industrial land transfer strategy in the Yangtze River Delta. J. Ind. Technol. Econ. 2019, 38, 47–53. [Google Scholar] [CrossRef]
- Fang, L.; Tian, C.; Yin, X.; Song, Y. Political cycles and the mix of industrial and residential land leasing. Sustainability 2018, 10, 3077. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Du, X. Strategic interaction in local governments’ industrial land supply: Evidence from China. Urban Stud. 2017, 54, 1328–1346. [Google Scholar] [CrossRef]
- Tian, L. Land use dynamics driven by rural industrialization and land finance in the pen-urban areas of China: “The examples of Jiangyin and Shunde”. Land Use Policy 2015, 45, 117–127. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, Y. Fragmented peri-urbanisation led by autonomous village development under informal institution in high-density regions: The case of Nanhai, China. Urban Stud. 2014, 51, 1120–1145. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, M.B.; Asaba, S. Why do firms imitate each other? Acad. Manag. Rev. 2006, 31, 366–385. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; He, C.; Wei, Y.H.D. A comparative study of land efficiency of electronics firms located within and outside development zones in Shanghai. Habitat Int. 2016, 56, 63–73. [Google Scholar] [CrossRef]
- Wang, K.; Xiong, K.; Gao, W. Research on the relationship between the conveyance mode of industrial land use rights and the output elasticity of land in the development zones. China Land Sci. 2013, 27, 4–9. [Google Scholar]
- Li, J.; Dai, S. Retrospect and prospect of China’s urban land use system reform in the past 60 years. Rev. Econ. Res. 2009, 63, 2–10. [Google Scholar] [CrossRef]
- Liu, J. Analysis on reform of industrial land transfer and utilization institution. J. Party Sch. Cent. Comm. C. P. C. 2015, 19, 65–70. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, F.; Webster, C. Informality and the development and demolition of urban villages in the Chinese peri-urban area. Urban Stud. 2013, 50, 1919–1934. [Google Scholar] [CrossRef]
Categories | Descriptions | Examples | |
---|---|---|---|
Transformed land | It refers to the industrial land that has been transformed from industrial usage to other usages. | ||
Under-construction land | It refers to industrial land where the production activity is suspended and/or some buildings are being constructed. | ||
Idle land | It refers to industrial land that is disused and awaiting redevelopment. | ||
Continued-production land | It refers to industrial land where production activities stay active. |
Titles | Categories | Descriptions |
---|---|---|
Industrial land | Transformation-oriented land (L1) | Transformed land |
Under-construction land | ||
Idle land | ||
Continued-production land (L2) | Continued-production land | |
Living quarters | Residence with the higher growth rate (P1) | The growth rate of average housing price that is higher than the median rate from 2015 to 2019 |
Residence with the lower growth rate (P2) | The growth rate of average housing price that is lower than the median rate from 2015 to 2019 |
Categories | Variables | Definition | Obs. | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|---|---|
Dependent variable | Transform | A binary variable to identify whether an industrial land parcel is transformed (0 = No; 1 = Yes) | 5610 | 0.6230 | 0.4847 | 0 | 1 |
Independent variables | lnPrice2015 | The logarithm of mean land prices of the industrial land parcel in 2015 (CNY/m2) | 5610 | 10.1229 | 0.1852 | 9.6535 | 10.6863 |
PriceGrow | Land price growth rate of the industrial land parcel from 2015 to 2019 (%) | 5610 | 0.6476 | 0.0762 | 0.5023 | 0.9112 | |
Control variables | lnEfficiency | The logarithm of output efficiency of the industrial land parcel (104 CNY/m2) | 5610 | 6.5351 | 1.9068 | −0.1124 | 16.4058 |
lnArea | The logarithm of the mean area of the industrial land parcel (m2) | 5610 | 8.7251 | 1.4084 | 2.4974 | 13.6191 | |
lnYear | The logarithm of the existing year (until 2015) of the industrial land parcel | 5610 | 2.3769 | 0.7452 | 0 | 3.4657 | |
lnAgg500 | The logarithm of the area of other industrial land within a 500 m buffer (not including itself, m2) | 5610 | 7.0587 | 4.6975 | 0 | 13.8146 | |
Tran500 | The proportion of L1 in total industrial land areas within a 500 m buffer (not including itself) | 5610 | 0.5466 | 0.3558 | 0 | 1 | |
lnMetrodist | The logarithm of the nearest distance to a subway station from the industrial land parcel (m) | 5610 | 6.9559 | 0.9477 | 0 | 8.6897 | |
lnCBDdist | The logarithm of the distance from the industrial land parcel to Xujiahui (m) | 5610 | 9.5188 | 0.3566 | 7.6424 | 10.1199 | |
CCA | A binary variable to identify whether the industrial land parcel locates in the CCA (0 = No; 1 = Yes) | 5610 | 0.7642 | 0.4246 | 0 | 1 | |
Indpark | A binary variable to identify whether the industrial land parcel locates in industrial parks (0 = No; 1 = Yes) | 5610 | 0.4193 | 0.4935 | 0 | 1 | |
Instrumental variable | lnSchDist | The logarithm of the nearest distance to a high school or primary school (m) | 5610 | 6.6813 | 0.8925 | 0 | 8.1565 |
Dummy variables | dummy_district | A binary variable to identify whether the industrial land parcel locates in district-level industrial parks (0 = No; 1 = Yes) | 5610 | 0.2141 | 0.4102 | 0 | 1 |
dummy_city | A binary variable to identify whether the industrial land parcel locates in city-level industrial parks (0 = No; 1 = Yes) | 5610 | 0.1086 | 0.3111 | 0 | 1 | |
dummy state | A binary variable to identify whether the industrial land parcel locates in state-level industrial parks (0 = No; 1 = Yes) | 5610 | 0.0966 | 0.2955 | 0 | 1 | |
Interaction variables | Area × Efficiency | The product of the mean area and output efficiency of the industrial land parcel | 5610 | 0.2811 | 1.3509 | −15.8358 | 16.8490 |
Price2015 × Efficiency | Interaction variables of Price and Efficiency, in which the price represents the expected land prices of land parcels in 2015 | 5610 | −0.0103 | 0.2003 | −3.7776 | 2.2318 | |
PriceGROW × Efficiency | Interaction variable of Price and Efficiency, in which the price represents the expected land prices of land parcels in 2015 | 5610 | −0.0023 | 0.0763 | −0.5436 | 0.9225 | |
Price2015 × Area | Interaction variable of Price and Area, in which the price represents the expected land prices of land parcels in 2015 | 5610 | −0.0013 | 0.2510 | −2.0604 | 1.6730 | |
PriceGROW × Area | Interaction variable of Price and Area, in which the price represents the land prices’ expected growth rate of land parcels from 2015 to 2019 | 5610 | 0.0061 | 0.1062 | −1.0430 | 0.7942 | |
Price2015 × Efficiency × Area | Interaction variable of Price, Efficiency and Area, in which the price represents the expected land prices of land parcels in 2015 | 5610 | −0.0035 | 0.2447 | −3.6971 | 3.6560 | |
PriceGROW × Efficiency × Area | Interaction variable of Price, Efficiency and Area, in which the price represents the land prices’ expected growth rate of land parcels from 2015 to 2019 | 5610 | −0.0012 | 0.0958 | −1.0974 | 1.5482 |
Indicators (Mean Values) | Obs. | lnArea | lnYear | lnEfficiency | lnAgg500 | Tran500 | lnMetrodist | lnCBDdist | CCA Rate (%) | Indpark Rate (%) |
---|---|---|---|---|---|---|---|---|---|---|
L1 | 3495 | 8.4218 | 2.5501 | −2.4733 | 6.6544 | 0.6229 | 6.9802 | 9.4937 | 68.64 | 28.32 |
L2 | 2115 | 9.2264 | 2.0906 | −1.7220 | 7.7267 | 0.4205 | 6.9158 | 9.5603 | 89.26 | 64.39 |
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | |
---|---|---|---|---|---|---|
VARIABLES | LOGIT | LOGIT | PROBIT | PROBIT | IVPROBIT | IVPROBIT |
lnPrice2015 | 1.199 *** | 0.670 *** | 10.32 *** | |||
(0.311) | (0.182) | (2.635) | ||||
PriceGrow | 0.907 ** | 0.502 ** | 12.12 *** | |||
(0.425) | (0.249) | (2.931) | ||||
lnEfficiency | −0.608 *** | −0.610 *** | −0.346 *** | −0.347 *** | −0.300 *** | −0.315 *** |
(0.0437) | (0.0438) | (0.0250) | (0.0250) | (0.0269) | (0.0243) | |
lnArea | −0.274 *** | −0.272 *** | −0.163 *** | −0.163 *** | −0.197*** | −0.207 *** |
(0.0260) | (0.0258) | (0.0151) | (0.0151) | (0.0207) | (0.0211) | |
lnYear | 0.370 *** | 0.357 *** | 0.220 *** | 0.213 *** | 0.298 *** | 0.184 *** |
(0.0490) | (0.0490) | (0.0288) | (0.0288) | (0.0413) | (0.0347) | |
lnAgg500 | −0.0216 *** | −0.0232 *** | −0.0138 *** | −0.0147 *** | −0.00146 | −0.0141 *** |
(0.00695) | (0.00695) | (0.00410) | (0.00409) | (0.00611) | (0.00487) | |
Tran500 | 1.076 *** | 1.095 *** | 0.649 *** | 0.660 *** | 0.354 *** | 0.494 *** |
(0.0950) | (0.0947) | (0.0559) | (0.0557) | (0.106) | (0.0783) | |
lnMetrodist | −0.0101 | 0.00395 | −0.00303 | 0.00467 | −0.108 *** | 0.0139 |
(0.0341) | (0.0340) | (0.0205) | (0.0205) | (0.0390) | (0.0254) | |
lnCBDdist | 0.319 * | −0.178 * | 0.184 * | −0.0928 | 4.283 *** | −0.0276 |
(0.171) | (0.106) | (0.0985) | (0.0606) | (1.120) | (0.0701) | |
CCA | −0.482 *** | −0.441 *** | −0.270 *** | −0.249 *** | −0.580 *** | −0.275 *** |
(0.104) | (0.102) | (0.0590) | (0.0583) | (0.110) | (0.0673) | |
Indpark | −0.718 *** | −0.712 *** | −0.433 *** | −0.430 *** | −0.540 *** | −0.517 *** |
(0.0799) | (0.0798) | (0.0475) | (0.0474) | (0.0661) | (0.0608) | |
Instrumental variable | No | No | No | No | Yes | Yes |
Constant | −14.07 *** | 2.086 * | −7.866 *** | 1.161 * | −143.3 *** | −6.373 *** |
(4.521) | (1.102) | (2.629) | (0.631) | (36.97) | (2.014) | |
AR | - | - | - | - | 0.000 | 0.000 |
Wald | - | - | - | - | 0.000 | 0.000 |
Observations | 5610 | 5610 | 5610 | 5610 | 5610 | 5610 |
Model (7) | Model (8) | Model (9) | Model (10) | Model (11) | Model (12) | |
---|---|---|---|---|---|---|
VARIABLES | IVPROBIT | IVPROBIT | IVPROBIT | IVPROBIT | IVPROBIT | IVPROBIT |
Before 2007 | After 2007 | Before 2007 | After 2007 | |||
lnPrice2015 | 22.65 ** | 4.230 ** | 10.61 *** | |||
(10.04) | (1.814) | (2.705) | ||||
PriceGrow | 21.62 *** | 6.054 ** | 13.46 *** | |||
(7.428) | (2.601) | (3.332) | ||||
lnEfficiency | −0.264 *** | −0.297 *** | −0.268 *** | −0.317 *** | −0.306 *** | −0.295 *** |
(0.0649) | (0.0330) | (0.0496) | (0.0315) | (0.0263) | (0.0269) | |
lnArea | −0.150 *** | −0.193 *** | −0.192 *** | −0.187 *** | −0.199 *** | −0.209 *** |
(0.0352) | (0.0332) | (0.0336) | (0.0324) | (0.0211) | (0.0220) | |
lnYear | 1.002 *** | −0.0458 | 0.744 *** | −0.148 ** | 0.271 *** | 0.188 *** |
(0.186) | (0.0620) | (0.110) | (0.0708) | (0.0385) | (0.0362) | |
lnAgg500 | 0.00616 | −0.00464 | −0.00450 | −0.0182 ** | −0.00218 | −0.0140 *** |
(0.0118) | (0.00894) | (0.00768) | (0.00781) | (0.00602) | (0.00503) | |
Tran500 | 0.0963 | 0.394 *** | 0.458 *** | 0.399 *** | 0.388 *** | 0.425 *** |
(0.314) | (0.111) | (0.142) | (0.111) | (0.0986) | (0.0897) | |
lnMetrodist | −0.300 ** | −0.0563 | −0.0260 | −0.00183 | −0.111 *** | 0.0347 |
(0.145) | (0.0386) | (0.0413) | (0.0399) | (0.0402) | (0.0273) | |
lnCBDdist | 9.765 ** | 1.626 ** | 0.00265 | 0.00327 | 4.357 *** | −0.0145 |
(4.371) | (0.730) | (0.108) | (0.114) | (1.136) | (0.0731) | |
CCA | −1.057 *** | −0.246 * | −0.424 *** | −0.00588 | −0.601 *** | −0.270 *** |
(0.392) | (0.133) | (0.119) | (0.158) | (0.115) | (0.0692) | |
Indpark | −0.388 *** | −0.662 *** | −0.428 *** | −0.650 *** | ||
(0.114) | (0.105) | (0.0915) | (0.103) | |||
dummy_district | −0.344 *** | −0.578 *** | ||||
(0.0756) | (0.0741) | |||||
dummy_city | −0.554 *** | −0.828 *** | ||||
(0.0922) | (0.129) | |||||
dummy_state | −0.923 *** | −0.148 | ||||
(0.170) | (0.0992) | |||||
Instrumental Variables | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −320.7 ** | −56.35 ** | −14.04 *** | −2.413 | −146.8 *** | −7.416 *** |
(142.0) | (24.99) | (4.821) | (2.143) | (37.80) | (2.284) | |
AR | 0.0000 | 0.0159 | 0.0000 | 0.0145 | 0.0000 | 0.0000 |
Wald | 0.0240 | 0.0197 | 0.0036 | 0.0199 | 0.0001 | 0.0001 |
Observations | 3934 | 1676 | 3934 | 1676 | 5610 | 5610 |
Model (13) | Model (14) | Model (15) | Model (16) | |
---|---|---|---|---|
VARIABLES | PROBIT | IVPROBIT | PROBIT | IVPROBIT |
lnPrice2015 | 0.650 *** | 11.41 *** | ||
(0.183) | (3.085) | |||
PriceGrow | 0.549 ** | 17.00 *** | ||
(0.257) | (4.982) | |||
lnEfficiency | −0.333 *** | −0.234 *** | −0.332 *** | −0.436 *** |
(0.0243) | (0.0495) | (0.0245) | (0.0881) | |
lnArea | −0.173 *** | −0.238 *** | −0.175 *** | −0.239 *** |
(0.0155) | (0.0297) | (0.0155) | (0.0381) | |
lnYear | 0.221 *** | 0.332 *** | 0.212 *** | 0.113 ** |
(0.0290) | (0.0471) | (0.0289) | (0.0551) | |
lnAgg500 | −0.0138 *** | −0.00332 | −0.0143 *** | −0.00771 |
(0.00411) | (0.00664) | (0.00409) | (0.00706) | |
Tran500 | 0.644 *** | 0.377 *** | 0.656 *** | 0.374 *** |
(0.0559) | (0.115) | (0.0558) | (0.120) | |
lnMetrodist | −0.000753 | −0.0577 | 0.00435 | 0.0213 |
(0.0207) | (0.0455) | (0.0205) | (0.0367) | |
lnCBDdist | 0.177 * | 4.407 *** | −0.0975 | −0.117 |
(0.0982) | (1.285) | (0.0605) | (0.108) | |
CCA | −0.267 *** | −0.570 *** | −0.246 *** | −0.420 *** |
(0.0588) | (0.129) | (0.0580) | (0.114) | |
Indpark | −0.433 *** | −0.555 *** | −0.433 *** | −0.549 *** |
(0.0474) | (0.0744) | (0.0474) | (0.0862) | |
Area × Efficiency | −0.0525 ** | −0.136 *** | −0.0588 *** | −0.0114 |
(0.0215) | (0.0442) | (0.0217) | (0.0582) | |
Price × Efficiency | −0.0255 | −0.175 | −0.351 | −11.04 ** |
(0.131) | (0.930) | (0.317) | (5.079) | |
Price × Area | 0.109 | 0.536 | −0.0374 | −8.076 |
(0.0861) | (0.664) | (0.193) | (5.016) | |
Price × Efficiency × Area | 0.0967 | −2.847 ** | −0.380 | 2.490 |
(0.124) | (1.117) | (0.274) | (3.303) | |
Instrumental Variables | No | Yes | No | Yes |
Constant | −7.499 *** | −155.4 *** | 1.326 ** | −8.384 *** |
(2.631) | (43.00) | (0.633) | (3.201) | |
AR | - | 0.0000 | - | 0.0000 |
Wald | - | 0.0001 | - | 0.0025 |
Observations | 5610 | 5610 | 5610 | 5610 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Tao, P.; Cai, X.; Wang, J. Transformation for Feature Upgrades or Higher Property Prices: Evidence from Industrial Land Regeneration in Shanghai. Sustainability 2022, 14, 5280. https://doi.org/10.3390/su14095280
Yang F, Tao P, Cai X, Wang J. Transformation for Feature Upgrades or Higher Property Prices: Evidence from Industrial Land Regeneration in Shanghai. Sustainability. 2022; 14(9):5280. https://doi.org/10.3390/su14095280
Chicago/Turabian StyleYang, Fan, Peihong Tao, Xiao Cai, and Jiayin Wang. 2022. "Transformation for Feature Upgrades or Higher Property Prices: Evidence from Industrial Land Regeneration in Shanghai" Sustainability 14, no. 9: 5280. https://doi.org/10.3390/su14095280
APA StyleYang, F., Tao, P., Cai, X., & Wang, J. (2022). Transformation for Feature Upgrades or Higher Property Prices: Evidence from Industrial Land Regeneration in Shanghai. Sustainability, 14(9), 5280. https://doi.org/10.3390/su14095280