Characteristics of Some Wild Olive Phenotypes (Oleaster) Selected from the Western Mountains of Syria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Fatty Acids Composition
2.3. Statistical Analyses
3. Results and Discussion
3.1. Morphological Characteristics
3.2. Quantitative and Qualitative Analysis of Oil
3.2.1. Olive Oil (OO)
3.2.2. Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moazzo, G.P. Les plantes d’Homère et de quelques autres poètes de l’Antiquité. V. L’olivier (Elaie). Ann. Musei Goulandris 1994, 9, 185–223. [Google Scholar]
- Besnard, G.; Bervillé, A. Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. Comptes Rendus De L’académie Des Sci. -Ser. III-Sci. De La Vie 2000, 323, 173–181. [Google Scholar] [CrossRef]
- Benelli, C.; Fabbri, A.; Grassi, S.; Lambardi, M.; Rugini, E. Histology of somatic embryogenesis in mature tissues of olive (Olea europaea L.). J. Hortic. Sci. Biotechnol. 2001, 76, 112–119. [Google Scholar] [CrossRef]
- Perpillou, J.L. Théophraste, Recherches sur les plantes IV, livres VII et VIII (éd. et trad. S. Amigues), Paris (2003). Topoi. Orient-Occident. 2006, 14, 605–607. [Google Scholar]
- Baldoni, L.; Belaj, A. Olive. In Oil crops. In Handbook of Plant Breeding; Vollmann, J., Rajcan, I., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 4, pp. 397–421. [Google Scholar]
- Amane, M.; Ouazzani, N.; Lumaret, R.; Debain, C. Chloroplast-DNA variation in the wild and cultivated olives (Olea europaea L.) of Morocco. Euphytica 2000, 116, 59–64. [Google Scholar] [CrossRef]
- Lumaret, R.; Ouazzani, N.; Michaud, H.; Vivier, G.; Deguilloux, M.F.; Di Giusto, F. Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean Basin. J. Hered. 2004, 92, 343–351. [Google Scholar] [CrossRef]
- Zohary, D.; Spiegel-Roy, P. Beginnings of fruit growing in the old world. Science 1975, 187, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Zohary, D. The wild genetic resources of the cultivated olive. Acta Hortic. 1994, 356, 62–65. [Google Scholar] [CrossRef]
- Rugini, E. Olive (Olea europaea L.). In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1986; Volume Voulme 1, pp. 253–267. [Google Scholar]
- Liphschitz, N.; Gophna, R.; Hartman, M.; Biger, G. The beginning of Olive (Olea europaea L.). Cultivation in the old world: A reassessment. J. Archaeol. Sci. 1991, 18, 441–453. [Google Scholar] [CrossRef]
- De la Rosa, R.; Kiran, A.I.; Barranco, D.; León, L. Seedling vigour as a preselection criterion for short juvenile period in olive breeding. Aust. J. Agric. Res. 2006, 57, 477–481. [Google Scholar] [CrossRef]
- Khadari, B.; Charafi, J.; Moukhli, A.; Ater, M. Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: A paradoxical situation evidenced by the use of SSR loci. Tree Genet. Genomes 2008, 4, 213–221. [Google Scholar] [CrossRef]
- Breton, C.; Pinatel, C.; Medail, F.; Bonhomme, F.; Berville, A. Comparison between classical and Bayesian methods to investigate the history of olive cultivars using SSR-polymorphisms. Plant Sci. 2008, 175, 524–532. [Google Scholar] [CrossRef]
- Donaire, L.; Pedrola, L.; de la Rosa, R.; Llave, C. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS ONE 2011, 6, e27916. [Google Scholar] [CrossRef] [Green Version]
- Dabbou, S.; Dabbou, S.; Selvaggini, R.; Urbani, S.; Taticchi, A.; Servili, M.; Hammami, M. Comparison of the chemical composition and the organoleptic profile of virgin olive oil from two wild and two cultivated Tunisian Olea europaea. Chem. Biodivers. 2011, 8, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Sauer, J.D. Grain Amaranth. In Evolution in Crop Plants; Simmonds, N.W., Ed.; University of California Press: London, UK, 1976. [Google Scholar]
- Ouazzani, N.; Lumaret, R.; Villemur, P.; Giusto, F.D. Leaf allozyme variation in cultivated and wild olive trees (Olea europaea L.). J. Hered. 1993, 84, 34–42. [Google Scholar] [CrossRef]
- Doveri, S.; Baldoni, L. Olive. In Fruits and Nuts; Springer: Berlin, Heidelberg, 2007; pp. 253–264. [Google Scholar]
- Giuffrè, A.M. Variation in triacylglycerols of olive oils produced in Calabria (Southern Italy) during olive ripening. Riv. Ital. Sostanze Grasse 2014, 91, 221–240. [Google Scholar]
- Manai-Djebali, H.; Oueslati, I.; Baccouri, B.; Harzalli, Z.; Martínez-Cañas, M.A.; Sánchez-Casas, J. Importance of Phytosterols in the Classification of Tunisian Olive Cultivars: Dis-crimination between Varieties, Hybrids and Oleasters. In Euro-Mediterranean Conference for Environmental Integration; Springer: Cham, Switzerland, 2019; pp. 1109–1113. [Google Scholar] [CrossRef]
- Giuffrè, A.M. Influence of harvest year and cultivar on wax composition of olive oils. Eur. J. Lipid Sci. Technol. 2013, 115, 549–555. [Google Scholar] [CrossRef]
- Slim, S.; Rodrigues, N.; Veloso, A.C.; Dias, L.G.; Cruz, R.; Casal, S.; Peres, A.M. Characterization of commercial Tunisian monovarietal olive oils produced from autochthonous olive cultivars. Emir. J. Food Agric. 2018, 30, 823–832. [Google Scholar] [CrossRef]
- Lazzerini, C.; Domenici, V. Pigments in extra-virgin olive oils produced in Tuscany (Italy) in different years. Foods 2017, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Canuti, V.; Bellumori, M.; Mulinacci, N.; Zanoni, B. Exploitation of virgin olive oil by-products (Olea europaea L.): Phenolic and volatile compounds transformations phenomena in fresh two-phase olive pomace (‘alperujo’) under different storage conditions. J. Sci. Food Agric. 2021, 102, 2515–2525. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M.; Macrì, R.; Caracciolo, M.; Zappia, C.; Poiana, M. Volatile profiles of extra virgin olive oil, olive pomace oil, soybean oil and palm oil in different heating conditions. Food Sci. Technol. 2020, 117, 108631. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- Barje, F.; Amir, S.; Winterton, P.; Pinelli, E.; Merlina, G.; Cegarra, J.; Hafidi, M. Phospholipid fatty acid analysis to monitor the co-composting process of olive oil mill wastes and organic household refuse. J. Hazard Mater. 2008, 154, 682–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Olive Council (IOC). Olive Oil Quality Improvement; International Olive Oil Council: Madrid, Spain, 1990. [Google Scholar]
- Mailer, R.J.; Ayton, J.; Graham, K. The Influence of growing region, cultivar and harvest timing on the diversity of Australian olive oil. J. Am. Oil Chem. Soc. 2010, 87, 877–884. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Alkerdi, A.; Nagy, J.; Harsányi, E. Syrian crisis repercussions on the agricultural sector: Case study of wheat, cotton and olives. Reg. Sci. Policy Pract. 2020, 12, 519–537. [Google Scholar] [CrossRef] [Green Version]
- Abdul Hamid, R.; Hag Husein, H.; Ibarhem, A.; Hamed, F. Eco-geographical distribution of wild olive (Olea sylvestris mill) in the province of Hama. J. Damas. Univ. Agric. Sci. 2013, 29, 151–163. [Google Scholar]
- Nseir, P.; Nadaf, A.; Boutros, M.; Khaddam, A. Choosing Olive Varieties Adapted to Arid Zones; Arab Centre for Studies of the Arid Zones and Dry Lands (ACSAD): Damascus, Syria, 1985; (In Arabic with French Abstract). [Google Scholar]
- Tubeileh, A.; Abdeen, M.; Al-Ibrahem, A. Morphological and productive aspects of four Syrian olive cultivars. V Int. Symp. Olive Grow. 2004, 791, 415–418. [Google Scholar] [CrossRef]
- Di Terelizzi, B.; Dragotta, A.; Jamal, M. Syrian National Strategic Plant for Olive Oil Quality. Option series A: Mediterranean seminars. Nqm 2007, 73, 85–94. [Google Scholar]
- Hinojosa-Rodríguez, A.; Parra-López, C.; Carmona-Torres, C.; Sayadi, S. Certified quality systems and good practices in the olive farming sector of Andalusia, Spain: Special focus on Protected Designations of Origin. Int. J. Food Syst. Dyn. 2011, 328–339. [Google Scholar] [CrossRef]
- Kamoun, N.G.; Khlif, M.; Ayadi, M.; Karray, B. Clonal Selection of Olive Tree Variety “Chemlali Sfax”: Preliminary Results. IV Int. Symp. Olive Grow. 2000, 586, 147–150. [Google Scholar] [CrossRef]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Toschi, T.G. Effect of olive ripening degree on the oxidative stability and organoleptic properties of cv. Nostrana di Brisighella extra virgin olive oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef]
- Baccouri, B.; Temime, S.B.; Campeol, E.; Cioni, P.L.; Daoud, D.; Zarrouk, M. Application of solid-phase micro-extraction to the analysis of volatile compounds in virgin olive oils from five new cultivars. Food Chem. 2007, 102, 850–856. [Google Scholar] [CrossRef]
- Eder, K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Appl. 1995, 671, 113–131. [Google Scholar] [CrossRef]
- Lchihara, K.I.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Kiralan, M.; Ozkan, G.; Koyluoglu, F.; Ugurlu, H.A.; Bayrak, A.; Kiritsakis, A. Effect of cultivation area and climatic conditions on volatiles of virgin olive oil. Eur. J. Lipid Sci. Technol. 2012, 114, 552–557. [Google Scholar] [CrossRef]
- Giuffrè, A.M. Biometric evaluation of twelve olive cultivars under rainfed conditions in the region of Calabria, South Italy. Emir. J. Food Agric. 2017, 696–709. [Google Scholar] [CrossRef] [Green Version]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Scientia horticulturae 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Mele, M.A.; Islam, M.Z.; Kang, H.M.; Giuffrè, A.M. Pre-and post-harvest factors and their impact on oil composition and quality of olive fruit. Emir. J. Food Agric. 2018, 30, 592–603. [Google Scholar]
- Ebiad, R.; Abu-Qaoud, H. Morphological and biochemical characterization of three olive ‘Olea europaea L.’ cultivars in Palestine. Jordan J. Agric. Sci. 2014, 10, 130–142. [Google Scholar]
- Hamid, R.A.; Kotmi, G.; Nseir, A.; Wazaz, N.; Makoul, S.; Kalhout, A.R.; Famiani, F. oil quality and morphologi-cal, phenological, bio-agronomical and molecular characterization of Syrian Olea europaea L. germplasm. In Syrian National Strategic Plan for Olive Oil Quality: Final Report; Options Méditerranéennes: Série, A. Séminaires Méditerranéens; Di Terlizzi, B., Dragotta, A., Jamal, M., Eds.; CIHEAM: Bari, Italy, 2007; Volume 73, pp. 85–94. [Google Scholar]
- Lerma-García, M.J.; Herrero-Martínez, J.M.; Ramis-Ramos, G.; Simó-Alfonso, E.F. Prediction of the genetic variety of Spanish extra virgin olive oils using fatty acid and phenolic compound profiles established by direct infusion mass spectrometry. Food Chem. 2008, 108, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- León, L.; De la Rosa, R.; Gracia, A.; Barranco, D.; Rallo, L. Fatty acid composition of advanced olive selections obtained by crossbreeding. J. Sci. Food Agric. 2008, 88, 1921–1926. [Google Scholar] [CrossRef]
- León, L.; Beltrán, G.; Aguilera, M.P.; Rallo, L.; Barranco, D.; De la Rosa, R. Oil composition of advanced selections from an olive breeding program. Eur. J. Lipid Sci. Technol. 2011, 113, 870–875. [Google Scholar] [CrossRef]
- Giuffrè, A.M. The effects of cultivar and harvest year on the fatty alcohol composition of olive oils from Southwest Calabria (Italy). Grasas Aceites 2014, 65, e011. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M. n-Alkanes and n-alkenes in virgin olive oil from Calabria (South Italy): The effects of cultivar and harvest date. Foods 2021, 10, 290. [Google Scholar] [CrossRef]
- Al-Rqaie, I.; Al-Khalifah, N.S.; Shanavaskhan, A.E. Morphological cladistic analysis of eight popular Olive (Olea europaea L.) cultivars grown in Saudi Arabia using Numerical Taxonomic System for personal computer to detect phyletic relationship and their proximate fruit composition. Saudi J. Biol. Sci. 2016, 23, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Ranalli, A.; De Mattia, G.; Ferrante, M.L.; Giansante, L. Incidence of olive cultivation area on the analytical characteristics of the oil. Note 1. Riv. Ital. Sostanze Grasse 1997, 74, 501–508. [Google Scholar]
- Boskou, D. Olive Oil: Chemistry and Technology; AOCS Publishing: Boulder Urbana, IL, USA, 2006. [Google Scholar]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Zarrouk, W.; Baccouri, B.; Taamalli, W.; Trigui, A.; Daoud, D.; Zarrouk, M. Oil fatty acid composition of eighteen Mediterranean olive varieties cultivated under the arid conditions of Boughrara (southern Tunisia). Grasas Aceites 2009, 60, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, R.; García-González, D.L. Olive oil characterization and traceability. In Handbook of Olive Oil; Springer: Boston, MA, USA, 2013; pp. 431–478. [Google Scholar]
- Preedy, V.R.; Watson, R.R. Olives and Olive Oil in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Lopez-Miranda, J.; Perez-Jimenez, F.; Ros, E.; Yiannakouris, N. Olive oil and health: Summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 284–294. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Press Release P04-100. 1 November 2004. Available online: http://www.fda.gov/bbs/topics/news/2004/NEW01129.htlm (accessed on 28 October 2006).
- IOOC. The international olive oil market. Olivae 1992, 43, 9–13. [Google Scholar]
- Pravst, I. Oleic Acid and Its Potential Health Effects; Nutrition Institute: Ljubljana, Slovenia, 2014; pp. 35–54. [Google Scholar]
- Persson, E.; Graziani, G.; Ferracane, R.; Fogliano, V.; Skog, K. Influence of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beef burgers. Food Chem. Toxicol. 2003, 41, 1587–1597. [Google Scholar] [CrossRef]
- Rondanini, D.P.; Castro, D.N.; Searles, P.S.; Rousseaux, M.C. Fatty acid profiles of varietal virgin olive oils (Olea europaea L.) from mature orchards in warm arid valleys of Northwestern Argentina (La Rioja). Grasas Aceites 2011, 62, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, I.A.; Katan, M.B.; Zock, P.L. Dietary α-linolenic acid is associated with reduced risk of fatal coronary heart disease but increased prostate cancer risk: A meta-analysis. Nutr. J. 2004, 134, 919–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Mulinacci, N. New volatile molecular markers of rancidity in virgin olive oils under nonaccelerated oxidative storage conditions. J. Agric. Food Chem. 2019, 67, 13150–13163. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N. Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 2010, 58, 5991–6006. [Google Scholar] [CrossRef]
Phenotype Code * | Stone | Leaf | Average Weight from 40 Fruits (g) * | Average Weight from 40 Stone (g) * | Flesh Weigt % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Length (cm) | Width (cm) | Ratio (Length/Width) ** | Shape | Length (cm) | Width (cm) | Ratio (Length/Width) | Shape | ||||
WS1 | 1.30 | 0.53 | 2.45 a,b | elongated | 3.80 | 1.10 | 3.40 | elliptic | 1.69 d ± 050 | 0.50 b ± 0.04 | 70.10 |
WS2 | 1.45 | 0.63 | 2.30 a,b | elongated | 3.50 | 0.80 | 4.37 | elliptic-lanceolate | 3.13 a ± 0.08 | 0.58 b ± 0.05 | 81.49 |
WS3 | 1.15 | 0.50 | 2.30 a,b | elongated | 4.20 | 1.10 | 3.81 | elliptic | 1.85 d ± 0.057 | 0.40 c ± 0.05 | 78.45 |
WS4 | 1.33 | 0.63 | 2.11 a,b | elongated | 4.80 | 1.10 | 4.36 | elliptic-lanceolate | 2.69 b ± 0.057 | 0.47 c ± 0.00 | 82.23 |
WS5 | 1.40 | 0.63 | 2.22 a,b | elongated | 3.60 | 0.90 | 4.00 | elliptic-lanceolate | 2.49 b ± 0.105 | 0.47 c ± 0.05 | 81.00 |
WA1 | 1.10 | 0.60 | 1.83 | ovoid | 4.60 | 1.40 | 3.20 | elliptic | 2.25 b ± 0.27 | 0.54 b ± 0.10 | 75.83 |
WA2 | 1.40 | 0.60 | 2.31 a,b | elongated | 4.50 | 1.30 | 3.46 | elliptic | 2.16 c ± 0.175 | 0.54 b ± 0.10 | 74.79 |
WA3 | 1.30 | 0.50 | 2.60 a,b | elongated | 3.20 | 1.40 | 3.14 | elliptic | 2.18 c ± 0.06 | 0.61 a ± 0.10 | 71.95 |
WA4 | 1.00 | 0.60 | 1.66 d | ovoid | 3.80 | 1.20 | 2.80 | elliptic | 2.10 c ± 0.20 | 0.51 b ± 0.05 | 75.64 |
WA5 | 1.50 | 0.50 | 3.00 a | elongated | 4.40 | 1.50 | 3.10 | elliptic | 3.06 a ± 0.36 | 0.56 a ± 0.06 | 81.50 |
WA6 | 1.10 | 0.60 | 1.83 d | ovoid | 3.40 | 1.40 | 4.14 | elliptic-lanceolate | 3.24 a ± 0.18 | 0.44 c ± 0.10 | 86.20 |
WA7 | 1.40 | 0.70 | 2.00 c | elliptic | 4.7 | 0.9 | 5.11 | elliptic-lanceolate | 1.59 d ± 0.04 | 0.41 c ± 0.1 | 74.27 |
WT1 | 0.86 | 0.43 | 2 c | elliptic | 5.80 | 1.10 | 4.18 | elliptic-lanceolate | 1.39 d ± 0.33 | 0.32 d ± 0 | 76.64 |
WT2 | 1.30 | 0.60 | 2.16 c | elliptic | 4.60 | 1.50 | 3.06 | elliptic | 2.17 c ± 0.07 | 0.46 c ± 0.05 | 78.66 |
WT3 | 1.55 | 0.43 | 3.60 a | elongated | 4.60 | 1.30 | 3.53 | elliptic | 2.70 b ± 0.06 | 0.66 a ± 0.06 | 75.60 |
WT4 | 1.20 | 0.90 | 1.33 e | spherical | 6.30 | 1.20 | 5.25 | elliptic-lanceolate | 1.47 d ± 0.07 | 0.44 c ± 0.01 | 69.86 |
WT5 | 1.30 | 0.60 | 2.16 c | elliptic | 5.50 | 1.50 | 3.60 | elliptic | 2.21 c ± 0.06 | 0.50 b ± 0.10 | 77.23 |
WT6 | 1.36 | 0.56 | 2.42 a,b | elongated | 4.30 | 1.20 | 3.58 | elliptic | 2.99 a ± 0.05 | 0.39 d ± 0.02 | 86.66 |
WT7 | 1.10 | 0.50 | 2.20 c | elliptic | 6.80 | 1.50 | 4.50 | elliptic-lanceolate | 3.04 a ± 0.11 | 0.61 a ± 0.08 | 79.75 |
WT8 | 1.63 | 0.60 | 2.71 a,b | elongated | 4.70 | 1.20 | 4.00 | elliptic-lanceolate | 3.00 a ± 0.22 | 0.63 a ± 0.11 | 78.82 |
C.V | 9.00 | 7.80 | 9.10 | - | 6.80 | 9.20 | 0.00 | - | 8.60 | 16.40 | - |
L.S.D 0.05 | - | 0.50 | 0.17 | 0.00 | - | 0.33 | 0.13 | - |
Phenotype Code | The Average Percentage of OO in 1st Season | The Average Percentage of OO in 2nd Season | The Average of OO in Two Seasons |
---|---|---|---|
WS1 | 21.12 ± 0.16 | 21 ± 16 | 21.06 ± 0.50 |
WS2 | 26.50 ± 0.02 | 26.33 ± 0.57 | 26.42 ± 0.29 |
WS3 | 20.16 ± 0.11 | 21.05 ± 0.09 | 20.6 ± 0.13 |
WS4 | 20.26 ± 0.20 | 21 ± 0.09 | 20.52 ± 0.27 |
WS5 | 18.22 ± 0.06 | 19 ± 0.12 | 18.61 ± 0.03 |
WA1 | 12.04 ± 0.05 | 12 ± 0.13 | 11.97 ± 0.02 |
WA2 | 10.53 ± 0.13 | 10.3 ± 0.51 | 10.43 ± 0.29 |
WA3 | 11.74 ± 0.16 | 11.33 ± 0.51 | 11.73 ± 0.22 |
WA4 | 29.27 ± 0.25 | 29.38 ± 0.53 | 29.31 ± 0.40 |
WA5 | 17.81 ± 0.05 | 17.62 ± 0.51 | 17.73 ± 0.31 |
WA6 | 29.01 ± 0.08 | 29.02 ± 0.12 | 29.01 ± 0.04 |
WA7 | 19.04 ± 0.22 | 18.42 ± 0.51 | 18.74 ± 0.19 |
WT1 | 16.03 ± 0.28 | 16.03 ± 0.12 | 16.01 ± 0.14 |
WT2 | 12.11 ± 0.22 | 12.22 ± 0.51 | 12.21 ± 0.38 |
WT3 | 9.17 ± 0.04 | 10.73 ± 0.11 | 9.61 ± 0.04 |
WT4 | 27.02 ± 0.07 | 26.66 ± 0.52 | 26.76 ± 0.29 |
WT5 | 10.50 ± 0.05 | 11.46 ± 0.50 | 11.01 ± 0.25 |
WT6 | 12.41 ± 0.05 | 14.04 ± 0.06 | 13.71 ± 0.03 |
WT7 | 9.48 ± 0.44 | 10.41 ± 0.52 | 10.02 ± 0.48 |
WT8 | 22.03 ± 0.27 | 21.62 ± 0.55 | 21.71 ± 0.23 |
C.V | 1.12 | 2.71 | 1.91 |
LSD 0.05 | - | - | 0.62 |
Correlations | The Average Percentage of OO in the 1st Season | The Average Percentage of OO in the 2nd Season |
---|---|---|
The average percentage of OO in 1st season. | 1.00 | |
The average percentage of OO in 2nd season. Pearson Correlation | 0.995 * | 1.00 |
Phenotype Code | Palmitic (C16:0) * | Stearic (C18:0) * | Arachidic (C20:0) * | Palmitoleic (C16:1) * | Oleic (C18:1) * | Linoleic (C18:2) * | Linolenic (C18:3) * | O/L Ratio ** |
---|---|---|---|---|---|---|---|---|
WS1 | 13.81 ± 0.57 b | 3.23 ± 1.01 a | 0.47 ± 0.11 c | 0.76 ± 0.11 b | 64.91 ± 1.00 d | 15.24 ± 1.00 b | 1.29 ± 0.60 b | 4.26 ± 1.00 |
WS2 | 14.32 ± 1.01 a | 3.14 ± 1.05 a | 0.49 ± 0.11 c | 0.77 ± 0.11 b | 66.05 ± 0.50 c | 13.52 ± 1.00 b | 1.23 ± 0.60 b | 4.89 ± 0.70 |
WS3 | 12.96 ± 0.71 b | 3.17 ± 1.03 a | 0.45 ± 0.10 c | 0.78 ± 0.12 b | 63.76 ± 1.10 d | 17.12 ± 1.00 a | 1.31 ± 0.68 b | 3.72 ± 1.00 |
WS4 | 13.32 ± 1.02 b | 2.77 ± 1.10 b | 0.43 ± 0.13 c | 0.79 ± 0.12 b | 62.22 ± 1.40 d | 18.83 ± 1.00 a | 1.26 ± 0.60 b | 3.30 ± 1.20 |
WS5 | 13.53 ± 1.03 b | 2.85 ± 1.05 b | 0.44 ± 0.17 c | 1.19 ± 0.46 a | 66.15 ± 1.10 c | 14.12 ± 1.60 b | 1.24 ± 0.90 b | 4.68 ± 1.30 |
WA1 | 11.22 ± 1.11 c | 3.05 ± 1.10 a | 0.82 ± 0.14 a | 0.51 ± 0.14 | 77.41 ± 1.10 a | 5.98 ± 1.00 e | 0.28 ± 0.10 c | 12.94 ± 1.00 |
WA2 | 16.15 ± 0.92 a | 2.98 ± 1.01 b | 0.88 ± 0.11 a | 1.35 ± 0.71 a | 66.79 ± 0.90 c | 11.18 ± 1.00 c | 0.19 ± 0.10 c | 5.97 ± 0.90 |
WA3 | 15.99 ± 1.21 a | 2.20 ± 1.05 b | 0.68 ± 0.10 b | 1.47 ± 0.75 a | 67.11 ± 1.10 c | 11.76 ± 1.00 c | 0.23 ± 0.15 c | 5.70 ± 1.00 |
WA4 | 15.67 ± 1.10 a | 2.85 ± 1.04 b | 0.44 ± 0.10 c | 0.75 ± 0.11 b | 68.45 ± 1.00 b | 10.51 ± 1.00 c | 0.23 ± 0.10 c | 6.51 ± 1.00 |
WA5 | 14.85 ± 1.11 a | 2.83 ± 0.90 b | 0.46 ± 0.14 c | 0.76 ± 0.11 | 74.87 ± 1.00 a | 5.60 ± 1.00 e | 0.28 ± 0.10 c | 13.36 ± 1.00 |
WA6 | 14.93 ± 1.03 a | 2.49 ± 0.85 b | 0.36 ± 0.12 c | 1.08 ± 0.57 a | 66.74 ± 1.10 c | 13.40 ± 1.00 b | 0.56 ± 0.10 c | 4.98 ± 1.00 |
WA7 | 13.82 ± 1.14 b | 3.13 ± 1.10 a | 0.59 ± 0.13 b | 1.34 ± 0.71 a | 69.11 ± 1.00 b | 9.90 ± 1.00 d | 2.08 ± 0.60 a | 6.98 ± 1.00 |
WT1 | 14.11 ± 0.99 a | 3.01 ± 1.20 a | 0.53 ± 0.11 b | 0.88 ± 0.10 b | 65.51 ± 0.90 d | 13.40 ± 1.00 b | 1.38 ± 0.70 b | 4.89 ± 0.90 |
WT2 | 13.89 ± 0.99 b | 3.01 ± 1.01 a | 0.62 ± 0.11 b | 0.81 ± 0.10 b | 64.99 ± 1.00 d | 14.77 ± 1.00 b | 1.65 ± 0.80 b | 4.40 ± 1.00 |
WT3 | 13.18 ± 1.10 b | 3.40 ± 0.82 a | 0.53 ± 0.11 b | 0.84 ± 0.10 b | 66.39 ± 1.00 c | 13.52 ± 1.00 b | 1.63 ± 0.80 b | 4.91 ± 1.00 |
WT4 | 13.04 ± 1.12 b | 2.60 ± 1.01 b | 0.36 ± 0.10 | 0.99 ± 0.06 b | 67.81 ± 1.00 c | 13.93 ± 1.00 b | 1.08 ± 0.60 b | 4.87 ± 1.00 |
WT5 | 14.15 ± 1.03 a | 4.39 ± 1 a | 0.63 ± 0.13 b | 1.17 ± 0.09 a | 67.78 ± 1.00 c | 9.85 ± 1.00 d | 1.31 ± 0.70 b | 6.88 ± 1.00 |
WT6 | 13.65 ± 1.04 b | 2.79 ± 1.03 b | 0.46 ± 0.16 c | 1.18 ± 0.09 a | 67.52 ± 1.00 c | 12.4 ± 1.00 c | 1.50 ± 0.80 a | 5.44 ± 1.00 |
WT7 | 15.17 ± 1.04 a | 2.51 ± 1.11 b | 0.46 ± 0.11 c | 1.25 ± 0.13 a | 63.43 ± 1.00 d | 15.53 ± 1.00 b | 1.25 ± 0.70 b | 4.08 ± 1.00 |
WT8 | 13.01 ± 1.10 b | 2.43 ± 1.02 b | 0.39 ± 0.11 c | 0.67 ± 0.13 b | 66.68 ± 0.50 c | 15.13 ± 1.00 b | 1.16 ± 0.60 b | 4.41 ± 0.70 |
C.V | 6.62 | 30.13 | 17.61 | 36.10 | 1.42 | 8.21 | 32.52 | - |
LSD 0.05 | 1.55 | 1.47 | 0.15 | 0.60 | 1.58 | 1.76 | 0.61 | - |
Palmitic | Stearic | Arachidic | Palmitoleic | Oleic | Linoleic | Linolenic | |
---|---|---|---|---|---|---|---|
Palmitic | 1 | ||||||
Stearic | 0.13 | 1.00 | |||||
Arachidic | 0.08 | 0.16 | 1.00 | ||||
Palmitoleic | 0.52 * | −0.17 | 0.32 | 1.00 | |||
Oleic | −0.23 | 0.06 | 0.34 | −0.21 | 1.00 | ||
Linoleic | −0.06 | −0.18 | −0.48 * | −0.06 | 0.91 ** | 1.00 | |
Linolenic | −0.34 | 0.43 | −0.39 | −0.23 | −0.55 * | 0.59 ** | 1.00 |
WS1 | WS2 | WS3 | WS4 | WS5 | WA1 | WA2 | WA3 | WA4 | WA5 | WA5 | WA7 | WT1 | WT2 | WT3 | WT4 | WT5 | WT6 | WT7 | WT8 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WS1 | 1.00 | |||||||||||||||||||
WS2 | 0.44 | 1.00 | ||||||||||||||||||
WS3 | 0.78 | 0.33 | 1.00 | |||||||||||||||||
WS4 | 0.44 | 0.78 | 0.56 | 1.00 | ||||||||||||||||
WS5 | 0.56 | 0.67 | 0.67 | 0.89 | 1.00 | |||||||||||||||
WA1 | 0.56 | 0.44 | 0.56 | 0.33 | 0.44 | 1.00 | ||||||||||||||
WA2 | 0.56 | 0.44 | 0.56 | 0.33 | 0.44 | 0.78 | 1.00 | |||||||||||||
WA3 | 0.78 | 0.56 | 0.56 | 0.44 | 0.56 | 0.78 | 0.78 | 1.00 | ||||||||||||
WA4 | 0.44 | 0.44 | 0.44 | 0.22 | 0.33 | 0.78 | 0.67 | 0.56 | 1.00 | |||||||||||
WA5 | 0.67 | 0.56 | 0.56 | 0.56 | 0.67 | 0.56 | 0.56 | 0.67 | 0.44 | 1.00 | ||||||||||
WA6 | 0.33 | 0.67 | 0.44 | 0.67 | 0.78 | 0.44 | 0.33 | 0.44 | 0.44 | 0.44 | 1.00 | |||||||||
WA7 | 0.33 | 0.22 | 0.56 | 0.44 | 0.44 | 0.22 | 0.11 | 0.11 | 0.11 | 0.22 | 0.33 | 1.00 | ||||||||
WT1 | 0.33 | 0.22 | 0.44 | 0.22 | 0.33 | 0.44 | 0.56 | 0.33 | 0.33 | 0.11 | 0.33 | 0.44 | 1.00 | |||||||
WT2 | 0.22 | 0.11 | 0.44 | 0.22 | 0.33 | 0.56 | 0.56 | 0.44 | 0.56 | 0.44 | 0.33 | 0.33 | 0.44 | 1.00 | ||||||
WT3 | 0.56 | 0.44 | 0.56 | 0.33 | 0.44 | 0.78 | 0.89 | 0.78 | 0.78 | 0.56 | 0.33 | 0.11 | 0.44 | 0.67 | 1.00 | |||||
WT4 | 0.44 | 0.33 | 0.44 | 0.33 | 0.44 | 0.22 | 0.22 | 0.33 | 0.44 | 0.11 | 0.67 | 0.33 | 0.44 | 0.33 | 0.33 | 1.00 | ||||
WT5 | 0.33 | 0.22 | 0.33 | 0.11 | 0.22 | 0.67 | 0.67 | 0.56 | 0.67 | 0.56 | 0.22 | 0.22 | 0.44 | 0.89 | 0.78 | 0.22 | 1.00 | |||
WT6 | 0.33 | 0.33 | 0.44 | 0.44 | 0.56 | 0.44 | 0.56 | 0.56 | 0.44 | 0.67 | 0.44 | 0.11 | 0.22 | 0.78 | 0.67 | 0.33 | 0.67 | 1.00 | ||
WT7 | 0.33 | 0.56 | 0.22 | 0.44 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.44 | 0.56 | 0.22 | 0.56 | 0.56 | 0.67 | 0.44 | 0.67 | 0.56 | 1.00 | |
WT8 | 0.56 | 0.67 | 0.44 | 0.67 | 0.78 | 0.44 | 0.56 | 0.56 | 0.56 | 0.67 | 0.56 | 0.22 | 0.33 | 0.33 | 0.67 | 0.44 | 0.44 | 0.56 | 0.78 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Hamid, R.; Hag Husein, H.; Bäumler, R. Characteristics of Some Wild Olive Phenotypes (Oleaster) Selected from the Western Mountains of Syria. Sustainability 2022, 14, 5151. https://doi.org/10.3390/su14095151
Abdul Hamid R, Hag Husein H, Bäumler R. Characteristics of Some Wild Olive Phenotypes (Oleaster) Selected from the Western Mountains of Syria. Sustainability. 2022; 14(9):5151. https://doi.org/10.3390/su14095151
Chicago/Turabian StyleAbdul Hamid, Reem, Hussam Hag Husein, and Rupert Bäumler. 2022. "Characteristics of Some Wild Olive Phenotypes (Oleaster) Selected from the Western Mountains of Syria" Sustainability 14, no. 9: 5151. https://doi.org/10.3390/su14095151
APA StyleAbdul Hamid, R., Hag Husein, H., & Bäumler, R. (2022). Characteristics of Some Wild Olive Phenotypes (Oleaster) Selected from the Western Mountains of Syria. Sustainability, 14(9), 5151. https://doi.org/10.3390/su14095151