Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Groups, and Animal Care
2.2. Feeding Management: Experimental Diets
2.3. Experimental Parameters
2.3.1. Nutritional Evaluation of BFF and WDGs
2.3.2. Environmental Impact
2.3.3. Growth and Slaughtering Performance and Health Status
- ADG = average daily gain (kg/head/day);
- Weightf = final weight of each period;
- Weighti = initial weight of each period;
- days i − f = days between the start and the end of each period.
2.3.4. Characteristics of Diets, Feces, and Apparent Total Tract Digestibility
- X = each analytical parameter considered (%);
- ADL = acid detergent lignin (%);
- d = diet;
- f = feces.
2.4. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Evaluation of BFF and WDGs
3.2. Environmental Impact
3.3. Growth, Slaughtering Performance, and Health Status
3.4. Characteristics of the Diets, Feces, and Apparent Total Tract Digestibility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Population Division, Department of Economic and Social Affairs, United Nations (UN). World Population Prospects 2019: Volume I: Comprehensive Tables; UN: New York, NY, USA, 2019. [Google Scholar]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spang, E.S.; Moreno, L.C.; Pace, S.A.; Achmon, Y.; Donis-Gonzalez, I.; Gosliner, W.A.; Jablonski-Sheffield, M.P.; Momin, M.A.; Quested, T.E.; Winans, K.S. Food loss and waste: Measurement, drivers, and solutions. Annu. Rev. Environ. Res. 2019, 44, 117–156. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations Resolution A/RES/70/1; United Nations: New York, NY, USA, 2015; p. 25. [Google Scholar]
- Takiya, C.S.; Ylioja, C.M.; Bennett, A.; Davidson, M.J.; Sudbeck, M.; Wickersham, T.A.; VandeHaar, M.J.; Bradford, B.J. Feeding Dairy Cows With “Leftovers” and the Variation in Recovery of Human-Edible Nutrients in Milk. Front. Sustain. Food Syst. 2019, 3, 114. [Google Scholar] [CrossRef]
- Mitloehner, F. Livestock’s contributions to climate change: Facts and fiction. Render 2016, 46, 10–11. Available online: https://cekern.ucanr.edu/files/256942.pdf (accessed on 27 February 2022).
- Capper, J.L.; Cady, R.A. The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017. J. Anim. Sci. 2020, 1, 98. [Google Scholar] [CrossRef]
- Aan den Toorn, S.I.; Worrell, E.; van den Broek, M.A. Meat, dairy, and more: Analysis of material, energy, and greenhouse gas flows of the meat and dairy supply chains in the EU28 for 2016. J. Ind. Ecol. 2020, 24, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Salami, S.A.; Moran, C.A.; Warren, H.E.; Taylor-Pickard, J. A Meta-Analysis of the Effects of Slow-Release Urea Supplementation on the Performance of Beef Cattle. Animals 2020, 10, 657. [Google Scholar] [CrossRef] [Green Version]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N.; et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Prudêncio da Silva, V.; van der Werf, H.M.G.; Spies, A.; Soares, S.R. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef]
- Werth, S.J.; Rocha, A.S.; Oltjen, J.W.; Kebreab, E.; Mitloehner, F.M. A life cycle assessment of the environmental impacts of cattle feedlot finishing rations. Int. J. Life Cycle Assess. 2021, 26, 1779–1793. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; De Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006. [Google Scholar]
- Erb, K.H.; Mayer, A.; Kastner, T.; Sallet, K.E.; Haberl, H. The impact of industrial grain fed livestock production on food security: An extended literature review. In Compassion in World Farming; The Tubney Charitable Trust: London, UK; World Society for the Protection of Animals: Vienna, Austria, 2012. [Google Scholar]
- Asem-Hiablie, S.; Battagliese, T.; Stackhouse-Lawson, K.R. A life cycle assessment of the environmental impacts of a beef system in the USA. Int. J. Life Cycle Assess. 2019, 24, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Mottet, A.; Teillard, F.; Boettcher, P.; De’ Besi, G.; Besbes, B. Review: Domestic herbivores and food security: Current contribution, trends and challenges for a sustainable development. Animal 2018, 12, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Dumont, B.; Groot, J.C.J.; Tichit, M. Review: Make ruminants green again—How can sustainable intensification and agroecology converge for a better future? Animal 2018, 12, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Giromini, C.; Ottoboni, M.; Tretola, M.; Marchis, D.; Gottardo, D.; Caprarulo, V.; Baldi, A.; Pinotti, L. Nutritional evaluation of former food products (ex-food) intended for pig nutrition. Food Addit. Contam. Part A 2017, 34, 1436–1445. [Google Scholar] [CrossRef]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Kaltenegger, A.; Humer, E.; Stauder, A.; Zebeli, Q. Feeding of bakery AFLS in the replacement of grains enhanced milk performance, modulated blood metabolic profile and lowered the risk of rumen acidosis in dairy cows. J. Dairy Sci. 2020, 103, 10122–10135. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Luciano, A.; Tretola, M.; Ottoboni, M.; Baldi, A.; Cattaneo, D.; Pinotti, L. Potentials and Challenges of Former Food Products (Food Leftover) as Alternative Feed Ingredients. Animals 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humer, E.; Aditya, S.; Kaltenegger, A.; Klevenhusen, F.; Petri, R.; Zebeli, Q. Graded substitution of grains with bakery former foodstuffs modulates ruminal fermentation, nutrient degradation, and microbial community composition in vitro. J. Dairy Sci. 2018, 101, 3085–3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humer, E.; Zebeli, Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Anim. Feed Sci. Technol. 2017, 226, 133–151. [Google Scholar] [CrossRef]
- Kaltenegger, A.; Humer, E.; Pacífico, C.; Zebeli, Q. Feeding dairy cows’ bakery former foodstuffs enhanced nutrient digestibility, but affected fecal microbial composition and pH in a dose-dependent manner. J. Dairy Sci. 2021, 104, 7781–7793. [Google Scholar] [CrossRef]
- França, A.B.; Morenz, M.J.F.; Lopes, F.C.F.; Madeiro, A.S.; Morenz, D.A.; Faria, B.M.D.; Cabral, L.D.S.; Fonseca, C.E.M.D. Bakery waste in sheep diets: Intake, digestibility, nitrogen balance and ruminal parameters. Rev. Bras. Zootec. 2012, 41, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Garnsworthy, P.C.; Marsden, M.; Goodman, J.R.; Saunders, N. Inclusion of Wheat Dried Distillerss’ Grains with Solubles from Bioethanol Plants in Diets for Dairy Cows. Animals 2021, 11, 70. [Google Scholar] [CrossRef]
- Schingoethe, D.J.; Kalscheur, K.; Hippen, A.; Garcia, A. Invited review: The use of distillerss products in dairy cattle diets. J. Dairy Sci. 2009, 92, 5802–5813. [Google Scholar] [CrossRef]
- Chibisa, G.; Christensen, D.; Mutsvangwa, T. Effects of replacing canola meal as the major protein source with wheat dried distillers grains with solubles on ruminal function, microbial protein synthesis, omasal flow, and milk production in cows. J. Dairy Sci. 2012, 95, 824–841. [Google Scholar] [CrossRef]
- Gaillard, C.; Sørensen, M.; Vestergaard, M.; Weisbjerg, M.; Basar, A.; Larsen, M.; Martinussen, H.; Kidmose, U.; Sehested, J. Effect of substituting soybean meal and canola cake with dried distillers grains with solubles at 2 dietary crude protein levels on feed intake, milk production, and milk quality in dairy cows. J. Dairy Sci. 2017, 100, 8928–8938. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.; Niehues, M.B.; Tomaz, L.A.; Baldassini, W.; Ladeira, M.; Arrigoni, M.; Martins, C.L.; Tathyane, G.; Paulino, P.; Machado Neto, O.R. Dry matter intake, performance, carcass traits and expression of genes of muscle protein metabolism in cattle fed increasing levels of de-oiled wet distillers grains. Anim. Feed. Sci. Technol. 2020, 269, 114627. [Google Scholar] [CrossRef]
- McKiernan, W.A. Muscle scoring beef cattle. NSW DPI Primefact 2007, 328, 1–15. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle, 8th ed.; National Academy Press: Washington, DC, USA, 2016.
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Vennard, T.R.; Ruosch, A.J.; Wejrowski, S.M.; Ellingson, D.J. Sugar Profile Method by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection in Food, Dietary Supplements, Pet Food, and Animal Feeds: First Action 2018.16. J. AOAC Int. 2020, 103, 89–102. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Council Regulation (EEC) No 1026/91 of 22 April 1991 amending Regulation (EEC) No 1208/81 determining the Community scale for the classification of carcases of adult bovine animals. Off. J. Eur. Union 1991, L 106, 2–3.
- Jancewicz, L.J.; Penner, G.B.; Swift, M.L.; McKinnon, J.J.; Waldner, C.L.; McAllister, T.A. Characterization of the variation in the daily excretion of faecal constituents and digestibility predictions in beef cattle fed feedlot diets using near-infrared spectroscopy. Can. J. Anim. Sci. 2016, 96, 532–549. [Google Scholar] [CrossRef]
- Murta, D. The Future of Animal Feeding. In Insects as Animal Feed: Novel Ingredients for Use in Pet, Aquaculture and Livestock Diets, 1st ed.; Hall, H., Fitches, E., Smith, R., Eds.; Anpario plc: Worksop, UK, 2021; pp. 126–138. [Google Scholar]
- Vandermeersch, T.; Alvarenga, R.; Ragaert, P.; Dewulf, J. Environmental sustainability assessment of food waste valorization options. Resour. Conserv. Recycl. 2014, 87, 57–64. [Google Scholar] [CrossRef]
- Tallentire, C.; Mackenzie, S.; Kyriazakis, I. Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod. 2018, 187, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Van Hal, O.; De Boer, I.; Muller, A.; De Vries, S.; Erb, K.-H.; Schader, C.; Gerrits, W.; Van Zanten, H. Upcycling food leftovers and grass resources through livestock:impact of livestock system and productivity. J. Clean. Prod. 2019, 219, 485–496. [Google Scholar] [CrossRef]
- Mackenzie, S.G.; Leinonen, I.; Ferguson, N.; Kyriazakis, I. Can the environmental impact of pig systems be reduced by utilising co-products as feed? J. Clean. Prod. 2016, 115, 172–181. [Google Scholar] [CrossRef]
- Leinonen, I.; MacLeod, M.; Bell, J. Effects of Alternative Uses of Distillers By-Products on the Greenhouse Gas Emissions of Scottish Malt Whisky Production: A System Expansion Approach. Sustainability 2018, 10, 1473. [Google Scholar] [CrossRef] [Green Version]
- Bremer, V.R.; Watson, A.K.; Liska, A.J.; Erickson, G.E.; Cassman, K.G.; Hanford, K.J.; Klopfenstein, T.J. Effect of distillers grains moisture and inclusion level in livestock diets on greenhouse gas emissions in the corn-ethanol-livestock life cycle. Prof. Anim. Sci. 2011, 27, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Hünerberg, M.; McGinn, S.M.; Beauchemin, K.A.; Okine, E.K.; Harstad, O.M.; McAllister, T.A. Effect of dried distillers’ grains plus soluble on enteric methane emissions and nitrogen excretion from growing beef cattle. J. Anim. Sci. 2013, 91, 2846–2857. [Google Scholar] [CrossRef] [Green Version]
- Hünerberg, M.; McGinn, S.M.; Beauchemin, K.A.; Okine, E.K.; Harstad, O.M.; McAllister, T.A. Effect of dried distillerss’ grains plus solubles on enteric methane emissions and nitrogen excretion from finishing beef cattle. Can. J. Anim. Sci. 2013, 93, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Guiroy, P.J.; Fox, D.G.; Beermann, D.H.; Ketchen, D.J. Performance and meat quality of beef steers fed corn-based or bread by-product-based diets. J. Anim. Sci. 2000, 78, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Tretola, M.; Ottoboni, M.; Luciano, A.; Rossi, L.; Baldi, A.; Pinotti, L. Former food products have no detrimental effects on diet digestibility, growth performance and selected plasma variables in post-weaning piglets. Ital. J. Anim. Sci. 2019, 18, 987–996. [Google Scholar] [CrossRef]
- Ottoboni, M.; Giromini, C.; Tretola, M.; Gottardo, D.; Marchis, D.; Caprarulo, V.; Cheli, F.; Baldi, A.; Pinotti, L. Nutrients content and in vitro digestibility of ex-food as feed ingredient for pig diets. Ital. J. Anim. Sci. 2017, 16 (Suppl. 1), 56. [Google Scholar]
- Gibb, D.J.; Hao, X.; McAllister, T.A. Effect of dried distillers’ grains from wheat on diet digestibility and performance in feedlot cattle. Can. J. Anim. Sci. 2008, 88, 659–665. [Google Scholar] [CrossRef]
- Carlson, Z.E.; Gramkow, J.L.; Wilson, H.C.; Wilson, J.B.; Melissa, L.; Erickson, G.E.; MacDonald, J.C.; Luebbe, M.K. Evaluation of Protein from Distillers Grains in Finishing Diets on Nutrient Digestibility. In Nebraska Beef Cattle Report; University of Nebraska: Lincoln, NE, USA, 2018; p. 990. [Google Scholar]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A review on the use of agro-industrial CO-products in animals’ diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
Feed | Traditional | Circular |
---|---|---|
Corn meal | 4.5 | 2.9 |
Wheat bran | 2.0 | 2.0 |
Hay, ryegrass | 1.6 | 1.6 |
Soybean meal | 0.9 | 0.6 |
Mineral and vitamin mix | 0.13 | 0.13 |
Urea | 0.02 | 0.02 |
BFF 1 | - | 1.5 |
Wheat WDGs 2 | - | 1.5 |
Total kg | ||
As fed | 9.15 | 10.25 |
DM 3 | 8.24 | 8.22 |
Nutritional characteristics | ||
Energy, Mcal/kg | 1.85 | 1.86 |
Crude protein | 15.33 | 15.30 |
RDP 4 | 10.78 | 11.65 |
SCP 5 | 4.31 | 5.94 |
SCP/RDP | 0.40 | 0.51 |
Sugars | 3.53 | 8.01 |
Starch | 41.4 | 37.00 |
NDF | 28.5 | 26.22 |
Crude fats | 3.03 | 4.05 |
Ca tot | 0.62 | 0.62 |
P tot | 0.55 | 0.55 |
Feed | BFF 1 | Wheat WDGs 2 |
---|---|---|
Nutritional Characteristics | ||
Humidity, % | 10.28 | 63.16 |
DM 3, % | 89.72 | 36.84 |
Crude protein, % DM | 12.17 | 23.43 |
Crude fats, % DM | 10.18 | 2.98 |
Ash, % DM | 2.27 | 9.60 |
Starch, % DM | 49.84 | 18.90 |
Sugars, % DM | 21.28 | 27.84 |
NDF 4, % DM | 0.69 | 12.10 |
ADF 5, % DM | 0.21 | 2.10 |
ADL 6, % DM | 0.09 | 0.81 |
Groups | SEM | p-Value | ||
---|---|---|---|---|
Circular | Traditional | |||
GHG 1, CO2 eq kg | ||||
Average | 0.30 | 2.27 | 0.01 | <0.05 |
P(g) 2 | <0.05 | |||
P(d) | <0.05 | |||
P(g*d) | <0.05 | |||
H2O 3, L | ||||
Average | 2.23 | 144.85 | 0.32 | <0.05 |
P(g) | <0.05 | |||
P(d) | <0.05 | |||
P(g*d) | <0.05 | |||
HE 4, kg | ||||
Average | 0.00 | 1.88 | 0.01 | <0.05 |
P(g) | <0.05 | |||
P(d) | <0.05 | |||
P(g*d) | <0.05 | |||
LU 5, m2 | ||||
Average | 0.00 | 2.37 | 0.01 | <0.05 |
P(g) | <0.05 | |||
P(d) | <0.05 | |||
P(g*d) | <0.05 |
Groups | ||||
---|---|---|---|---|
Parameter | Circular | Traditional | SEM | p-Value |
CCW 1, kg | 285 | 288 | 1.43 | 0.234 |
GHG 2, kg CO2 eq/kg CCW | 0.15 | 1.15 | 0.01 | <0.05 |
H2O 3, L/kg CCW | 1.14 | 73.52 | 0.23 | <0.05 |
HE 4, kg/kg CCW | 0.00 | 0.95 | 0.01 | <0.05 |
LU 5, m2/kg CCW | 0.00 | 1.20 | 0.01 | <0.05 |
Group | SEM | p-Value | ||
---|---|---|---|---|
Circular | Traditional | |||
Weight, kg | ||||
Body Weigh d0 | 335 | 340 | 2.12 | 0.166 |
Body Weight d92 | 427 | 429 | 2.12 | 0.571 |
Body Weight d145 | 481 | 482 | 2.12 | 0.851 |
P(g) 1 | 0.408 | |||
P(d) | <0.05 | |||
P(g*d) | 0.381 | |||
ADG 2, kg/head/d | ||||
ADG0–145 | 1.022 | 0.995 | 0.02 | 0.254 |
ADG0–92 | 0.996 | 0.968 | 0.02 | 0.245 |
ADG92–145 | 1.048 | 1.02 | 0.02 | 0.272 |
P(g) | 0.254 | |||
P(d) | <0.05 | |||
P(g*d) | 0.825 | |||
Feed intake kg DM 3/d | ||||
Intake0–145 | 8.22 | 8.23 | 0.02 | 0.730 |
Intake0–92 | 7.93 | 7.93 | 0.02 | 0.929 |
Intake92–145 | 8.51 | 8.53 | 0.02 | 0.626 |
P(g) | 0.730 | |||
P(d) | <0.05 | |||
P(g*d) | 0.725 | |||
FCR 4 | ||||
FCR0–145 | 8.04 | 8.27 | 0.13 | 0.257 |
FCR0–92 | 7.96 | 8.20 | 0.14 | 0.251 |
FCR92–145 | 8.13 | 8.35 | 0.14 | 0.277 |
P(g) | 0.257 | |||
P(d) | 0.001 | |||
P(g*d) | 0.862 | |||
Acidosis, % (n) | ||||
Acidosis, % (n) | 0.74 (3) | 0.49 (2) | - | 0.648 |
Groups | SEM | p-Value | ||
---|---|---|---|---|
Circular | Traditional | |||
CCW 1, kg | 285.25 | 287.66 | 1.43 | 0.234 |
Yield, % | 59.37 | 59.69 | 0.06 | 0.100 |
SEUROP Classification | ||||
% carcass conformation U (3) | 96.06 | 93.14 | - | 0.192 |
% carcass conformation E (2) | 3.94 | 6.86 | - | 0.192 |
% carcass fatness score 2 | 88.18 | 83.33 | - | 0.162 |
% carcass fatness score 3 | 11.82 | 16.67 | - | 0.162 |
pH 24 h | 5.71 | 5.72 | 0.01 | 0.423 |
Colour | ||||
L2 | 41.59 | 41.97 | 0.35 | 0.443 |
a2 | 17.37 | 16.90 | 0.25 | 0.191 |
b2 | 12.99 | 12.40 | 0.22 | 0.063 |
h2 | 0.64 | 0.63 | 0.01 | 0.475 |
C2 | 21.71 | 20.98 | 0.29 | 0.077 |
Month | November | December | January | February | March | Average | P(g) 1 | P(m) 1 | P(g*m) 1 |
---|---|---|---|---|---|---|---|---|---|
Group | Ash, % | ||||||||
Circular | 69.95 | 67.95 | 70.67 | 70.65 | 71.36 | 69.92 | 0.966 | 0.857 | 0.415 |
Traditional | 70.21 | 70.28 | 70.19 | 69.90 | 68.82 | 69.88 | |||
SEM | 1.33 | 1.33 | 1.33 | 1.33 | 1.33 | 0.59 | |||
p-Value | 0.506 | 0.222 | 0.797 | 0.694 | 0.184 | 0.966 | |||
Crude Protein, % | |||||||||
Circular | 83.54 | 82.77 | 83.25 | 83.16 | 82.41 | 83.02 | 0.852 | 0.849 | 0.796 |
Traditional | 82.80 | 82.78 | 82.71 | 83.46 | 83.01 | 82.95 | |||
SEM | 0.62 | 0.62 | 0.62 | 0.62 | 0.62 | 0.30 | |||
p-Value | 0.400 | 0.989 | 0.540 | 0.733 | 0.493 | 0.852 | |||
Fats, % | |||||||||
Circular | 69.20 | 65.82 | 70.80 | 67.44 | 69.98 | 68.65 | 0.391 | 0.115 | 0.176 |
Traditional | 70.70 | 68.43 | 68.75 | 69.76 | 68.81 | 69.29 | |||
SEM | 1.16 | 1.16 | 1.16 | 1.16 | 1.16 | 0.52 | |||
p-Value | 0.369 | 0.120 | 0.218 | 0.166 | 0.481 | 0.391 | |||
Cellulose, % | |||||||||
Circular | 44.25 | 44.23 | 45.32 | 44.45 | 41.79 | 44.01 | 0.122 | 0.041 | 0.446 |
Traditional | 47.05 | 42.98 | 45.78 | 47.94 | 43.12 | 45.37 | |||
SEM | 1.37 | 1.37 | 1.37 | 1.37 | 1.37 | 0.61 | |||
p-Value | 0.156 | 0.523 | 0.817 | 0.078 | 0.498 | 0.122 | |||
Hemicellulose, % | |||||||||
Circular | 70.61 | 68.62 | 68.00 | 68.18 | 68.93 | 69.45 | 0.081 | 0.142 | 0.376 |
Traditional | 70.19 | 68.37 | 69.25 | 70.88 | 71.10 | 69.96 | |||
SEM | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.40 | |||
p-Value | 0.747 | 0.852 | 0.338 | 0.041 | 0.160 | 0.081 | |||
Starch, % | |||||||||
Circular | 94.99 | 94.12 | 93.85 | 94.10 | 94.50 | 94.31 | 0.206 | 0.474 | 0.818 |
Traditional | 94.80 | 94.68 | 94.51 | 94.60 | 94.61 | 94.64 | |||
SEM | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.18 | |||
p-Value | 0.744 | 0.332 | 0.255 | 0.389 | 0.846 | 0.206 | |||
Sugars + Pectins, % | |||||||||
Circular | 97.38 | 97.13 | 97.20 | 97.01 | 97.10 | 97.17 | <0.05 | 0.3512 | 0.728 |
Traditional | 95.74 | 95.68 | 95.22 | 95.44 | 95.44 | 95.50 | |||
SEM | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.10 | |||
p-Value | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossi, S.; Massa, V.; Giorgino, A.; Rossi, L.; Dell’Anno, M.; Pinotti, L.; Avidano, F.; Compiani, R.; Rossi, C.A.S. Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming. Sustainability 2022, 14, 4908. https://doi.org/10.3390/su14094908
Grossi S, Massa V, Giorgino A, Rossi L, Dell’Anno M, Pinotti L, Avidano F, Compiani R, Rossi CAS. Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming. Sustainability. 2022; 14(9):4908. https://doi.org/10.3390/su14094908
Chicago/Turabian StyleGrossi, Silvia, Valentina Massa, Andrea Giorgino, Luciana Rossi, Matteo Dell’Anno, Luciano Pinotti, Filippo Avidano, Riccardo Compiani, and Carlo Angelo Sgoifo Rossi. 2022. "Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming" Sustainability 14, no. 9: 4908. https://doi.org/10.3390/su14094908