Influence of Climatic Factors on the Phenology of Chokeberry Cultivars Planted in the Pedoclimatic Conditions of Southern Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Study Area
2.2. Methods
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skvortsov, A.K.; Maitulina, Y.K. On distinctions of cultivated black-fruited aronia from its wild ancestors. Bull. Cent. Bot. Garden 1982, 126, 35–40. [Google Scholar]
- Brand, M.H. Breeding better aronia plants©. Acta Hortic. 2014, 1055, 269–272. [Google Scholar] [CrossRef]
- Mazilu, I.E.; Paraschiv, M.; Dinu, M.D.; Cosmulescu, S.N. Biochemical changes in two Aronia melanocarpa cultivars’ berries during the harvest season. Not. Bot. Horti. Agrobo. 2021, 49, 12393. [Google Scholar] [CrossRef]
- Bussieres, J.; Boudreau, S.; Clément–Mathieu, G.; Dansereau, B.; Rochefort, L. Growing black chokeberry (Aronia melanocarpa) in cut-over peatlands. HortScience 2008, 43, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, Y.; Pergl, J.; Essl, F.; Hejda, M.; van Kleunen, M.; Pyšek, P. Invasive alien plants of Russia: Insights from regional inventories. Biol. Invasions 2018, 20, 1931–1943. [Google Scholar] [CrossRef] [Green Version]
- Leostrin, A.; Pergl, J. Alien flora in a boreal region of European Russia: An example of Kostroma oblast. Biol. Invasions 2021, 23, 3337–3350. [Google Scholar] [CrossRef]
- Rosca, I.; Donea, V.; Donea, E.; Dadu, C.; Sava, P. Aronia melanocarpa (Michx.) Elliot. cultură de perspectivă pentru Republica Moldova. Pomic. Vitic. Vinif. 2019, 81, 50–57. [Google Scholar]
- Butac, M.; Chitu, E. Impactul schimbărilor climatice asupra dinamicii fenologice a unor soiuri de prun cultivate în bazinul pomicol Argeș. Fruit Grow. Res. 2007, XXIII. Available online: https://publications.icdp.ro/ (accessed on 15 February 2022).
- Cosmulescu, S.; Baciu, A.; Botu, M.; Achim, G. Environmental factors’ influence on walnut flowering. Acta Hortic. 2010, 861, 83–88. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Calusaru, F.G. Influence of temperature on blackthorn (Prunus spinosa L.) phenophases in spring season. J. Agric. Meteorol. 2020, 76, 53–57. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Ștefănescu, D.; Stoenescu, A.M. Variability of phenological behaviours of wild fruit tree species based on discriminant analysis. Plants 2022, 11, 45. [Google Scholar] [CrossRef]
- Birsanu Ionescu, M.; Cosmulescu, S.N. Effect of climatic conditions on flowering of walnut genotypes in Romania. J. Nuts 2017, 8, 161–167. [Google Scholar]
- Cosmulescu, S.; Ionescu, M.B. Phenological calendar in some walnut genotypes grown in Romania and its correlations with air temperature. Int. J. Biometeorol. 2018, 62, 2007–2013. [Google Scholar] [CrossRef]
- Khodorova, N.V.; Boitel-Conti, M. The role of temperature in the growth and flowering of geophytes. Plants 2013, 2, 699–711. [Google Scholar] [CrossRef] [Green Version]
- Penso, G.A.; Citadin, I.; Scariotto, S.; Santos, C.E.; Junior, A.W.; Bruckner, C.H.; Rodrigo, J. Development of peach flower buds under low winter chilling conditions. Agronomy 2020, 10, 428. [Google Scholar] [CrossRef] [Green Version]
- Paltineanu, C.; Chitu, E. Climate change impact on phenological stages of sweet and sour cherry trees in a continental climate environment. Sci. Hortic. 2020, 261, 109011. [Google Scholar] [CrossRef]
- Durant, J.M.; Hjermann, D.Ø.; Anker-Nilssen, T.; Beaugrand, G.; Mysterud, A.; Pettorelli, N.; Stenseth, N.C. Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol. Lett. 2005, 8, 952–958. [Google Scholar] [CrossRef]
- Chuine, I. Why does phenology drive species distribution? Phil. Trans. R. Soc. 2010, 365, 3149–3160. [Google Scholar] [CrossRef] [Green Version]
- Chitu, E.; Butac, M.; Chitu, V. Modelling of climatic changes impact on the growth and fruiting of some plum cultivars in the southern part of Romania. Acta Hortic. 2012, 968, 253–260. [Google Scholar] [CrossRef]
- Stucky, B.J.; Guralnick, R.; Deck, J.; Denny, E.G.; Bolmgren, K.; Walls, R. The plant phenology ontology: A new informatics resource for large-scale integration of plant phenology data. Front. Plant Sci. 2018, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, J.; Bucher, S.F.; Eisenhauer, N.; Schmidt, A.; Türke, M.; Gebler, A.; Römermann, C. Invertebrate decline leads to shifts in plant species abundance and phenology. Front. Plant Sci. 2020, 11, 1410. [Google Scholar] [CrossRef] [PubMed]
- Tresson, P.; Brun, L.; Cortazar-Atauri, I.G.; Audergon, J.M.; Buléon, S.; Chenevotot, H.; Launay, M. Future development of apricot blossom blight under climate change in Southern France. Eur. J. Agron. 2020, 112, 125960. [Google Scholar] [CrossRef]
- Ekholm, A.; Tack, A.J.; Pulkkinen, P.; Roslin, T. Host plant phenology, insect outbreaks and herbivore communities–The importance of timing. J. Anim. Ecol. 2020, 89, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Chitu, E.; Paltineanu, C. Timing of phenological stages for apple and pear trees under climate change in a temperate-continental climate. Int. J. Biometeorol. 2020, 64, 1263–1271. [Google Scholar] [CrossRef]
- Nicola, C.; Florea, A.; Chițu, E.; Butac, M. Evaluation of the biochemical quality of Aronia melanocarpa fruits in the conditions of southern Romania, under the influence of fertilization. Sci. Pap. Ser. B Hortic. 2020, 64, 147–154. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledoneus Plants. BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Braunschweig, Germany, 2001; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 18 February 2022).
- Coman, M.; Chițu, E. Zonarea Speciilor Pomicole În Funcție De Condițiile Pedoclimatice Şi Socioeconomice Ale României. Editura Invel Mutimedia, Piteşti. 2014. Available online: https://icdp.ro/wp-content/uploads/2020/09/Zonarea-speciilor-pomicole.pdf (accessed on 15 February 2022).
- Weinberger, J.H. Chilling requirements of peach varieties. J. Am. Soc. Hortic. Sci. 1950, 56, 122–128. [Google Scholar]
- Luedeling, E.; Kunz, A.; Blanke, M.M. Identification of chilling and heat requirements of cherry trees a statistical approach. Int. J. Biometeorol. 2013, 57, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.; Campoy, J.A.; Egea, J. Chilling and heat requirements of apricot cultivars for flowering. Environ. Exp. Bot. 2007, 61, 254–263. [Google Scholar] [CrossRef]
- Črepinšek, Z.; Štampar, F.; Kajfež-Bogataj, L.; Solar, A. The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. Int. J. Biometeorol. 2012, 56, 681–694. [Google Scholar] [CrossRef]
- González-Ubierna, S.; Lai, R. Modelling the effects of climate factors on soil respiration across Mediterranean ecosystems. J. Arid Environ. 2019, 165, 46–54. [Google Scholar] [CrossRef]
- Morin, X.; Augspurger, C.; Chuine, I. Process-based modeling of species’distributions: What limits temperate tree species’range boundaries? Ecology 2007, 88, 2280–2291. [Google Scholar] [CrossRef]
- Moore, L.M.; Lauenroth, W.K. Differential effects of temperature and precipitation on early-vs. late-flowering species. Ecosphere 2017, 8, e01819. [Google Scholar] [CrossRef] [Green Version]
- Cho, L.H.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef]
- Kazan, K.; Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 2016, 67, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Strik, B.; Finn, C.; Wrolstad, R. Performance of chokeberry (Aronia melanocarpa) in Oregon, USA. Acta Hortic. 2003, 626, 439–443. [Google Scholar] [CrossRef]
- Quesada, M.; Fuchs, E.J.; Lobo, J.A. Pollen load size, reproductive success, and progeny kinship of naturally pollinated flowers of the tropical dry forest tree Pachira quinata (Bombacaceae). Am. J. Bot. 2001, 88, 2113–2118. [Google Scholar] [CrossRef]
- Beaubien, E.G.; Hall-Beyer, M. Plant phenology in western Canada: Trends and links to the view from space. Environ. Monit. Assess. 2003, 88, 419–429. [Google Scholar] [CrossRef]
Weather Data | Interval | Nov. | Dec. | Jan. | Feb. | March | April | May | June | July | Aug. | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average temperature (°C) | 2018–2019 | 4.7 | −0.3 | −1.2 | 2.6 | 7.8 | 10.8 | 15.7 | 21.2 | 21.1 | 22.8 | 10.5 |
2019–2020 | 9.3 | 2.8 | 0.3 | 4.2 | 7.7 | 10.9 | 15.0 | 19.6 | 22.1 | 22.2 | 11.4 | |
2020–2021 | 4.7 | 3.0 | 0.5 | 3.0 | 4.1 | 8.6 | 15.6 | 19.3 | 23.5 | 22.4 | 10.5 | |
1969–2017 | 4.6 | 0.3 | −1.2 | 0.4 | 4.8 | 10.4 | 15.3 | 18.8 | 20.6 | 19.9 | 9.4 | |
Maximum temperature (°C) | 2018–2019 | 9.1 | 4.6 | 3.5 | 9.8 | 15.7 | 16.8 | 22.0 | 28.6 | 28.5 | 31.4 | 17.0 |
2019–2020 | 13.8 | 9.4 | 8.5 | 11.5 | 14.3 | 19.5 | 22.4 | 26.7 | 30.2 | 30.8 | 18.7 | |
2020–2021 | 10.6 | 6.2 | 5.3 | 9.1 | 10.5 | 15.0 | 22.3 | 26.6 | 31.1 | 31.1 | 16.8 | |
1969–2017 | 10.5 | 5.4 | 4.0 | 5.7 | 10.9 | 16.9 | 22.1 | 25.7 | 27.8 | 27.4 | 15.6 | |
Minimum temperature (°C) | 2018–2019 | 1.3 | −3.8 | −5.2 | −3.3 | 0.2 | 5.0 | 9.5 | 15.4 | 14.3 | 15.3 | 4.9 |
2019–2020 | 5.4 | −1.6 | −5.4 | −1.7 | 1.8 | 2.3 | 8.4 | 13.5 | 15.2 | 15.3 | 5.3 | |
2020–2021 | 0.8 | 0.5 | −3.3 | −2.0 | −1.3 | 2.6 | 9.0 | 13.4 | 16.4 | 14.8 | 5.1 | |
1969–2017 | 0.5 | −3.3 | −5.1 | −3.7 | −0.1 | 4.6 | 9.3 | 12.7 | 14.2 | 13.8 | 4.3 | |
Absolute daily maximum temperature (°C) | 2018–2019 | 18.3 | 11.8 | 10.4 | 19.2 | 23.6 | 26.3 | 28.2 | 32.2 | 34.9 | 35.1 | 35.1 |
2019–2020 | 21.4 | 19.4 | 15.0 | 19.3 | 23.3 | 25.3 | 30.1 | 32.8 | 35.3 | 35.2 | 35.3 | |
2020–2021 | 17.6 | 12.9 | 13.3 | 22.3 | 18.8 | 25.3 | 28.4 | 34.0 | 36.8 | 36.4 | 36.8 | |
1969–2017 | 25.5 | 21.0 | 19.4 | 21.4 | 25.5 | 29.0 | 33.7 | 36.5 | 38.8 | 38.2 | 38.8 | |
Absolute daily minimum temperature (°C) | 2018–2019 | −11.1 | −9.6 | −13.5 | −14.1 | −4.4 | −0.1 | 2.4 | 11.2 | 7.9 | 10.2 | −14.1 |
2019–2020 | −1.1 | −7.9 | −10.2 | −8.5 | −6.1 | −3.9 | 4.3 | 4.3 | 11.6 | 11.0 | −10.2 | |
2020–2021 | −4.9 | −7.9 | −14.1 | −10.3 | −6.2 | −3.3 | 2.5 | 7.0 | 12.5 | 9.0 | −14.1 | |
1969–2017 | −15.4 | −21.2 | −24.4 | −23.4 | −19.5 | −6.0 | −0.5 | 3.5 | 5.5 | 2.2 | −24.4 | |
Sunshine hours (hours, sum) | 2018–2019 | 67.1 | 80.0 | 89.5 | 156.1 | 223.0 | 162.2 | 220.4 | 273.8 | 309.1 | 330.9 | 1912.1 |
2019–2020 | 72.2 | 93.2 | 162.1 | 143.6 | 171.4 | 196.6 | 243.7 | 266.3 | 306.7 | 294.6 | 1950.4 | |
2020–2021 | 112.6 | 36.6 | 91.0 | 145.6 | 160.3 | 176.8 | 266.2 | 259.9 | 288.2 | 260.3 | 1797.5 | |
1969–2017 | 109.8 | 91.2 | 99.1 | 113.1 | 158.6 | 192.8 | 245.8 | 277.4 | 305.0 | 283.0 | 1875.8 | |
Rainfall (mm, sum) | 2018–2019 | 39.8 | 79.2 | 63.7 | 14.8 | 21.2 | 35.6 | 46.3 | 197.1 | 93.4 | 9.7 | 600.8 |
2019–2020 | 56.2 | 15.5 | 1.8 | 22.5 | 30.0 | 21.1 | 104.1 | 166.2 | 52.0 | 29.8 | 499.2 | |
2020–2021 | 8.8 | 81.9 | 73.6 | 12.4 | 66.8 | 38.4 | 65.4 | 104.0 | 33.5 | 74.0 | 558.8 | |
1969–2017 | 45.6 | 42.3 | 32.7 | 33.8 | 37.6 | 56.4 | 81.7 | 95.3 | 81.6 | 63.1 | 570.1 |
Air Temperature (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Phenophase | Statistic Descriptors | Duration (Days) | Tmin. | Min. Abs. | Tmed. | Tmax. | Max. Abs. | TSR (W/m2) | CH (Hours) | ADD (°C) |
Dormancy (1 November—BBCH 51) | Mean | 94.2 | −1.2 | −14.1 | 2.7 | 9.8 | 21.4 | 53.2 | 1120.4 | - |
SD | 3.9 | 0.9 | 1.2 | 4.5 | 5.4 | 276.2 | - | |||
Min | 89.0 | −2.6 | 1.0 | 5.8 | 48.5 | 842.5 | - | |||
Max | 100.0 | −0.5 | 4.0 | 18.5 | 61.0 | 1521.8 | - | |||
1 January—BBCH 53 | Mean | 65.89 | −3.16 | −14.1 | 1.94 | 8.37 | 22.3 | 86.27 | 693.59 | - |
SD | 2.87 | 0.64 | 0.79 | 1.59 | 2.57 | 68.60 | - | |||
Min | 61.00 | −4.10 | 0.83 | 6.68 | 82.31 | 630.30 | - | |||
Max | 70.00 | −2.62 | 2.98 | 10.55 | 89.62 | 799.80 | - | |||
1 January—BBCH 61 | Mean | 111.89 | −1.20 | −14.1 | 4.48 | 11.13 | 26.2 | 134.40 | - | - |
SD | 6.52 | 0.26 | 0.52 | 1.25 | 27.22 | - | - | |||
Min | 104.00 | −1.56 | 4.06 | 9.97 | 117.71 | - | - | |||
Max | 120.00 | −0.93 | 5.26 | 12.90 | 192.44 | - | - | |||
1 January—BBCH 71 | Mean | 123.50 | −0.59 | −14.1 | 5.29 | 12.03 | 28.4 | 136.65 | - | - |
SD | 6.17 | 0.27 | 0.45 | 1.15 | 6.51 | - | - | |||
Min | 116.00 | −0.97 | 4.79 | 11.07 | 127.39 | - | - | |||
Max | 133.00 | −0.15 | 5.95 | 13.65 | 144.33 | - | - | |||
1 January—BBCH 87 | Mean | 220.78 | 5.49 | −14.1 | 11.70 | 18.63 | 36.8 | 197.68 | - | - |
SD | 7.92 | 0.45 | 0.28 | 0.35 | 1.96 | - | - | |||
Min | 209.00 | 4.74 | 11.22 | 18.24 | 195.80 | - | - | |||
Max | 231.00 | 6.00 | 12.00 | 19.35 | 202.45 | - | - | |||
BBCH 53–61 | Mean | 46.00 | 1.68 | −6.2 | 8.15 | 15.09 | 26.2 | 177.04 | - | 181.10 |
SD | 4.10 | 0.38 | 0.85 | 1.37 | 11.16 | - | 63.74 | |||
Min | 40.00 | 1.25 | 6.93 | 13.13 | 167.64 | - | 12.90 | |||
Max | 52.00 | 2.39 | 8.92 | 16.37 | 199.47 | - | 228.20 | |||
BBCH 53–71 | Mean | 57.61 | 2.38 | −6.2 | 9.13 | 16.19 | 28.4 | 193.56 | - | 296.93 |
SD | 3.96 | 0.26 | 0.51 | 0.98 | 11.71 | - | 14.49 | |||
Min | 52.00 | 2.02 | 8.34 | 14.80 | 177.15 | - | 275.10 | |||
Max | 64.00 | 2.92 | 9.64 | 17.41 | 209.95 | - | 318.20 | |||
BBCH 53–87 | Mean | 153.83 | 9.10 | −6.2 | 16.08 | 23.30 | 36.8 | 245.15 | - | 1702.37 |
SD | 6.10 | 0.46 | 1.14 | 1.24 | 3.82 | - | 104.91 | |||
Min | 144.00 | 8.29 | 15.08 | 22.60 | 239.94 | - | 1512.40 | |||
Max | 163.00 | 9.62 | 19.12 | 26.67 | 253.26 | - | 1845.20 |
Phenophase | Air Temperature (°C) | TSR (W/m2) | |||
---|---|---|---|---|---|
Tmin. | Tmed. | Tmax. | |||
1 November—BBCH 53 | Pearson Correlation | 0.775 *** | 0.620 ** | 0.430 | 0.451 |
Sig. (2-tailed) | 0.000 | 0.006 | 0.075 | 0.060 | |
1 January—BBCH 53 | Pearson Correlation | 0.900 *** | 0.651 ** | 0.339 | 0.380 |
Sig. (2-tailed) | 0.000 | 0.003 | 0.168 | 0.120 | |
1 January—BBCH 61 | Pearson Correlation | 0.951 *** | −0.008 | −0.182 | −0.072 |
Sig. (2-tailed) | 0.000 | 0.976 | 0.469 | 0.775 | |
1 January—BBCH 71 | Pearson Correlation | 0.992 *** | 0.076 | −0.190 | 0.468 * |
Sig. (2-tailed) | 0.000 | 0.765 | 0.449 | 0.050 | |
1 January—BBCH 87 | Pearson Correlation | 0.922 *** | 0.939 *** | −0.387 | −0.236 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.113 | 0.345 | |
BBCH 53–61 | Pearson Correlation | −0.877 °°° | −0.936 °°° | −0.877 °°° | 0.177 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.481 | |
BBCH 53–71 | Pearson Correlation | −0.334 | −0.885 °°° | −0.813 °°° | 0.151 |
Sig. (2-tailed) | 0.175 | 0.000 | 0.000 | 0.549 | |
BBCH 53–87 | Pearson Correlation | 0.926 *** | −0.132 | −0.289 | −0.472 ° |
Sig. (2-tailed) | 0.000 | 0.601 | 0.246 | 0.048 |
BBCH 53 | BBCH 61 | BBCH 71 | BBCH 87 | BBCH 53–61 | BBCH 53–71 | BBCH 53–87 | ||
---|---|---|---|---|---|---|---|---|
1 November—BBCH 53 | Pearson Corel. | 0.948 ** | 0.817 ** | 0.731 ** | 0.395 | 0.636 ** | 0.498 * | −0.130 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.001 | 0.105 | 0.005 | 0.036 | 0.607 | |
BBCH 53 | Pearson Corel. | 1 | 0.906 ** | 0.842 ** | 0.509 * | 0.740 ** | 0.525 * | 0.043 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.031 | 0.000 | 0.025 | 0.867 | ||
BBCH 61 | Pearson Corel. | 1 | 0.973 ** | 0.695 ** | 0.955 ** | 0.708 ** | 0.282 | |
Sig. (2-tailed) | 0.000 | 0.001 | 0.000 | 0.001 | 0.257 | |||
BBCH 71 | Pearson Corel. | 1 | 0.728 ** | 0.958 ** | 0.724 ** | 0.342 | ||
Sig. (2-tailed) | 0.001 | 0.000 | 0.001 | 0.165 | ||||
BBCH 87 | Pearson Corel. | 1 | 0.748 ** | 0.643 ** | 0.829 ** | |||
Sig. (2-tailed) | 0.000 | 0.004 | 0.000 | |||||
BBCH 53–61 | Pearson Corel. | 1 | 0.757 ** | 0.419 | ||||
Sig. (2-tailed) | 0.000 | 0.084 | ||||||
BBCH 53–71 | Pearson Corel. | 1 | 0.329 | |||||
Sig. (2-tailed) | 0.183 | |||||||
BBCH 53–87 | Pearson Corel. | 1 | ||||||
Sig. (2-tailed) |
Phenophase | Reference Phenophase | Air Temperature (°C) | TSR (W/m2) | |||
---|---|---|---|---|---|---|
Tmin. | Tmed. | Tmax. | ||||
BBCH 53–61 | 1 November-BBCH 53 | Pearson Corel. | 0.536 * | 0.256 | 0.003 | −0.077 |
Sig. (2-tailed) | 0.022 | 0.305 | 0.992 | 0.763 | ||
BBCH 53–61 | 1 January-BBCH 53 | Pearson Corel. | 0.785 *** | 0.294 | −0.055 | −0.135 135 |
Sig. (2-tailed) | 0.000 | 0.237 | 0.827 | 0.595 | ||
BBCH 61–71 | 1 November-BBCH 53 | Pearson Corel. | −0.548 ° | −0.549 ° | −0.488 ° | −0.495 ° |
Sig. (2-tailed) | 0.018 | 0.018 | 0.040 | 0.037 | ||
BBCH 61–71 | 1 January-BBCH 53 | Pearson Corel. | −0.500 ° | −0.570 ° | −0.500 ° | −0.466 |
Sig. (2-tailed) | 0.035 | 0.014 | 0.035 | 0.051 | ||
BBCH 61–71 | BBCH 53–61 | Pearson Corel. | 0.394 | 0.066 | −0.015 | −0.546 ° |
Sig. (2-tailed) | 0.106 | 0.795 | 0.954 | 0.019 | ||
BBCH 71–87 | 1 November-BBCH 53 | Pearson Corel. | −0.825 °°° | −0.865 °°° | −0.827 ** | −0.788 °°° |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | ||
BBCH 71–87 | 1 January-BBCH 53 | Pearson Corel. | −0.641 °° | −0.834 °°° | −0.809 °°° | −0.742 °°° |
Sig. (2-tailed) | 0.004 | 0.000 | 0.000 | 0.000 | ||
BBCH 71–87 | BBCH 53–61 | Pearson Corel. | 0.545 * | 0.043 | −0.106 | −0.637 °° |
Sig. (2-tailed) | 0.019 | 0.865 | 0.674 | 0.004 | ||
BBCH 71–87 | BBCH 61–71 | Pearson Corel. | −0.003 | −0.329 | −0.470 * | −0.373 |
Sig. (2-tailed) | 0.990 | 0.183 | 0.049 | 0.127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, M.D.; Mazilu, I.E.; Cosmulescu, S. Influence of Climatic Factors on the Phenology of Chokeberry Cultivars Planted in the Pedoclimatic Conditions of Southern Romania. Sustainability 2022, 14, 4991. https://doi.org/10.3390/su14094991
Dinu MD, Mazilu IE, Cosmulescu S. Influence of Climatic Factors on the Phenology of Chokeberry Cultivars Planted in the Pedoclimatic Conditions of Southern Romania. Sustainability. 2022; 14(9):4991. https://doi.org/10.3390/su14094991
Chicago/Turabian StyleDinu, Marinela Diaconescu, Ivona Enescu Mazilu, and Sina Cosmulescu. 2022. "Influence of Climatic Factors on the Phenology of Chokeberry Cultivars Planted in the Pedoclimatic Conditions of Southern Romania" Sustainability 14, no. 9: 4991. https://doi.org/10.3390/su14094991