Adoption Trend of Climate-Resilient Rice Varieties in Bangladesh
Abstract
:1. Introduction
Study Objectives
- i.
- To assess the yield gain of submergence- and drought-resilient varieties over traditionally grown varieties through on-farm trials.
- ii.
- To understand adoption and dissemination rates of tested/introduced varieties in the concerned villages and communities.
2. Materials and Methods
Statistical Analysis
3. Results and Discussion
3.1. Comparison of Grain Yield of BRRI dhan52 and BR11
3.2. Comparison of Grain Yield of BRRI dhan51 (Swarna-Sub1) and Swarna
3.3. Comparison of Grain Yield of BRRI dhan56 with That of Binadhan-7 and BRRI dhan39
3.4. Comparison of Grain Yield of BRRI dhan71 and Binadhan-7
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name of Variety | Physiological Characteristics | |||||
---|---|---|---|---|---|---|
Maturity (days) | Plant Height (cm) | 1000-Grain wt. (g) | Yield Potential (t ha−1) | Grain Type | Abiotic Stress Tolerance Feature | |
BRRI dhan71 | 114–117 | 107–108 | 24.0 | 5.5 | Medium slender & bold | Tolerates up to 21–28 days without rainfall at reproductive stage |
BRRI dhan56 | 105–110 | 115 | 23.6 | 4.5–5.0 | Long bold | Able to tolerate 10–12 days without rainfall at reproductive stage |
BRRI dhan52 | 140–145 (normal conditions) 155–160 (14 days’ submergence) | 116 | 27.0 | 4.5–5.0 (normal conditions) 4.0–4.5 (10–12 days’ submergence) | Medium bold | Able to tolerate up to 10–12 days of fully submerged conditions |
BRRI dhan51 | 140–145 (normal conditions) 155–160 (14 days’ submergence) | 90 | 20.4 | 4.5–5.0 (normal conditions) 4.0–4.5 (10–15 days’ submergence) | Medium slender and crystal white | Able to tolerate up to 10–15 days of fully submerged conditions |
BRRI dhan39 | 120 | 106 | 20.4 | 4.5 | Long slender | NA |
BR11 | 145 | 115 | 25.7 | 5.5 | Medium bold | NA |
Binadhan-7 | 115–120 | 95 | 24.9 | 4.5–5.0 | Medium slender | NA |
Swarna | 140–145 | 95 | 21.0 | 4.0–4.5 | Medium slender | NA |
References
- Roy, R. Modelling and Policy Integration of Sustainable Rice Farming Systems in Bangladesh. Ph.D. Thesis, Universiti Sains Malaysia, Penang, Malaysia, 2015. [Google Scholar]
- HIES (Household Income and Expenditure Survey); Bangladesh Bureau of Statistics, Government of Bangladesh: Dhaka, Bangladesh, 2010.
- Mottaleb, K.A.; Gumma, M.K.; Mishra, A.K.; Mohanty, S. Quantifying production losses due to drought and submergence of rainfed rice at the household level using remotely sensed MODIS data. Agric. Syst. 2015, 137, 227–235. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, S.; Mishra, A.; Singh, N.K.; Mathew, S. Trade and Knowledge Sharing in HYV Rice Seeds: Scope for Cooperation between Bangladesh and India (SSRN Scholarly Paper No. ID 2603729); Social Science Research Network: Rochester, NY, USA, 2015. [Google Scholar]
- Rahman, N.M.F.; Hasan, M.M.; Hossain, M.I.; Baten, M.A.; Hosen, S.; Ali, M.A.; Kabir, M.S. Forecasting Aus Rice Area and Production in Bangladesh using Box-Jenkins Approach. Bangladesh Rice J. 2016, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- BBS. Yearbook of Agricultural Statistics of Bangladesh; Bangladesh Bureau of Statistics, Government of Bangladesh: Dhaka, Bangladesh, 2012.
- Bailey-Serres, J. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 2010, 3, 138–147. [Google Scholar] [CrossRef] [Green Version]
- IRRI. Background Paper: The Rice Crisis: What Needs to Be Done? International Rice Research Institute: Los Banos, Philippines, 2008; 12p, Available online: www.irri.org (accessed on 2 March 2022).
- Koppa, N.; Amarnath, G. Geospatial Assessment of Flood-Tolerant Rice Varieties to Guide Climate Adaptation Strategies in India. Climate 2021, 9, 151. [Google Scholar] [CrossRef]
- Dar, M.H.; Zaidi, N.W.; Waza, S.A.; Verulkar, S.B.; Ahmed, T.; Singh, P.K.; Iftekharuddaula, K.M. No yield penalty under favorable conditions paving the way for successful adoption of flood tolerant rice. Sci. Rep. 2018, 8, 9245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S. Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar]
- Pendergrass, A.G.; Knutti, R. The Uneven Nature of Daily Precipitation and Its Change. Geophys. Res. Lett. 2018, 45, 11980–11988. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Mackill, D.J.; Ismail, A.M.; Singh, U.S.; Labios, R.V.; Paris, T.R. Development and rapid adoption of submergence tolerant (Sub1) rice varieties. Adv. Agron. 2012, 115, 303–356. [Google Scholar]
- Singh, S.; Mackill, D.J.; Ismail, A.M. Physiological Basis of Tolerance to Complete Submergence in Rice Involves Genetic Factors in Addition to the SUB1 Gene. AoB Plants 2014, 6, plu060. [Google Scholar] [CrossRef] [Green Version]
- Adkins, S.W.; Shiraishi, T.; McComb, J.A. Submergence tolerance of rice- a new glasshouse method for the experimental submergence of plants. Physiol. Plant. 1990, 80, 642–646. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mottaleb, K.; Khanal, A.; Mohanty, S. Abiotic stress and its impact on production efficiency: The case of rice farming in Bangladesh. Agric. Ecosyst. Environ. 2015, 199, 146–153. [Google Scholar] [CrossRef]
- Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development of submergence tolerant rice cultivars: The Sub1 locus and beyond. Ann. Bot. 2009, 103, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, J.K. Growing Rice under Stress Environment. The Daily Star. 2015. Available online: www.thedailystar.net/growing-rice-under-stress-environment-15447 (accessed on 2 March 2022).
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index 2020. Germanwatch Retrieved 31 July 2020. 2019. Available online: https://germanwatch.org/sites/germanwatch.org/files/20-2-01e%20Global (accessed on 2 March 2022).
- FAO; GIEWS Update Bangladesh. Severe Floods in 2017 Affected Large Numbers of People and Caused Damage to the Agricultural Sector; FAO: Rome, Italy, 2017; Available online: www.fao.org/3/i7876e/i7876e.pdf (accessed on 2 March 2022).
- Dar, M.H.; Singh, S.; Singh, U.S.; Ismail, A.M. Stress tolerant rice varieties: Making headway in India. SATSA Mukhapatra Ann. Tech. 2014, 18, 1–14. [Google Scholar]
- Dar, M.H.; Chakravorty, R.; Waza, S.A.; Sharma, M.; Zaidi, N.W.; Singh, A.N.; Singh, U.S.; Ismail, A.M. Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security. Food Sec. 2017, 9, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Dar, M.H.; de Janvry, A.; Emerick, K.; Raitzer, D.; Sadoulet, E. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups. Sci. Rep. 2013, 3, 3315. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.M.; Singh, U.S.; Singh, S.; Dar, M.H.; Mackill, D.J. The contribution of submergence tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. Field Crops Res. 2013, 152, 83–93. [Google Scholar] [CrossRef]
- Singh, U.S.; Dar, M.H.; Singh, S.; Zaidi, N.W.; Bari, M.A.; Mackill, D.J.; Collard, B.C.; Singh, V.N.; Singh, J.P.; Reddy, J.N.; et al. performance, dissemination, impact and tracking of submergence tolerant (Sub1) rice varieties in South Asia. SABRAO J. Breed. Genet. 2013, 45, 112–131. [Google Scholar]
- Brown, J.K.M. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 2002, 5, 339–344. [Google Scholar] [CrossRef]
- Johnston, P.A.; Meiyalaghan, V.; Forbes, M.E.; Habekuß, A.; Butler, R.; Pickering, R. Marker assisted separation of resistance genes Rph22 and Rym16Hb from an associated yield penalty in a barley: Hordeum bulbosum introgression line. Theor. Appl. Genet. 2015, 128, 1137–1149. [Google Scholar] [CrossRef]
- Salkind, N.J. Encyclopedia of Research Design (Vols. 1-0); SAGE Publications, Inc.: Newbury Park, CA, USA, 2010. [Google Scholar] [CrossRef]
- Yamano, T.; Dar, M.H.; Architesh, P.; Ishika, G.; Malabayabas, M.L.; Kelly, E. Impact and Adoption of Risk-Reducing Drought-Tolerant Rice in India. Impact Evaluation Report, International Initiative for Impact Evaluation. 2018. Available online: https://www.3ieimpact.org/sites/default/files/2019-01/IE72-India-drought-tolerant_0.pdf (accessed on 2 March 2022).
- Setter, T.L.; Ellis, M.; Laureles, E.V.; Ella, E.S.; Senadhira, D.; Mishra, S.B.; Sarkarung, S.; Datta, S. Physiology and genetics of submergence tolerance in rice. Ann. Bot. 1997, 79, 67–77. [Google Scholar] [CrossRef]
Name of District | Environment Code | AEZ (Agro-Ecological Zone) | Climatic Parameters | |||
---|---|---|---|---|---|---|
Temperature (°C) | Rainfall (mm) | Humidity (%) | ||||
Min. | Max. | Average | Average | |||
Sylhet | E1 | Eastern Surma-Kushiyara Floodplain | 20.8 | 31.5 | 158.7 | 67.9 |
Cox’s Bazar | E2 | Chittagong Coastal Plains | 22.0 | 31.1 | 142.7 | 71.0 |
Northern and Eastern Hill | ||||||
Chapai Nawabganj | E3 | High Ganges River Floodplain | 16.7 | 30.7 | 120.7 | 80.0 |
High Barind Tract | ||||||
Thakurgaon | E4 | Old Himalayan Piedmont Plain | 21.9 | 31.5 | 148.6 | 65.1 |
Panchagarh | E5 | Old Himalayan Piedmont Plain | 22.9 | 32.9 | 155.0 | 67.9 |
Natore | E6 | High Ganges River Floodplain | 23.6 | 33.4 | 97.7 | 60.8 |
Location | Environment | No. of Trials | Variety Name | Maturity | Observed Yield (t ha−1) | LOYA (%) | LEYA (%) |
---|---|---|---|---|---|---|---|
Sylhet | E1 | 58 | BRRI dhan52 | 132.60 b | 4.47 a | 49.42 | 20.25 |
BR11 | 134.78 a | 3.72 b | |||||
Cox’s Bazar | E2 | 23 | BRRI dhan52 | 132.00 b | 5.40 a | 11.11 | 10.21 |
BR11 | 134.04 a | 4.90 b | |||||
Chapai Nawabganj | E3 | 30 | BRRI dhan51 | 135.90 a | 5.33 a | 14.93 | 14.12 |
Swarna | 135.83 a | 4.67 b | |||||
Thakurgaon | E4 | 15 | BRRI dhan56 | 94.80 b | 4.19 a | 17.67 | 17.34 |
Binadhan-7 | 102.47 a | 3.57 b | |||||
Panchagarh | E5 | 15 | BRRI dhan56 | 97.27 b | 3.66 a | 6.56 | 6.38 |
Binadhan-7 | 100.87 a | 3.44 b | |||||
Natore-1 | E6 | 10 | BRRI dhan56 | 105.30 b | 5.55 a | 3.37 | 3.35 |
BRRI dhan39 | 109.10 a | 5.37 b | |||||
Natore-2 | 10 | BRRI dhan71 | 115.20 a | 5.48 a | 3.30 | 3.20 | |
Binadhan-7 | 104.60 b | 5.31 b |
Location | Variety Name | Introduction Year | Number of Trials | Total Participants Attending PRA | Participants in PRA Who Had Actually Cultivated the Variety | Adoption Year | Adoption Rate (%) |
---|---|---|---|---|---|---|---|
Gowainghat, Sylhet | BRRI dhan52 | 2016 | 10 | 250 | 55 | 2017 | 22 |
2017 | 20 | 500 | 139 | 2018 | 28 | ||
2018 | 40 | 1,000 | 377 | 2019 | 38 | ||
Kanaighat, Sylhet | 2016 | 5 | 125 | 21 | 2017 | 17 | |
2017 | 10 | 250 | 59 | 2018 | 24 | ||
2018 | 18 | 500 | 218 | 2019 | 44 | ||
Sadar, Chapai Nawabganj | BRRI dhan51 | 2016 | 5 | 125 | 27 | 2017 | 22 |
2017 | 10 | 250 | 73 | 2018 | 29 | ||
2018 | 15 | 375 | 110 | 2019 | 29 | ||
Gomastapur, Chapai Nawabganj | 2016 | 5 | 125 | 19 | 2017 | 15 | |
2017 | 10 | 250 | 67 | 2018 | 27 | ||
2018 | 15 | 375 | 197 | 2019 | 53 | ||
Boda, Panchagarh | BRRI dhan71 | 2016 | 2 | 50 | 28 | 2017 | 56 |
2017 | 3 | 75 | 53 | 2018 | 71 | ||
2018 | 5 | 125 | 117 | 2019 | 94 | ||
Sadar, Panchagarh | 2016 | 2 | 50 | 32 | 2017 | 64 | |
2017 | 3 | 75 | 59 | 2018 | 79 | ||
2018 | 5 | 125 | 120 | 2019 | 96 | ||
Atwari, Panchagarh | 2016 | 2 | 50 | 27 | 2017 | 54 | |
2017 | 3 | 75 | 56 | 2018 | 75 | ||
2018 | 5 | 125 | 119 | 2019 | 95 | ||
Total BRRI dhan51 adoption % | 29.17 | ||||||
Total BRRI dhan52 adoption % | 28.83 | ||||||
Total BRRI dhan71 adoption % | 76.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayak, S.; Habib, M.A.; Das, K.; Islam, S.; Hossain, S.M.; Karmakar, B.; Fritsche Neto, R.; Bhosale, S.; Bhardwaj, H.; Singh, S.; et al. Adoption Trend of Climate-Resilient Rice Varieties in Bangladesh. Sustainability 2022, 14, 5156. https://doi.org/10.3390/su14095156
Nayak S, Habib MA, Das K, Islam S, Hossain SM, Karmakar B, Fritsche Neto R, Bhosale S, Bhardwaj H, Singh S, et al. Adoption Trend of Climate-Resilient Rice Varieties in Bangladesh. Sustainability. 2022; 14(9):5156. https://doi.org/10.3390/su14095156
Chicago/Turabian StyleNayak, Swati, Muhammad Ashraful Habib, Kuntal Das, Saidul Islam, Sk Mosharaf Hossain, Biswajit Karmakar, Roberto Fritsche Neto, Sankalp Bhosale, Hans Bhardwaj, Sudhanshu Singh, and et al. 2022. "Adoption Trend of Climate-Resilient Rice Varieties in Bangladesh" Sustainability 14, no. 9: 5156. https://doi.org/10.3390/su14095156
APA StyleNayak, S., Habib, M. A., Das, K., Islam, S., Hossain, S. M., Karmakar, B., Fritsche Neto, R., Bhosale, S., Bhardwaj, H., Singh, S., Islam, M. R., Singh, V. K., Kohli, A., Singh, U. S., & Hassan, L. (2022). Adoption Trend of Climate-Resilient Rice Varieties in Bangladesh. Sustainability, 14(9), 5156. https://doi.org/10.3390/su14095156