Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas
Abstract
1. Introduction
2. Theoretical Background
“The physical dimensions of urban form may include its size, shape, land uses, configuration and distribution of open space—a composite of a multitude of characteristics, including a city’s transportation system and urban design features. However, its sustainability depends on more abstract issues—environmental (including transport), social and economic”.[44]
2.1. The Performance-Based Approach
2.2. The Typo-Morphological Approach
2.3. The Quantitative Description of the Urban Environment
2.4. The Concept of Density
3. The Conceptual Framework
4. Urban Morphology and Performance
- Investigating how to improve the urban canopy models coupled with mesoscale models to enhance the simulation of the wind speed and air temperature in complex urban environments, i.e., using high-spatial-resolution urban fraction [147]; developing a database for Beijing based on several parameters, i.e., the building height characteristics, the building plan area fraction, the frontal area density, the height-to-width ratio, and the sky view factor, [148]; implementing observational information of the sky view factor [149]; proposing a categorization of the building height based on the fractal dimension [150]; suggesting a formulation for the drag coefficient [127]; corroborating the causality between the accuracy of the parameterized urban morphometry and the reliability of the results of urban boundary layer simulations [151];
- Evaluating the performance of the adopted simulation tools for analyzing the performance of two design scenarios in terms of solar irradiance, wind airflows, building indoor temperatures, and energy demand [128];
- Applying parametric design optimization processes over conventional urban design processes to achieve more sustainable urban environments [135];
- Providing a critical review on the properties influencing energy and airflows in urban neighborhoods [126];
- Stressing the importance of identifying which urban morphology characteristics have the most significant impact on thermal comfort and how to mitigate the urban heat island effect [152].
Main Findings
- The evaluation of the performance, in terms of methods, topics, and indicators.
- The parameterization of the morphology, in terms of scale and parameters.
# | Refs | Authors | Year | Topic | Performance | Method | Tool | Morph. | Scale | Type |
---|---|---|---|---|---|---|---|---|---|---|
1 | [156] | Palme et al. | 2020 | energy | cooling demand | sim. | BES | no | lot | art. |
2 | [157] | Othman and Alshboul | 2020 | microcl. | out. thermal comfort | sim. | Envimet AND Rayman | yes | island | art. |
3 | [158] | Ronchi et al. | 2020 | microcl. | cooling capacity | sim. | InVEST | yes | city | art. |
4 | [159] | Battisti | 2020 | microcl. | out. thermal comfort | sim. | Envimet AND Rayman | no | island | art. |
5 | [160] | Uçlar and Buldurur | 2020 | energy | heating consumption | stat. analysis | - | yes | neighb. | art. |
6 | [131] | Natanian et al. | 2020 | comb.1 | energy performance + out. thermal comfort + solar access | sim. | Rhino + Grasshopper + plugins | yes | neighb. | art. |
7 | [161] | Leng et al. | 2020 | energy | heating consumption | sim. + stat. analysis | EnergyPlus | yes | neighb. | art. |
8 | [162] | Apreda et al. | 2020 | microcl. | air temp. | sim. | Envimet | yes | island | art. |
9 | [137] | He et al. | 2020 | microcl. | urb. ventilation + out. thermal comfort | meas. + sim. | Rayman | yes | neighb. | art. |
10 | [163] | Poon et al. | 2020 | energy | solar energy potential | sim. | Rhino + Grasshopper + plugins | yes | neighb. | art. |
11 | [164] | Liu and Morawska | 2020 | microcl. | surface temp. | sim. | WRF | yes | city | art. |
12 | [89] | Sadeghi et al. | 2020 | indoor | ind. comfort | meas. + sim. | EnergyPlus | no | - | art. |
13 | [138] | Zhao et al. | 2020 | microcl. | urb. ventilation | meas. | - | yes | neighb. | art. |
14 | [165] | Nikoloudakis et al. | 2020 | microcl. | air temp. | mod. + meas. | - | yes | city | art. |
15 | [166] | Yuan et al. | 2020 | microcl. | air temp. | sim. | ANSYS Fluent | yes | neighb. | art. |
16 | [167] | Carpio-Pinedo et al. | 2020 | microcl. | solar access | mod. | - | no | island | art. |
17 | [145] | Hassan et al. | 2020 | microcl. | pollution | sim. | ANSYS Fluent | yes | island | art. |
18 | [168] | Salvati et al. | 2020 | energy | energy demand | sim. | UWG + TRNSYS | yes | neighb. | art. |
19 | [169] | Zonato et al. | 2020 | microcl. | air temp. | mod. + sim. | WRF | yes | city | art. |
20 | [170] | Chokhachian et al. | 2020 | microcl. | air temp. + solar access ind./out. | sim. | Rhino + Grasshopper + plugins | yes | neighb. | art. |
21 | [171] | Yoseph | 2020 | microcl. | ind. comfort | sim. | Revit 2015-Ecotect + Grasshopper + plugins | no | island | book |
22 | [130] | Javanroodi and Nik | 2019 | comb.1 | energy performance | sim. | ANSYS Fluent + EnergyPlus | yes | neighb. | art. |
23 | [172] | Xu et al. | 2019b | microcl. | out. thermal comfort | sim. | OpenFOAM + Rhino + Grasshopper + plugins | yes | neighb. | art. |
24 | [173] | Ghassoun et al. | 2019 | microcl. | pollution | meas. + mod. | - | yes | city | art. |
25 | [174] | Xu et al. | 2019a | microcl. | out. thermal comfort | sim. | Rhino + Grasshopper + plugins | no | neighb. | art. |
26 | [147] | Shen et al. | 2019 | microcl. | wind speed + air temp. + humidity | sim. | WRF | yes | city | art. |
27 | [175] | He et al. | 2019 | microcl. | urb. ventilation | rev. + meth. | - | yes | neighb. | art. |
28 | [176] | Chatterjee et al. | 2019 | microcl. | air temp. | sim. | Envimet | yes | neighb. | art. |
29 | [177] | Salvati et al. | 2019 | microcl. | air temp. | sim. | UWG | yes | neighb. | art. |
30 | [142] | Mei et al. | 2019 | microcl. | pollution | sim. | OpenFOAM | yes | neighb. | art. |
31 | [148] | X. He et al. | 2019 | microcl. | air temp. + wind speed | sim. | WRF | yes | city | art. |
32 | [143] | Peng et al. | 2019 | microcl. | urb. ventilation | sim. | ANSYS Fluent | yes | neighb. | art. |
33 | [88] | Claude et al. | 2019 | indoor | mold growth | sim. | EnergyPlus | yes | building | art. |
34 | [129] | Javanroodi et al. | 2018 | comb.1 | energy performance | sim. | Fluent + Rhino + Grashopper + EnergyPlus | yes | neighb. | art. |
35 | [178] | Li et al. | 2018 | microcl. | CO2 emissions | mod. | - | no | city | art. |
36 | [179] | Amaral et al. | 2018 | energy | energy performance | rev. | - | no | - | rev. |
37 | [87] | Chan and Liu | 2018 | indoor | ind. comfort | survey | - | yes | neighb. | art. |
38 | [180] | Cody et al. | 2018 | energy | energy performance | sim. | IESVE | yes | building | art. |
39 | [149] | de Morais et al. | 2018 | microcl. | wind speed + surf. temp. | sim. | TEB | yes | city | art. |
40 | [181] | Moraitis et al. | 2018 | energy | solar energy potential | mod. | - | yes | nation | art. |
41 | [182] | Costanzo et al. | 2018 | energy | energy performance | sim. | Rhino + Grasshopper + plugins | no | neighb. | art. |
42 | [134] | García-Pérez et al. | 2018 | comb.4 | global warming potential | stat. analysis | - | yes | city | art. |
43 | [183] | Hammerberg et al. | 2018 | microcl. | air temp. | sim. | WRF | yes | city | art. |
44 | [140] | Yuan | 2018 | microcl. | urb. ventilation | sim. | ANSYS Fluent | no | neighb. | book |
45 | [146] | Yuan | 2018b | microcl. | urb. ventilation | sim. | MM5/CALMET | yes | city | book |
46 | [184] | Pili et al. | 2018 | energy | solar energy potential | mod. | GIS | no | city | art. |
47 | [185] | Pacifici et al. | 2017 | microcl. | air/surf. temp. + humidity + illuminance | meas. | - | yes | neighb. | art. |
48 | [186] | Thouron et al. | 2017 | microcl. | pollution | sim. | WRF + POLAIR3D | yes | city | art. |
49 | [187] | Shi et al. | 2017 | energy | form generation | rev. | - | yes | - | rev. |
50 | [188] | Saratsis et al. | 2017 | microcl. | solar access | sim. | UrbanDaylight-DAYSIM | yes | island | art. |
51 | [189] | Palme et al. | 2017 | energy | cooling demand | sim. | UWG + TRNSYS | yes | neighb. | art. |
52 | [150] | Li et al. | 2017 | microcl. | air temp. + wind speed | sim. | WRF | yes | city | art. |
53 | [141] | Wang et al. | 2017 | microcl. | urb. ventilation | sim. | PALM | yes | neighb. | art. |
54 | [190] | Perišić et al. | 2017 | microcl. | pollution | mod. | - | no | city | art. |
55 | [191] | Demuzere et al. | 2017 | energy | energy balance | sim. | ULSMs TERRA URB, CLM, SURFEX and SUEWS | yes | city | art. |
56 | [132] | Braulio-Gonzalo et al. | 2016 | comb.2 | energy performance + ind. comfort | sim. | Design Builder + EnergyPlus | yes | neighb. + city | art. |
57 | [192] | Perišić et al. | 2016 | microcl. | solar access | sim. | Radiance | yes | island | art. |
58 | [193] | Guo et al. | 2016 | microcl. | surface temp. | mod. | - | yes | city | art. |
59 | [194] | Rodríguez Algeciras et al. | 2016 | microcl. | out. thermal comfort | sim. | RayMan | yes | island | art. |
60 | [195] | Taki and Alabid | 2016 | energy | ind. comfort | survey + sim. | EnergyPlus | no | building | book |
61 | [196] | Jurelionis and Bouris | 2016 | energy | energy consumption | sim. | CFD * | yes | neighb. | art. |
62 | [128] | Gros et al. | 2016 | comb.1 | wind speed + surf. temp. + ind. temp. + cooling demand | sim. | EnviBatE + SOLENE-Microclimate + SATURNE | no | neighb. | art. |
63 | [127] | Gutiérrez et al. | 2015 | comb.1 | air temp. + wind speed | sim. | WRF | yes | city | art. |
64 | [126] | Srebric et al. | 2015 | comb.1 | wind speed + energy consumption | rev. | - | yes | - | rev. |
65 | [135] | Taleb and Musleh | 2015 | comb.5 | wind speed + solar irradiation | sim. | CFX + Grasshopper | yes | neighb. | art. |
66 | [197] | Oertel et al. | 2015 | microcl. | out. thermal comfort | meas. + sim. + survey | RayMan Pro | yes | neighb. | art. |
67 | [198] | Sarralde et al. | 2015 | energy | solar energy potential | mod. | GIS | yes | neighb. | art. |
68 | [199] | Pay et al. | 2014 | microcl. | pollution | sim. | CALIOPE Air Quality Forecast System | no | city | art. |
69 | [200] | Bueno et al. | 2014 | microcl. | air temp. | sim. | UWG | yes | neighb. | art. |
70 | [201] | Hofman et al. | 2014 | microcl. | pollution | meas. + sim. | AURORA + MIMOSA4 | yes | city | art. |
71 | [125] | Zhun Min Adrian et al. | 2013 | comb.1 | solar radiation + energy consumption | meas. + sim. | IESVE | yes | neighb. | art. |
72 | [151] | Chan et al. | 2013 | microcl. | wind speed + TKE | sim. | MM5 | yes | city | art. |
73 | [152] | Pattacini | 2012 | microcl. | wind speed | sim. | Envimet | yes | neighb. | art. |
74 | [144] | Leung et al. | 2012 | microcl. | pollution | meas. + sim. | Fluent | yes | island | art. |
75 | [202] | Gros et al. | 2011 | microcl. | solar radiation | rev. | - | yes | - | rev. |
76 | [136] | Ng et al. | 2011 | microcl. | urb. ventilation | sim. | MM5/CALMET | yes | city | art. |
77 | [133] | Vahabzadeh Manesh et al. | 2011 | comb.3 | energy consumption | sim. | * | yes | neighb. | book-rev. |
78 | [203] | Salat | 2009 | energy | heating consumption | sim. | APUR | yes | neighb. | art. |
79 | [204] | Al-Maiyah and Elkadi | 2007 | microcl. | solar access | sim. | TOWNSCOPE | no | island | art. |
5. Urban Ventilation
“The outdoor temperature, wind speed and solar radiation to which an individual building is exposed is not the regional “synoptic” climate, but the local micro-climate as modified by the “structure” of the city, mainly of the neighborhood where the building is located. … However, special details of the individual buildings can have significant impact on the exposure conditions and comfort of pedestrians in the streets. … the actual wind speed and turbulence in the streets, can vary significantly over very short distances, depending on some design details of the building along the street”.[29]
5.1. Definition
5.2. Morphological Parameters
5.3. Investigation Methods
5.4. Performance Indicators
5.5. Main Findings
6. Urban Ventilation Performance Assessment Methodology
- Checking the feature topologies on point, line, and polygon layers automatically by setting specific rules;
- Cleaning topology errors automatically;
- Adding missing details and features;
- Extracting information from raw data;
- Combining information for calculating MPs employing algorithms and scripts.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Eurpoean Commission. Making Our Cities Attractive How the EU Contributes to Improving the Urban Environment; Publications Office of the European Union: Luxembourg, 2010; ISBN 9789279162985. [Google Scholar]
- EEA. Air Quality in Europe—2020 Report; EEA: Copenhagen, Denmark, 2020; ISBN 978-92-9480-292-7. [Google Scholar]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2019; ISBN 9789211483161. [Google Scholar]
- World Development Indicators|DataBank. Available online: https://databank.worldbank.org/reports.aspx?source=world-development-indicators (accessed on 2 April 2021).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: Manhattan, NY, USA, 2015. [Google Scholar]
- EEA. Air Quality in Europe—2017 Report; EEA: Copenhagen, Denmark, 2017; ISBN 9789292139216. [Google Scholar]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 Report of The Lancet Countdown on Health and Climate Change: Responding to Converging Crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- EASAC. The Imperative of Climate Action to Protect Human Health in Europe. Opportunities for Adaptation to Reduce the Impacts, and for Mitigation to Capitalise on the Benefits of Decarbonisation; EASAC: Halle, Germany, 2019; ISBN 9783804740112. [Google Scholar]
- Heat and Health—European Climate and Health Observatory. Available online: https://climate-adapt.eea.europa.eu/observatory/evidence/health-effects/heat-and-health/heat-and-health (accessed on 5 January 2021).
- United Nations. World Urbanization Prospects: The 2014 Revision; United Nations: New York, NY, USA, 2014; ISBN 9789211515176. [Google Scholar]
- Oke, T.R.; Maxwell, G.B. Urban Heat Island Dynamics in Montreal and Vancouver. Atmos. Environ. 1975, 9, 191–200. [Google Scholar] [CrossRef]
- Ng, E. Policies and Technical Guidelines for Urban Planning of High-Density Cities—Air Ventilation Assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Li, Y.; Buccolieri, R.; Sandberg, M.; Di Sabatino, S. On the Contribution of Mean Flow and Turbulence to City Breathability: The Case of Long Streets with Tall Buildings. Sci. Total Environ. 2012, 416, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Blocken, B. Computational Fluid Dynamics for Urban Physics: Importance, Scales, Possibilities, Limitations and Ten Tips and Tricks towards Accurate and Reliable Simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A Review on the CFD Analysis of Urban Microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- D’ippoliti, D.; Michelozzi, P.; Marino, C.; De’donato, F.; Menne, B.; Katsouyanni, K.; Kirchmayer, U.; Analitis, A.; Medina-Ramón, M.; Paldy, A.; et al. The Impact of Heat Waves on Mortality in 9 European Cities: Results from the EuroHEAT Project. Environ. Health 2010, 9, 37. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef]
- Seaton, A.; Godden, D.; MacNee, W.; Donaldson, K. Particulate Air Pollution and Acute Health Effects. Lancet 1995, 345, 176–178. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Cárdenas Rodríguez, M.; Dupont-Courtade, L.; Oueslati, W. Air Pollution and Urban Structure Linkages: Evidence from European Cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- WHO. WHO Expert Consultation: Available Evidence for the Future Update of the WHO Global Air Quality Guidelines (AQGs). Meeting Report. Bonn, Germany, 29 September–1 October 2015. Available online: https://www.euro.who.int/__data/assets/pdf_file/0013/301720/Evidence-future-update-AQGs-mtg-report-Bonn-sept-oct-15.pdf (accessed on 10 December 2021).
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 Report of the Lancet Countdown on Health and Climate Change: Shaping the Health of Nations for Centuries to Come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef]
- Mitchell, D.; Kornhuber, K.; Huntingford, C.; Uhe, P. The Day the 2003 European Heatwave Record Was Broken. Lancet Planet. Health 2019, 3, e290–e292. [Google Scholar] [CrossRef]
- Ramponi, R.; Blocken, B.; de Coo, L.B.; Janssen, W.D. CFD Simulation of Outdoor Ventilation of Generic Urban Configurations with Different Urban Densities and Equal and Unequal Street Widths. Build. Environ. 2015, 92, 152–166. [Google Scholar] [CrossRef]
- Yim, S.H.L.; Fung, J.C.H.; Ng, E.Y.Y. An Assessment Indicator for Air Ventilation and Pollutant Dispersion Potential in an Urban Canopy with Complex Natural Terrain and Significant Wind Variations. Atmos. Environ. 2014, 94, 297–306. [Google Scholar] [CrossRef]
- Givoni, B. Urban Design in Different Climates; World Meteorological Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Stathopoulos, T. Pedestrian Level Winds and Outdoor Human Comfort. J. Wind Eng. Ind. Aerodyn. 2006, 94, 769–780. [Google Scholar] [CrossRef]
- Mochida, A.; Lun, I.Y.F. Prediction of Wind Environment and Thermal Comfort at Pedestrian Level in Urban Area. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1498–1527. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T. CFD Simulation of Pedestrian-Level Wind Conditions around Buildings: Past Achievements and Prospects. J. Wind Eng. Ind. Aerodyn. J. 2013, 121, 138–145. [Google Scholar] [CrossRef]
- van Druenen, T.; van Hooff, T.; Montazeri, H.; Blocken, B. CFD Evaluation of Building Geometry Modifications to Reduce Pedestrian-Level Wind Speed. Build. Environ. 2019, 163, 106293. [Google Scholar] [CrossRef]
- Blocken, B.; Carmeliet, J. Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples. J. Therm. Envel. Build. Sci. 2004, 28, 107–159. [Google Scholar] [CrossRef]
- Ratti, C.; Di Sabatino, S.; Britter, R. Urban Texture Analysis with Image Processing Techniques: Winds and Dispersion. Theor. Appl. Clim. 2006, 84, 77–90. [Google Scholar] [CrossRef]
- Pelorosso, R. Modeling and Urban Planning: A Systematic Review of Performance-Based Approaches. Sustain. Cities Soc. 2020, 52, 101867. [Google Scholar] [CrossRef]
- NEN. Netherlands Normalisation Institute Wind Comfort and Wind Danger in the Built Environment; NEN: Delft, The Netherlands, 2006. [Google Scholar]
- Ratcliff, M.A.; Peterka, J.A. Comparison of Pedestrian Wind Acceptability Criteria. J. Wind Eng. Ind. Aerodyn. 1990, 36, 791–800. [Google Scholar] [CrossRef]
- Murakami, S.; Uehara, K.; Komine, H. Amplification of Wind Speed at Ground Level Due to Construction of High-Rise Building in Urban Area. J. Wind Eng. Ind. Aerodyn. 1979, 4, 343–370. [Google Scholar] [CrossRef]
- Sanz-Andres, A.; Cuerva, A. Pedestrian Wind Comfort: Feasibility Study of Criteria Homogenisation. J. Wind Eng. Ind. Aerodyn. 2006, 94, 799–813. [Google Scholar] [CrossRef]
- Blocken, B.; Janssen, W.D.; van Hooff, T. CFD Simulation for Pedestrian Wind Comfort and Wind Safety in Urban Areas: General Decision Framework and Case Study for the Eindhoven University Campus. Environ. Model. Softw. 2012, 30, 15–34. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; van Beeck, J.P.A.J. Pedestrian-Level Wind Conditions around Buildings: Review of Wind-Tunnel and CFD Techniques and Their Accuracy for Wind Comfort Assessment. Build. Environ. 2016, 100, 50–81. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Kwok, K.; Tse, K.T.; Lee, T.C.; Ai, Z.; Liu, J.; Niu, J. New Criteria for Assessing Low Wind Environment at Pedestrian Level in Hong Kong. Build. Environ. 2017, 123, 23–36. [Google Scholar] [CrossRef]
- Jenks, M.; Jones, C. Issues and Concepts. In Dimensions of the Sustainable City; Jenks, M., Jones, C., Eds.; Springer Science+Business Media: Berlin, Germany, 2010; pp. 1–20. ISBN 978-1-4020-8646-5. [Google Scholar]
- Ripoll Bosch, R.; Giampietro, M. Report on EU Socio-Ecological systems. MAGIC (H2020–GA 689669) Project Deliverable 4.2, Revision. 2019. Available online: https://magic-nexus.eu/documents/d42-report-eu-socio-ecological-systems (accessed on 16 January 2020).
- Neumann, L.A.; Markow, M.J. Performance-Based Planning and Asset Management. Public Work. Manag. Policy 2004, 8, 156–161. [Google Scholar] [CrossRef]
- Ronchi, S.; Arcidiacono, A.; Pogliani, L. Integrating Green Infrastructure into Spatial Planning Regulations to Improve the Performance of Urban Ecosystems. Insights from an Italian Case Study. Sustain. Cities Soc. 2020, 53, 101907. [Google Scholar] [CrossRef]
- Kendig, L. Performance Zoning; Planners Press (American Planning Association): Chicago, IL, USA, 1980; ISBN 978-0918286185. [Google Scholar]
- Porter, D.R.; Phillips, P.L.; Lassar, T.J. Flexible Zoning: How It Works; Urban Land Institute: Washington, DC, USA, 1988. [Google Scholar]
- Frew, T.; Baker, D.; Donehue, P. Performance Based Planning in Queensland: A Case of Unintended Plan-Making Outcomes. Land Use Policy 2016, 50, 239–251. [Google Scholar] [CrossRef]
- Baker, D.C.; Sipe, N.G.; Gleeson, B.J. Performance-Based Planning. Perspectives from the United States, Australia, and New Zealand. J. Plan. Educ. Res. 2006, 25, 396–409. [Google Scholar] [CrossRef]
- Botequilha-Leitão, A.; Díaz-Varela, E.R. Performance Based Planning of Complex Urban Social-Ecological Systems: The Quest for Sustainability through the Promotion of Resilience. Sustain. Cities Soc. 2020, 56, 102089. [Google Scholar] [CrossRef]
- Menner, W.A. Introduction to Modeling and Simulation Techniques. 1995. Available online: https://www.jhuapl.edu/TechDigest/Archives (accessed on 16 January 2020).
- Maria, A. Introduction to Modeling and Simulation. In Proceedings of the Winter Simulation Conference, Atlanta, GA, USA, 7–10 December 1997. [Google Scholar] [CrossRef]
- Conzen, M.R.G. Alnwick, Northumberland: A Study in Town-Plan Analysis; Wiley on behalf of The Royal Geographical Society (with the Institute of British Geographers): London, UK, 1960. [Google Scholar]
- Martin, L.; March, L. Urban Space and Structures; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
- Moudon, A.V. Getting to Know the Building Landscape: Typomorphology. Type Ordering Space 1994, 16, 289–311. [Google Scholar]
- Moudon, A.V. Urban Morphology as an Emerging Interdisciplinary Field. Urban Morphol. 1997, 1, 3–10. [Google Scholar]
- Steemers, K.; Ramos, M.; Sinou, M. Urban Morphology. In Design Open Spaces in the Urban Environment: A Bioclimatic Approach; Centre for Renewable Energy Sources: Athens, Greece, 2004; pp. 17–22. ISBN 9789896540821. [Google Scholar]
- Berghauser Pont, M.; Haupt, P. Space, Density and Urban Form; Technische Universiteit Delft: Delft, The Netherlands, 2009; Volume 29. [Google Scholar]
- Churchman, A. Disentangling the Concept of Density. J. Plan. Lit. 1999, 13, 389–411. [Google Scholar] [CrossRef]
- Alexander, E.R. Density Measures: A Review and Analysis. J. Archit. Plann. Res. 1993, 10, 181–203. [Google Scholar] [CrossRef]
- Lozano, E. Density in Communities, or the Most Important Factor in Building Urbanity. In The Urban Design Reader; Routledge: London, UK, 2012; pp. 399–414. ISBN 9781136205668. [Google Scholar]
- Palusci, O.; Monti, P.; Cecere, C.; Montazeri, H.; Blocken, B. Impact of Morphological Parameters on Urban Ventilation in Compact Cities: The Case of the Tuscolano-Don Bosco District in Rome. Sci. Total Environ. 2021, 807, 150490. [Google Scholar] [CrossRef]
- Golany, G.S. Urban Design Morphology and Thermal Performance. Atmos. Environ. 1996, 30, 455–465. [Google Scholar] [CrossRef]
- Jenks, M.; Burton, E.; Williams, K. The Compact City A Sustainable Urban Form; Oxford Brookes University: Oxford, UK, 1996; ISBN 0203362373. [Google Scholar]
- Reale, L. La Città Compatta; Gangemi, Ed: Roma, Italy, 2012; ISBN 978-88-492-2322-4. [Google Scholar]
- Li, C. GIS for Urban Energy Analysis. In Comprehensive Geographic Information Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 187–195. [Google Scholar]
- Yuan, C.; Ren, C.; Ng, E. GIS-Based Surface Roughness Evaluation in the Urban Planning System to Improve the Wind Environment—A Study in Wuhan, China. Urban Clim. 2014, 10, 585–593. [Google Scholar] [CrossRef]
- Morano, P.; Tajani, F.; Locurcio, M. GIS Application and Econometric Analysis for the Verification of the Financial Feasibility of Roof-Top Wind Turbines in the City of Bari (Italy). Renew. Sustain. Energy Rev. 2017, 70, 999–1010. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.; Ng, E. A Study of the “Wall Effect” Caused by Proliferation of High-Rise Buildings Using GIS Techniques. Landsc. Urban Plan. 2011, 102, 245–253. [Google Scholar] [CrossRef]
- Scopus–Document Search. Available online: https://www.scopus.com (accessed on 2 July 2021).
- Rosser, J.F.; Boyd, D.S.; Long, G.; Zakhary, S.; Mao, Y.; Robinson, D. Predicting Residential Building Age from Map Data. Comput. Environ. Urban Syst. 2019, 73, 56–67. [Google Scholar] [CrossRef]
- Simon, H.; Sinsel, T.; Bruse, M. Introduction of Fractal-Based Tree Digitalization and Accurate in-Canopy Radiation Transfer Modelling to the Microclimate Model ENVI-Met. Forests 2020, 11, 869. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, S. Variations of the Treescape in Relation to Urban Development in a Chinese City: The Case of Nanjing. Prof. Geogr. 2003, 55, 70–82. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Avelar, S.; Tavares-Corrêa, C.; Zah, R. Deriving Fine-Scale Socioeconomic Information of Urban Areas Using Very High-Resolution Satellite Imagery. Int. J. Remote Sens. 2011, 32, 6437–6456. [Google Scholar] [CrossRef]
- Delgado-García, J.B.; de Quevedo-Puente, E.; Blanco-Mazagatos, V. The Impact of City Reputation on City Performance. Reg. Stud. 2018, 52, 1098–1110. [Google Scholar] [CrossRef]
- Saraiva, M.; Sá Marques, T.; Pinho, P. Vacant Shops in a Crisis Period–A Morphological Analysis in Portuguese Medium-Sized Cities. Plan. Pract. Res. 2019, 34, 255–287. [Google Scholar] [CrossRef]
- Thai, H.M.H.; Stevens, Q.; Rogers, J. The Influence of Organic Urban Morphologies on Opportunities for Home-Based Businesses within Inner-City Districts in Hanoi, Vietnam. J. Urban Des. 2019, 24, 926–946. [Google Scholar] [CrossRef]
- Meng, Y.; Xing, H. Exploring the Relationship between Landscape Characteristics and Urban Vibrancy: A Case Study Using Morphology and Review Data. Cities 2019, 95, 13. [Google Scholar] [CrossRef]
- de Holanda, F. Inserting Urbanity in a Modern Environment; Springer International Publishing: Cham, Switzerland, 2018; ISBN 9783319761268. [Google Scholar]
- Lang, W.; Chen, T.; Chan, E.H.W.; Yung, E.H.K.; Lee, T.C.F. Understanding Livable Dense Urban Form for Shaping the Landscape of Community Facilities in Hong Kong Using Fine-Scale Measurements. Cities 2019, 84, 34–45. [Google Scholar] [CrossRef]
- Marrone, P.; Orsini, F.; Asdrubali, F.; Guattari, C. Environmental Performance of Universities: Proposal for Implementing Campus Urban Morphology as an Evaluation Parameter in Green Metric. Sustain. Cities Soc. 2018, 42, 226–239. [Google Scholar] [CrossRef]
- Kotharkar, R.; Pallapu, A.V.; Bahadure, P. Urban Cluster-Based Sustainability Assessment of an Indian City: Case of Nagpur. J. Urban Plan. Dev. 2019, 145, 17. [Google Scholar] [CrossRef]
- Tadi, M.; Zadeh, M.H.; Biraghi, C.A. The Integrated Modification Methodology. In Environmental Performance and Social Inclusion in Informal Settlements; Masera, G., Tadi, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–37. ISBN 9783030443528. [Google Scholar]
- Fischer, K.; Hiermaier, S.; Riedel, W.; Häring, I. Morphology Dependent Assessment of Resilience for Urban Areas. Sustainablity 2018, 10, 1800. [Google Scholar] [CrossRef]
- Chan, I.Y.S.; Liu, A.M.M. Effects of Neighborhood Building Density, Height, Greenspace, and Cleanliness on Indoor Environment and Health of Building Occupants. Build. Environ. 2018, 145, 213–222. [Google Scholar] [CrossRef]
- Claude, S.; Ginestet, S.; Bonhomme, M.; Escadeillas, G.; Taylor, J.; Marincioni, V.; Korolija, I.; Altamirano, H. Evaluating Retrofit Options in a Historical City Center: Relevance of Bio-Based Insulation and the Need to Consider Complex Urban Form in Decision-Making. Energy Build. 2019, 182, 196–204. [Google Scholar] [CrossRef]
- Sadeghi, M.; Wood, G.; Samali, B.; de Dear, R. Effects of Urban Context on the Indoor Thermal Comfort Performance of Windcatchers in a Residential Setting. Energy Build. 2020, 219, 110010. [Google Scholar] [CrossRef]
- Adolphe, L. A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities. Environ. Plan. B Plan. Des. 2001, 28, 183–200. [Google Scholar] [CrossRef]
- Ye, Y.; Van Nes, A. Quantitative Tools in Urban Morphology: Combining Space Syntax, Spacematrix and Mixed-Use Index in a GIS Framework. Urban Morphol. 2014, 18, 97–118. [Google Scholar]
- Berghauser Pont, M. An Analytical Approach to Urban Form; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; ISBN 9783319761268. [Google Scholar]
- Steiniger, S.; Lange, T.; Burghardt, D.; Weibel, R. An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques. Trans. GIS 2008, 12, 31–59. [Google Scholar] [CrossRef]
- Bechtel, B.; Daneke, C. Classification of Local Climate Zones Based on Multiple Earth Observation Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1191–1202. [Google Scholar] [CrossRef]
- Serna, A.; Marcotegui, B. Detection, Segmentation and Classification of 3D Urban Objects Using Mathematical Morphology and Supervised Learning. ISPRS J. Photogramm. Remote Sens. 2014, 93, 243–255. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, X.; Wen, D.; Li, J. Urban Building Density Estimation From High-Resolution Imagery Using Multiple Features and Support Vector Regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3265–3280. [Google Scholar] [CrossRef]
- Tian, D.; Wang, Y.; Wang, Z.; Wang, F.; Gao, H. Long Integral Time Continuous Panorama Scanning Imaging Based on Bilateral Control with Image Motion Compensation. Remote Sens. 2019, 11, 1924. [Google Scholar] [CrossRef]
- Biljecki, F.; Ledoux, H.; Stoter, J. Generating 3D City Models without Elevation Data. Comput. Environ. Urban Syst. 2017, 64, 1–18. [Google Scholar] [CrossRef]
- Salvati, L. The “niche” City: A Multifactor Spatial Approach to Identify Local-Scale Dimensions of Urban Complexity. Ecol. Indic. 2018, 94, 62–73. [Google Scholar] [CrossRef]
- Noyman, A.; Doorley, R.; Xiong, Z.; Alonso, L.; Grignard, A.; Larson, K. Reversed Urbanism: Inferring Urban Performance through Behavioral Patterns in Temporal Telecom Data. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1480–1498. [Google Scholar] [CrossRef]
- Berghauser Pont, M.; Stavroulaki, G.; Marcus, L. Development of Urban Types Based on Network Centrality, Built Density and Their Impact on Pedestrian Movement. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1549–1564. [Google Scholar] [CrossRef]
- Peimani, N.; Kamalipour, H. Access and Forms of Urbanity in Public Space: Transit Urban Design beyond the Global North. Sustainablity 2020, 12, 3495. [Google Scholar] [CrossRef]
- Guan, C.H.; Rowe, P.G. The Concept of Urban Intensity and China’s Townization Policy: Cases from Zhejiang Province. Cities 2016, 55, 22–41. [Google Scholar] [CrossRef]
- Qiang, Y.; Xu, J.; Zhang, G. The Shapes of US Cities: Revisiting the Classic Population Density Functions Using Crowdsourced Geospatial Data. Urban Stud. 2020, 57, 2147–2162. [Google Scholar] [CrossRef]
- Yue, W.; Wang, T.; Liu, Y.; Zhang, Q.; Ye, X. Mismatch of Morphological and Functional Polycentricity in Chinese Cities: An Evidence from Land Development and Functional Linkage. Land Use Policy 2019, 88, 10. [Google Scholar] [CrossRef]
- Sun, B.; Li, W.; Zhang, Z.; Zhang, T. Is Polycentricity a Promising Tool to Reduce Regional Economic Disparities? Evidence from China’s Prefectural Regions. Landsc. Urban Plan. 2019, 192, 11. [Google Scholar] [CrossRef]
- Thinh, N.X.; Arlt, G.; Heber, B.; Hennersdorf, J.; Lehmann, I. Evaluation of Urban Land-Use Structures with a View to Sustainable Development. Environ. Impact Assess. Rev. 2002, 22, 475–492. [Google Scholar] [CrossRef]
- Meyer, W.B. The Other Burgess Model. Urban Geogr. 2000, 21, 261–270. [Google Scholar] [CrossRef]
- Hadjri, K. Appropriate Urban Design Approaches for Algeria Achievable with the No-Fines Method. Urban Des. Int. 1997, 2, 109–122. [Google Scholar] [CrossRef]
- Siksna, A. The Effects of Block Size and Form in North American and Australian City Centres. Urban Morphol. 1997, 1, 19–33. [Google Scholar]
- Webster, C.J.; Wu, F. Regulation, Land-Use Mix, and Urban Performance. Part 1: Theory. Environ. Plan. A 1999, 31, 1433–1442. [Google Scholar] [CrossRef]
- Filion, P.; Hammond, K. Neighbourhood Land Use and Performance: The Evolution of Neighbourhood Morphology over the 20th Century. Environ. Plan. B Plan. Des. 2003, 30, 271–296. [Google Scholar] [CrossRef]
- Wheeler, S.M. The Evolution of Urban Form in Portland and Toronto: Implications for Sustainability Planning. Local Environ. 2003, 8, 317–336. [Google Scholar] [CrossRef]
- Kombe, W.J. Land Use Dynamics in Peri-Urban Areas and Their Implications on the Urban Growth and Form: The Case of Dar Es Salaam, Tanzania. Habitat Int. 2005, 29, 113–135. [Google Scholar] [CrossRef]
- Banai, R.; Rapino, M.A. Urban Theory since a Theory of Good City Form (1981)—A Progress Review. J. Urban. 2009, 2, 259–276. [Google Scholar] [CrossRef]
- Brzenczek, K.; Wiegandt, C.C. Peculiarities in the Visual Appearance of German Cities—About Locally Specific Routines and Practices in Urban Design Related Governance. Erdkunde 2009, 63, 245–255. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yu, L. A Systematic Sensitivity Analysis of Constrained Cellular Automata Model for Urban Growth Simulation Based on Different Transition Rules. Int. J. Geogr. Inf. Sci. 2014, 28, 1317–1335. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M.; Serra, P. Unraveling Latent Dimensions of the Urban Mosaic: A Multi-Criteria Spatial Approach to Metropolitan Transformations. Environ. Plan. A 2018, 50, 93–110. [Google Scholar] [CrossRef]
- Alobaydi, D.; Al-Mosawe, H.; Lateef, I.M.; Albayati, A.H. Impact of Urban Morphological Changes on Traffic Performance of Jadriyah Intersection. Cogent Eng. 2020, 7, 1772946. [Google Scholar] [CrossRef]
- Wygonik, E.; Goodchild, A.V. Urban Form and Last-Mile Goods Movement: Factors Affecting Vehicle Miles Travelled and Emissions. Transp. Res. Part D Transp. Environ. 2018, 61, 217–229. [Google Scholar] [CrossRef]
- Dovey, K.; Woodcock, I.; Pike, L. Isochrone Mapping of Urban Transport: Car-Dependency, Mode-Choice and Design Research. Plan. Pract. Res. 2017, 32, 402–416. [Google Scholar] [CrossRef]
- Kozak, D.; Henderson, H.; de Castro Mazarro, A.; Rotbart, D.; Aradas, R. Blue-Green Infrastructure (BGI) in Dense Urban Watersheds. The Case of the Medrano Stream Basin (MSB) in Buenos Aires. Sustainability 2020, 12, 2163. [Google Scholar] [CrossRef]
- Maretto, M. Teaching Urban Morphology in a Sustainable Perspective; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Swaid, B.; Bilotta, E.; Pantano, P.; Lucente, R. Emergence Nonlinear Multifractal Architecture by Hypervolume Estimation Algorithm for Evolutionary Multi-Criteria Optimisation. Int. J. Parallel Emergent Distrib. Syst. 2017, 32, S101–S113. [Google Scholar] [CrossRef]
- Zhun Min Adrian, C.; Nyuk Hien, W.; Marcel, I.; Steve Kardinal, J. Predicting the Envelope Performance of Commercial Office Buildings in Singapore. Energy Build. 2013, 66, 66–76. [Google Scholar] [CrossRef]
- Srebric, J.; Heidarinejad, M.; Liu, J. Building Neighborhood Emerging Properties and Their Impacts on Multi-Scale Modeling of Building Energy and Airflows. Build. Environ. 2015, 91, 246–262. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Martilli, A.; Santiago, J.L.; González, J.E. A Mechanical Drag Coefficient Formulation and Urban Canopy Parameter Assimilation Technique for Complex Urban Environments. Bound.-Layer Meteorol. 2015, 157, 333–341. [Google Scholar] [CrossRef]
- Gros, A.; Bozonnet, E.; Inard, C.; Musy, M. Simulation Tools to Assess Microclimate and Building Energy—A Case Study on the Design of a New District. Energy Build. 2016, 114, 112–122. [Google Scholar] [CrossRef]
- Javanroodi, K.; Mahdavinejad, M.; Nik, V.M. Impacts of Urban Morphology on Reducing Cooling Load and Increasing Ventilation Potential in Hot-Arid Climate. Appl. Energy 2018, 231, 714–746. [Google Scholar] [CrossRef]
- Javanroodi, K.; Nik, V.M. Impacts of Microclimate Conditions on the Energy Performance of Buildings in Urban Areas. Buildings 2019, 9, 189. [Google Scholar] [CrossRef]
- Natanian, J.; Kastner, P.; Dogan, T.; Auer, T. From Energy Performative to Livable Mediterranean Cities: An Annual Outdoor Thermal Comfort and Energy Balance Cross-Climatic Typological Study. Energy Build. 2020, 224, 110283. [Google Scholar] [CrossRef]
- Braulio-Gonzalo, M.; Bovea, M.D.; Ruá, M.J.; Juan, P. A Methodology for Predicting the Energy Performance and Indoor Thermal Comfort of Residential Stocks on the Neighbourhood and City Scales. A Case Study in Spain. J. Clean. Prod. 2016, 139, 646–665. [Google Scholar] [CrossRef]
- Vahabzadeh Manesh, S.; Tadi, M.; Zanni, F. Integrated Sustainable Urban Design: Neighbourhood Design Proceeded by Sustainable Urban Morphology Emergence. WIT Trans. Ecol. Environ. 2011, 155, 631–642. [Google Scholar] [CrossRef]
- García-Pérez, S.; Sierra-Pérez, J.; Boschmonart-Rives, J. Environmental Assessment at the Urban Level Combining LCA-GIS Methodologies: A Case Study of Energy Retrofits in the Barcelona Metropolitan Area. Build. Environ. 2018, 134, 191–204. [Google Scholar] [CrossRef]
- Taleb, H.; Musleh, M.A. Applying Urban Parametric Design Optimisation Processes to a Hot Climate: Case Study of the UAE. Sustain. Cities Soc. 2015, 14, 236–253. [Google Scholar] [CrossRef]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C.H. Improving the Wind Environment in High-Density Cities by Understanding Urban Morphology and Surface Roughness: A Study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef]
- He, B.J.; Ding, L.; Prasad, D. Relationships among Local-Scale Urban Morphology, Urban Ventilation, Urban Heat Island and Outdoor Thermal Comfort under Sea Breeze Influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, L.; Li, L.; Wang, H.; He, B.-J. Local Climate Zone Classification Scheme Can Also Indicate Local-Scale Urban Ventilation Performance: An Evidence-Based Study. Atmosphere 2020, 11, 776. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Yuan, C. Natural Ventilation Modeling and Analysis for Climate-Sensitive Architecture Design; Springer: Singapore, 2018; pp. 101–114. [Google Scholar] [CrossRef]
- Wang, W.; Ng, E.; Yuan, C.; Raasch, S. Large-Eddy Simulations of Ventilation for Thermal Comfort—A Parametric Study of Generic Urban Configurations with Perpendicular Approaching Winds. Urban Clim. 2017, 20, 202–227. [Google Scholar] [CrossRef]
- Mei, S.-J.; Hu, J.-T.; Liu, D.; Zhao, F.-Y.; Li, Y.; Wang, H.-Q. Airborne Pollutant Dilution inside the Deep Street Canyons Subjecting to Thermal Buoyancy Driven Flows: Effects of Representative Urban Skylines. Build. Environ. 2019, 149, 592–606. [Google Scholar] [CrossRef]
- Peng, Y.; Gao, Z.; Buccolieri, R.; Ding, W. An Investigation of the Quantitative Correlation between Urban Morphology Parameters and Outdoor Ventilation Efficiency Indices. Atmosphere 2019, 10, 33. [Google Scholar] [CrossRef]
- Leung, K.K.; Liu, C.-H.; Wong, C.C.C.; Lo, J.C.Y.; Ng, G.C.T. On the Study of Ventilation and Pollutant Removal over Idealized Two-Dimensional Urban Street Canyons. Build. Simul. 2012, 5, 359–369. [Google Scholar] [CrossRef]
- Hassan, A.M.; ELMokadem, A.A.; Megahed, N.A.; Abo Eleinen, O.M. Urban Morphology as a Passive Strategy in Promoting Outdoor Air Quality. J. Build. Eng. 2020, 29, 101204. [Google Scholar] [CrossRef]
- Yuan, C. Empirical Morphological Model to Evaluate Urban Wind Permeability in High-Density Cities; Springer: Singapore, 2018; pp. 19–42. [Google Scholar] [CrossRef]
- Shen, C.; Chen, X.; Dai, W.; Li, X.; Wu, J.; Fan, Q.; Wang, X.; Zhu, L.; Chan, P.; Hang, J.; et al. Impacts of High-Resolution Urban Canopy Parameters within the WRF Model on Dynamical and Thermal Fields over Guangzhou, China. J. Appl. Meteorol. Climatol. 2019, 58, 1155–1176. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Wang, X.; Chen, L.; Yu, B.; Zhang, Y.; Miao, S. High-Resolution Dataset of Urban Canopy Parameters for Beijing and Its Application to the Integrated WRF/Urban Modelling System. J. Clean. Prod. 2019, 208, 373–383. [Google Scholar] [CrossRef]
- de Morais, M.V.B.; de Freitas, E.D.; Marciotto, E.R.; Guerrero, V.V.U.; Martins, L.D.; Martins, J.A. Implementation of Observed Sky-View Factor in a Mesoscale Model for Sensitivity Studies of the Urban Meteorology. Sustainability 2018, 10, 2183. [Google Scholar] [CrossRef]
- Li, Y.; Miao, S.; Chen, F.; Liu, Y. Introducing and Evaluating a New Building-Height Categorization Based on the Fractal Dimension into the Coupled WRF/Urban Model. Int. J. Climatol. 2017, 37, 3111–3122. [Google Scholar] [CrossRef]
- Chan, A.; Fung, J.C.H.; Lau, A.K.H. Influence of Urban Morphometric Modification on Regional Boundary-Layer Dynamics. J. Geophys. Res. Atmos. 2013, 118, 2729–2747. [Google Scholar] [CrossRef]
- Pattacini, L. Climate and Urban Form. Urban Des. Int. 2012, 17, 106–114. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy Consumption and Urban Texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Sanaieian, H.; Tenpierik, M.; Van Den Linden, K.; Mehdizadeh Seraj, F.; Mofidi Shemrani, S.M. Review of the Impact of Urban Block Form on Thermal Performance, Solar Access and Ventilation. Renew. Sustain. Energy Rev. 2014, 38, 551–560. [Google Scholar] [CrossRef]
- Ratti, C.; Richens, P. Raster Analysis of Urban Form. Environ. Plan. B Plan. Des. 2004, 31, 297–309. [Google Scholar] [CrossRef]
- Palme, M.; Privitera, R.; La Rosa, D. The Shading Effects of Green Infrastructure in Private Residential Areas: Building Performance Simulation to Support Urban Planning. Energy Build. 2020, 229, 110531. [Google Scholar] [CrossRef]
- Othman, H.A.S.; Alshboul, A.A. The Role of Urban Morphology on Outdoor Thermal Comfort: The Case of Al-Sharq City—Az Zarqa. Urban Clim. 2020, 34, 100706. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A. Which Urban Design Parameters Provide Climate-Proof Cities? An Application of the Urban Cooling InVEST Model in the City of Milan Comparing Historical Planning Morphologies. Sustain. Cities Soc. 2020, 63, 102459. [Google Scholar] [CrossRef]
- Battisti, A. Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces. Energies 2020, 13, 5819. [Google Scholar] [CrossRef]
- Uçlar, S.; Buldurur, M.A. Relation between Urban Form and Heating Energy Consumption. A/Z ITU J. Fac. Archit. 2020, 17, 89–101. [Google Scholar] [CrossRef]
- Leng, H.; Chen, X.; Ma, Y.; Wong, N.H.; Ming, T. Urban Morphology and Building Heating Energy Consumption: Evidence from Harbin, a Severe Cold Region City. Energy Build. 2020, 224, 110143. [Google Scholar] [CrossRef]
- Apreda, C.; Reder, A.; Mercogliano, P. Urban Morphology Parameterization for Assessing the Effects of Housing Blocks Layouts on Air Temperature in the Euro-Mediterranean Context. Energy Build. 2020, 223, 110171. [Google Scholar] [CrossRef]
- Poon, K.H.; Kämpf, J.H.; Tay, S.E.R.; Wong, N.H.; Reindl, T.G. Parametric Study of URBAN Morphology on Building Solar Energy Potential in Singapore Context. Urban Clim. 2020, 33, 100624. [Google Scholar] [CrossRef]
- Liu, N.; Morawska, L. Modeling the Urban Heat Island Mitigation Effect of Cool Coatings in Realistic Urban Morphology. J. Clean. Prod. 2020, 264, 121560. [Google Scholar] [CrossRef]
- Nikoloudakis, N.; Stagakis, S.; Mitraka, Z.; Kamarianakis, Y.; Chrysoulakis, N. Spatial Interpolation of Urban Air Temperatures Using Satellite-Derived Predictors. Theor. Appl. Climatol. 2020, 141, 657–672. [Google Scholar] [CrossRef]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.X.; Norford, L. Mitigating Intensity of Urban Heat Island by Better Understanding on Urban Morphology and Anthropogenic Heat Dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Carpio-Pinedo, J.; Ramírez, G.; Montes, S.; Lamiquiz, P.J. New Urban Forms, Diversity, and Computational Design: Exploring the Open Block. J. Urban Plan. Dev. 2020, 146, 04020002. [Google Scholar] [CrossRef]
- Salvati, A.; Palme, M.; Chiesa, G.; Kolokotroni, M. Built Form, Urban Climate and Building Energy Modelling: Case-Studies in Rome and Antofagasta. J. Build. Perform. Simul. 2020, 13, 209–225. [Google Scholar] [CrossRef]
- Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the Performance of a Novel WUDAPT Averaging Technique to Define Urban Morphology with Mesoscale Models. Urban Clim. 2020, 31, 100584. [Google Scholar] [CrossRef]
- Chokhachian, A.; Perini, K.; Giulini, S.; Auer, T. Urban Performance and Density: Generative Study on Interdependencies of Urban Form and Environmental Measures. Sustain. Cities Soc. 2020, 53, 101952. [Google Scholar] [CrossRef]
- Yoseph, W.E.S. Parametric Assessment for Achieving Indoor Environmental Quality (Ieq) in Egypt’s New Urban Communities: Considering New Borg El-Arab City Urban Morphology and Openings’ Specifications; Springer International Publishing: Cham, Switzerland, 2020; ISBN 9783030173081. [Google Scholar]
- Xu, X.; Yin, C.; Wang, W.; Xu, N.; Hong, T.; Li, Q. Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China. Sustainability 2019, 11, 3683. [Google Scholar] [CrossRef]
- Ghassoun, Y.; Löwner, M.-O.; Weber, S. Wind Direction Related Parameters Improve the Performance of a Land Use Regression Model for Ultrafine Particles. Atmos. Pollut. Res. 2019, 10, 1180–1189. [Google Scholar] [CrossRef]
- Xu, X.; Wu, Y.; Wang, W.; Hong, T.; Xu, N. Performance-Driven Optimization of Urban Open Space Configuration in the Cold-Winter and Hot-Summer Region of China. Build. Simul. 2019, 12, 411–424. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Enhancing Urban Ventilation Performance through the Development of Precinct Ventilation Zones: A Case Study Based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khan, A.; Dinda, A.; Mithun, S.; Khatun, R.; Akbari, H.; Kusaka, H.; Mitra, C.; Bhatti, S.S.; Van Doan, Q.; et al. Simulating Micro-Scale Thermal Interactions in Different Building Environments for Mitigating Urban Heat Islands. Sci. Total Environ. 2019, 663, 610–631. [Google Scholar] [CrossRef] [PubMed]
- Salvati, A.; Monti, P.; Coch Roura, H.; Cecere, C. Climatic Performance of Urban Textures: Analysis Tools for a Mediterranean Urban Context. Energy Build. 2019, 185, 162–179. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Wang, S.; Hu, J. Dose Urban Landscape Pattern Affect CO2 Emission Efficiency? Empirical Evidence from Megacities in China. J. Clean. Prod. 2018, 203, 164–178. [Google Scholar] [CrossRef]
- Amaral, A.R.; Rodrigues, E.; Rodrigues Gaspar, A.; Gomes, Á. Review on Performance Aspects of Nearly Zero-Energy Districts. Sustain. Cities Soc. 2018, 43, 406–420. [Google Scholar] [CrossRef]
- Cody, B.; Loeschnig, W.; Eberl, A. Operating Energy Demand of Various Residential Building Typologies in Different European Climates. Smart Sustain. Built Environ. 2018, 7, 226–250. [Google Scholar] [CrossRef]
- Moraitis, P.; Kausika, B.B.; Nortier, N.; Van Sark, W. Urban Environment and Solar PV Performance: The Case of the Netherlands. Energies 2018, 11, 1333. [Google Scholar] [CrossRef]
- Costanzo, V.; Yao, R.; Essah, E.; Shao, L.; Shahrestani, M.; Oliveira, A.C.; Araz, M.; Hepbasli, A.; Biyik, E. A Method of Strategic Evaluation of Energy Performance of Building Integrated Photovoltaic in the Urban Context. J. Clean. Prod. 2018, 184, 82–91. [Google Scholar] [CrossRef]
- Hammerberg, K.; Brousse, O.; Martilli, A.; Mahdavi, A. Implications of Employing Detailed Urban Canopy Parameters for Mesoscale Climate Modelling: A Comparison between WUDAPT and GIS Databases over Vienna, Austria. Int. J. Climatol. 2018, 38, e1241–e1257. [Google Scholar] [CrossRef]
- Pili, S.; Desogus, G.; Melis, D. A GIS Tool for the Calculation of Solar Irradiation on Buildings at the Urban Scale, Based on Italian Standards. Energy Build. 2018, 158, 629–646. [Google Scholar] [CrossRef]
- Pacifici, M.; de Castro Marins, K.R.; Catto, V.d.M.; Rama, F.; Lamour, Q. Morphological and Climate Balance: Proposal for a Method to Analyze Neighborhood Urban Forms by Way of Densification. Sustain. Cities Soc. 2017, 35, 145–156. [Google Scholar] [CrossRef]
- Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B. Simulation of Trace Metals and PAH Atmospheric Pollution over Greater Paris: Concentrations and Deposition on Urban Surfaces. Atmos. Environ. 2017, 167, 360–376. [Google Scholar] [CrossRef]
- Shi, Z.; Fonseca, J.A.; Schlueter, A. A Review of Simulation-Based Urban Form Generation and Optimization for Energy-Driven Urban Design. Build. Environ. 2017, 121, 119–129. [Google Scholar] [CrossRef]
- Saratsis, E.; Dogan, T.; Reinhart, C.F. Simulation-Based Daylighting Analysis Procedure for Developing Urban Zoning Rules. Build. Res. Inf. 2017, 45, 478–491. [Google Scholar] [CrossRef]
- Palme, M.; Inostroza, L.; Villacreses, G.; Lobato-Cordero, A.; Carrasco, C. From Urban Climate to Energy Consumption. Enhancing Building Performance Simulation by Including the Urban Heat Island Effect. Energy Build. 2017, 145, 107–120. [Google Scholar] [CrossRef]
- Perišić, M.; Maletić, D.; Stojić, S.S.; Rajšić, S.; Stojić, A. Forecasting Hourly Particulate Matter Concentrations Based on the Advanced Multivariate Methods. Int. J. Environ. Sci. Technol. 2017, 14, 1047–1054. [Google Scholar] [CrossRef]
- Demuzere, M.; Harshan, S.; Järvi, L.; Roth, M.; Grimmond, C.S.B.; Masson, V.; Oleson, K.W.; Velasco, E.; Wouters, H. Impact of Urban Canopy Models and External Parameters on the Modelled Urban Energy Balance in a Tropical City. Q. J. R. Meteorol. Soc. 2017, 143, 1581–1596. [Google Scholar] [CrossRef]
- Perišić, A.; Lazić, M.; Obradović, R.; Galić, I. Daylight and Urban Morphology: A Model for Analysing the Average Annual Illumination of Residential Housing. Teh. Vjesn. 2016, 23, 1343–1350. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the Impact of Urban Morphology Heterogeneity on Land Surface Temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Rodríguez Algeciras, J.A.; Gómez Consuegra, L.; Matzarakis, A. Spatial-Temporal Study on the Effects of Urban Street Configurations on Human Thermal Comfort in the World Heritage City of Camagüey-Cuba. Build. Environ. 2016, 101, 85–101. [Google Scholar] [CrossRef]
- Taki, A.; Alabid, J. Learning from Bioclimatic Desert Architecture: A Case Study of Ghadames, Libya. In Research Methodology in the Built Environment: A Selection of Case Studies; Routledge: London, UK, 2016; Volume 1, pp. 169–185. ISBN 9781317534259. [Google Scholar]
- Jurelionis, A.; Bouris, D.G. Impact of Urban Morphology on Infiltration-Induced Building Energy Consumption. Energies 2016, 9, 177. [Google Scholar] [CrossRef]
- Oertel, A.; Emmanuel, R.; Drach, P. Assessment of Predicted versus Measured Thermal Comfort and Optimal Comfort Ranges in the Outdoor Environment in the Temperate Climate of Glasgow, UK. Build. Serv. Eng. Res. Technol. 2015, 36, 482–499. [Google Scholar] [CrossRef]
- Sarralde, J.J.; Quinn, D.J.; Wiesmann, D.; Steemers, K. Solar Energy and Urban Morphology: Scenarios for Increasing the Renewable Energy Potential of Neighbourhoods in London. Renew. Energy 2015, 73, 10–17. [Google Scholar] [CrossRef]
- Pay, M.T.; Martínez, F.; Guevara, M.; Baldasano, J.M. Air Quality Forecasts on a Kilometer-Scale Grid over Complex Spanish Terrains. Geosci. Model Dev. 2014, 7, 1979–1999. [Google Scholar] [CrossRef]
- Bueno, B.; Roth, M.; Norford, L.; Li, R. Computationally Efficient Prediction of Canopy Level Urban Air Temperature at the Neighbourhood Scale. Urban Clim. 2014, 9, 35–53. [Google Scholar] [CrossRef]
- Hofman, J.; Lefebvre, W.; Janssen, S.; Nackaerts, R.; Nuyts, S.; Mattheyses, L.; Samson, R. Increasing the Spatial Resolution of Air Quality Assessments in Urban Areas: A Comparison of Biomagnetic Monitoring and Urban Scale Modelling. Atmos. Environ. 2014, 92, 130–140. [Google Scholar] [CrossRef]
- Gros, A.; Bozonnet, E.; Inard, C. Modelling the Radiative Exchanges in Urban Areas: A Review. Adv. Build. Energy Res. 2011, 5, 163–206. [Google Scholar] [CrossRef]
- Salat, S. Energy Loads, CO2 Emissions and Building Stocks: Morphologies, Typologies, Energy Systems and Behaviour. Build. Res. Inf. 2009, 37, 598–609. [Google Scholar] [CrossRef]
- Al-Maiyah, S.; Elkadi, H. The Role of Daylight in Preserving Identities in Heritage Context. Renew. Sustain. Energy Rev. 2007, 11, 1544–1557. [Google Scholar] [CrossRef]
- Blocken, B. 50 Years of Computational Wind Engineering: Past, Present and Future. J. Wind Eng. Ind. Aerodyn. 2014, 129, 69–102. [Google Scholar] [CrossRef]
- WHO Air Quality Guidelines for Europe. Environ. Sci. Pollut. Res. 2000, 3, 23. [CrossRef]
- Neophytou, M.K.-A.; Britter, R.E. Modelling the Wind Flow in Complex Urban Topographies: A Computational-Fluid-Dynamics Simulation of the Central London Area. In Proceedings of the 5th GRACM International Congress on Comput Mech, Limassol, Cyprus, 29 June–1 July 2005; pp. 967–974. [Google Scholar]
- Hang, J.; Sandberg, M.; Li, Y. Age of Air and Air Exchange Efficiency in Idealized City Models. Build. Environ. 2009, 44, 1714–1723. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK; New York, NY, USA, 1987. [Google Scholar]
- Bottema, M. Urban roughness modelling in relation to pollutant dispersion. Atmos. Environ. 1997, 31, 3059–3075. [Google Scholar] [CrossRef]
- Lettau, H. Note on Aerodynamic Roughness-Parameter Estimation on the Basis of Roughness-Element Description. J. Appl. Meteorol. Climatol. 1969, 8, 828–832. [Google Scholar] [CrossRef]
- Wieringa, J. Updating the Davenport Roughness Classification. J. Wind. Eng. Ind. Aerodyn. 1992, 41, 357–368. [Google Scholar] [CrossRef]
- Wieringa, J. Representative Roughness Parameters for Homogeneous Terrain. Bound.-Layer Meteorol. 1993, 63, 323–363. [Google Scholar] [CrossRef]
- Raupach, M.R.; Thom, A.S.; Edwards, I. A Wind-Tunnel Study of Turbulent Flow Close to Regularly Arrayed Rough Surfaces. Bound.-Layer Meteorol. 1980, 18, 373–397. [Google Scholar] [CrossRef]
- Hussain, M.; Lee, B.E. A Wind Tunnel Study of the Mean Pressure Forces Acting on Large Groups of Low-Rise Buildings. J. Wind Eng. Ind. Aerodyn. 1980, 6, 207–225. [Google Scholar] [CrossRef]
- Cheng, H.; Castro, I.P. Near wall flow over urban-like roughness. Bound.-Layer Meteorol. 2002, 104, 229–259. [Google Scholar] [CrossRef]
- Kanda, M.; Moriwaki, R.; Kasamatsu, F. Large-Eddy Simulation of Turbulent Organized Structures within and above Explicitly Resolved Cube Arrays. Bound.-Layer Meteorol. 2004, 112, 343–368. [Google Scholar] [CrossRef]
- Coceal, O.; Thomas, T.G.; Castro, I.P.; Belcher, S.E. Mean Flow and Turbulence Statistics over Groups of Urban-like Cubical Obstacles. Bound.-Layer Meteorol. 2006, 121, 491–519. [Google Scholar] [CrossRef]
- Kanda, M. Large-Eddy Simulations on the Effects of Surface Geometry of Building Arrays on Turbulent Organized Structures. Bound.-Layer Meteorol. 2006, 118, 151–168. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Hunter, L.J.; Johnson, G.T.; Watson, I.D. An Investigation of Three-Dimensional Characteristics of Flow Regimes within the Urban Canyon. Atmos. Environ. 1992, 26, 425–432. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Sini, J.F.; Anquetin, S.; Mestayer, P.G. Pollutant Dispersion and Thermal Effects in Urban Street Canyons. Atmos. Environ. 1996, 30, 2659–2677. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Palusci, O.; Pini, A.; Leuzzi, G.; Cacciani, M.; Pelliccioni, A.; Monti, P. Air Circulation in Urban Areas. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 195–221. ISBN 978-3-030-65421-4. [Google Scholar]
- Britter, R.E.; Hanna, S.R. Flow and Dispersion in Urban Areas. Annu. Rev. Phys. Chem. 2000, 51, 275–296. [Google Scholar] [CrossRef]
- Xiaomin, X.; Zhen, H.; Jiasong, W. The Impact of Urban Street Layout on Local Atmospheric Environment. Build. Environ. 2006, 41, 1352–1363. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Monti, P.; Leuzzi, G.; Querzoli, G. Water-Channel Estimation of Eulerian and Lagrangian Time Scales of the Turbulence in Idealized Two-Dimensional Urban Canopies. Bound.-Layer Meteorol. 2017, 165, 251–276. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Monti, P.; Leuzzi, G.; Querzoli, G. Pollutant Fluxes in Two-Dimensional Street Canyons. Urban Clim. 2018, 24, 80–93. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.; Wang, J.S. Impact of Building Configuration on Air Quality in Street Canyon. Atmos. Environ. 2005, 39, 4519–4530. [Google Scholar] [CrossRef]
- Badas, M.G.; Ferrari, S.; Garau, M.; Querzoli, G. On the Effect of Gable Roof on Natural Ventilation in Two-Dimensional Urban Canyons. J. Wind. Eng. Ind. Aerodyn. 2017, 162, 24–34. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.; Wang, J.; Xie, Z. The Impact of Solar Radiation and Street Layout on Pollutant Dispersion in Street Canyon. Build. Environ. 2005, 40, 201–212. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M. CFD Simulation of Flow in a Long Street Canyon under a Perpendicular Wind Direction: Evaluation of Three Computational Settings. Build. Environ. 2017, 114, 293–306. [Google Scholar] [CrossRef]
- Llaguno-Munitxa, M.; Bou-Zeid, E. Shaping Buildings to Promote Street Ventilation: A Large-Eddy Simulation Study. Urban Clim. 2018, 26, 76–94. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Claesson, L. Wind Conditions and Ventilation in High-Rise Long Street Models. Build. Environ. 2010, 45, 1353–1365. [Google Scholar] [CrossRef]
- Hunter, L.J.; Watson, I.D.; Johnson, G.T. Modelling Air Flow Regimes in Urban Canyons. Energy Build. 1990, 91, 15–16. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M. Experimental and Numerical Studies of Flows through and within High-Rise Building Arrays and Their Link to Ventilation Strategy. J. Wind Eng. Ind. Aerodyn. 2011, 99, 1036–1055. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y. Age of Air and Air Exchange Efficiency in High-Rise Urban Areas and Its Link to Pollutant Dilution. Atmos. Environ. 2011, 45, 5572–5585. [Google Scholar] [CrossRef]
- Hu, T.; Yoshie, R. Indices to Evaluate Ventilation Efficiency in Newly-Built Urban Area at Pedestrian Level. J. Wind Eng. Ind. Aerodyn. 2013, 112, 39–51. [Google Scholar] [CrossRef]
- Yim, S.H.L.; Fung, J.C.H.; Lau, A.K.H.; Kot, S.C. Air Ventilation Impacts of the “Wall Effect” Resulting from the Alignment of High-Rise Buildings. Atmos. Environ. 2009, 43, 4982–4994. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; Di Sabatino, S. The Influence of Building Height Variability on Pollutant Dispersion and Pedestrian Ventilation in Idealized High-Rise Urban Areas. Build. Environ. 2012, 56, 346–360. [Google Scholar] [CrossRef]
- Lin, M.; Hang, J.; Li, Y.; Luo, Z.; Sandberg, M. Quantitative Ventilation Assessments of Idealized Urban Canopy Layers with Various Urban Layouts and the Same Building Packing Density. Build. Environ. 2014, 79, 152–167. [Google Scholar] [CrossRef]
- Hagishima, A.; Tanimoto, J.; Nagayama, K.; Meno, S. Aerodynamic Parameters of Regular Arrays of Rectangular Blocks with Various Geometries. Bound.-Layer Meteorol. 2009, 132, 315–337. [Google Scholar] [CrossRef]
- Razak, A.A.; Hagishima, A.; Ikegaya, N.; Tanimoto, J. Analysis of Airflow over Building Arrays for Assessment of Urban Wind Environment. Build. Environ. 2013, 59, 56–65. [Google Scholar] [CrossRef]
- Cantelli, A.; Monti, P.; Leuzzi, G. Numerical Study of the Urban Geometrical Representation Impact in a Surface Energy Budget Model. Environ. Fluid Mech. 2015, 15, 251–273. [Google Scholar] [CrossRef]
- Chen, L.; Hang, J.; Sandberg, M.; Claesson, L.; Sabatino, S.D.; Wigo, H. The Impacts of Building Height Variations and Building Packing Densities on Flow Adjustment and City Breathability in Idealized Urban Models. Build. Environ. 2017, 118, 344–361. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Monti, P.; Leuzzi, G.; Querzoli, G. Turbulent Schmidt Number Measurements Over Three-Dimensional Cubic Arrays. Bound.-Layer Meteorol. 2020, 174, 231–250. [Google Scholar] [CrossRef]
- Conigliaro, E.; Monti, P.; Leuzzi, G.; Cantelli, A. Urban Climate A Three-Dimensional Urban Canopy Model for Mesoscale Atmospheric Simulations and Its Comparison with a Two-Dimensional Urban Canopy Model in an Idealized Case. Urban Clim. 2021, 37, 100831. [Google Scholar] [CrossRef]
- Santiago, J.L.; Coceal, O.; Martilli, A.; Belcher, S.E. Variation of the Sectional Drag Coefficient of a Group of Buildings with Packing Density. Build. Vent. Theory Meas. 2008, 128, 445–457. [Google Scholar] [CrossRef]
- Ikegaya, N.; Ikeda, Y.; Hagishima, A.; Razak, A.A.; Tanimoto, J. A Prediction Model for Wind Speed Ratios at Pedestrian Level with Simplified Urban Canopies. Theor. Appl. Climatol. 2017, 127, 655–665. [Google Scholar] [CrossRef]
- Soulhac, L.; Garbero, V.; Salizzoni, P.; Mejean, P.; Perkins, R.J. Flow and Dispersion in Street Intersections. Atmos. Environ. 2009, 43, 2981–2996. [Google Scholar] [CrossRef]
- Amicarelli, A.; Salizzoni, P.; Leuzzi, G.; Monti, P.; Soulhac, L.; Cierco, F.-X.; Leboeuf, F. Sensitivity Analysis of a Concentration Fluctuation Model to Dissipation Rate Estimates. Int. J. Environ. Pollut. 2012, 48, 164–173. [Google Scholar] [CrossRef]
- Kubota, T.; Miura, M.; Tominaga, Y.; Mochida, A. Wind Tunnel Tests on the Relationship between Building Density and Pedestrian-Level Wind Velocity: Development of Guidelines for Realizing Acceptable Wind Environment in Residential Neighborhoods. Build. Environ. 2008, 43, 1699–1708. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Lau, S.S.Y. Urban Form and Density as Indicators for Summertime Outdoor Ventilation Potential: A Case Study on High-Rise Housing in Shanghai. Build. Environ. 2013, 70, 122–137. [Google Scholar] [CrossRef]
- Tsichritzis, L.; Nikolopoulou, M. The Effect of Building Height and Façade Area Ratio on Pedestrian Wind Comfort of London. J. Wind Eng. Ind. Aerodyn. 2019, 191, 63–75. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J.; Hensen, J.L.M. Application of Computational Fluid Dynamics in Building Performance Simulation for the Outdoor Environment: An Overview. J. Build. Perform. Simul. 2011, 157–184. [Google Scholar] [CrossRef]
- Gousseau, P.; Blocken, B.; Stathopoulos, T.; van Heijst, G.J.F. CFD Simulation of Near-Field Pollutant Dispersion on a High-Resolution Grid: A Case Study by LES and RANS for a Building Group in Downtown Montreal. Atmos. Environ. 2011, 45, 428–438. [Google Scholar] [CrossRef]
- Nozu, T.; Tamura, T. LES of Turbulent Wind and Gas Dispersion in a City. J. Wind Eng. Ind. Aerodyn. 2012, 104–106, 492–499. [Google Scholar] [CrossRef]
- Tominaga, Y. Visualization of City Breathability Based on CFD Technique: Case Study for Urban Blocks in Niigata City. J. Vis. 2012, 15, 269–276. [Google Scholar] [CrossRef]
- Janssen, W.D.; Blocken, B.; van Hooff, T. Pedestrian Wind Comfort around Buildings: Comparison of Wind Comfort Criteria Based on Whole-Flow Field Data for a Complex Case Study. Build. Environ. 2013, 59, 547–562. [Google Scholar] [CrossRef]
- Panagiotou, I.; Neophytou, M.K.-A.; Hamlyn, D.; Britter, R.E. City Breathability as Quantified by the Exchange Velocity and Its Spatial Variation in Real Inhomogeneous Urban Geometries: An Example from Central London Urban Area. Sci. Total Environ. 2013, 442, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Toparlar, Y.; Blocken, B.; Vos, P.; Van Heijst, G.J.F.; Janssen, W.D.; van Hooff, T.; Montazeri, H.; Timmermans, H.J.P. CFD Simulation and Validation of Urban Microclimate: A Case Study for Bergpolder Zuid, Rotterdam. Build. Environ. 2015, 83, 79–90. [Google Scholar] [CrossRef]
- Blocken, B.; Vervoort, R.; van Hooff, T. Reduction of Outdoor Particulate Matter Concentrations by Local Removal in Semi-Enclosed Parking Garages: A Preliminary Case Study for Eindhoven City Center. J. Wind Eng. Ind. Aerodyn. 2016, 159, 80–98. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Monti, P.; Leuzzi, G. An Alternative Wind Profile Formulation for Urban Areas in Neutral Conditions. Environ. Fluid Mech. 2015, 15, 135–146. [Google Scholar] [CrossRef][Green Version]
- Antoniou, N.; Montazeri, H.; Wigo, H.; Neophytou, M.K.A.; Blocken, B.; Sandberg, M. CFD and Wind-Tunnel Analysis of Outdoor Ventilation in a Real Compact Heterogeneous Urban Area: Evaluation Using “Air Delay”. Build. Environ. 2017, 126, 355–372. [Google Scholar] [CrossRef]
- Ricci, A.; Kalkman, I.; Blocken, B.; Burlando, M.; Freda, A.; Repetto, M.P. Local-Scale Forcing Effects on Wind Flows in an Urban Environment: Impact of Geometrical Simplifications. J. Wind Eng. Ind. Aerodyn. 2017, 170, 238–255. [Google Scholar] [CrossRef]
- Liu, S.; Pan, W.; Zhao, X.; Zhang, H.; Cheng, X.; Long, Z.; Chen, Q. Influence of Surrounding Buildings on Wind Flow around a Building Predicted by CFD Simulations. Build. Environ. 2018, 140, 1–10. [Google Scholar] [CrossRef]
- Vervoort, R.; Blocken, B.; van Hooff, T. Reduction of Particulate Matter Concentrations by Local Removal in a Building Courtyard: Case Study for the Delhi American Embassy School. Sci. Total Environ. 2019, 686, 657–680. [Google Scholar] [CrossRef]
- Longo, R.; Bellemans, A.; Derudi, M.; Parente, A. A Multi-Fidelity Framework for the Estimation of the Turbulent Schmidt Number in the Simulation of Atmospheric Dispersion. Build. Environ. 2020, 185, 107066. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Monti, P.; Cattani, G.; Boccuni, F.; Cacciani, M.; Canepari, S.; Capone, P.; Catrambone, M.; Cusano, M.; D’Ovidio, M.C.; et al. Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project. Sustainability 2020, 12, 9758. [Google Scholar] [CrossRef]
- Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S. Application of Improved CFD Modeling for Prediction and Mitigation of Traffic-Related Air Pollution Hotspots in a Realistic Urban Street. Atmos. Environ. 2021, 246, 118127. [Google Scholar] [CrossRef]
- Iannarelli, A.M.; Di Bernardino, A.; Casadio, S.; Bassani, C.; Cacciani, M.; Campanelli, M.; Casasanta, G.; Cadau, E.; Diémoz, H.; Mevi, G.; et al. The Boundary Layer Air Quality-Analysis Using Network of Instruments (BAQUNIN) Supersite for Atmospheric Research and Satellite Validation over Rome Area. Bull. Am. Meteorol. Soc. 2021, 103, E599–E618. [Google Scholar] [CrossRef]
- Buccolieri, R.; Wigö, H.; Sandberg, M.; Di Sabatino, S. Direct Measurements of the Drag Force over Aligned Arrays of Cubes Exposed to Boundary-Layer Flows. Environ. Fluid Mech. 2017, 17, 373–394. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment; University of Hamburg: Hamburg, Germany, 2007; Volume 44, ISBN 3000183124. [Google Scholar]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment around Buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems. Atmos. Environ. 2007, 41, 238–252. [Google Scholar] [CrossRef]
- van Hooff, T.; Blocken, B. Coupled Urban Wind Flow and Indoor Natural Ventilation Modelling on a High-Resolution Grid: A Case Study for the Amsterdam ArenA Stadium. Environ. Model. Softw. 2010, 25, 51–65. [Google Scholar] [CrossRef]
- Schatzmann, M.; Olesen, H.; Franke, J. Cost 732 Model Evaluation Case Studies: Approach and Results; University of Hamburg: Hamburg, Germany, 2010; ISBN 3000183124. [Google Scholar]
- Roache, P.J. Quantification of Uncertainty in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Blocken, B. LES over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion? Build. Simul. 2018, 11, 821–870. [Google Scholar] [CrossRef]
- Heinke Schlunzen, K.; Grawe, D.; Bohnenstengel, S.I.; Schï Uter, C.I.; Koppmann, R. Joint Modelling of Obstacle Induced and Mesoscale Changes-Current Limits and Challenges. Jnl. Wind Eng. Ind. Aerodyn. 2011, 99, 217–225. [Google Scholar] [CrossRef]
- Morris, H.M.J. Flow in Rough Conduits. Trans. Am. Soc. Civ. Eng. 1955, 120, 373–398. [Google Scholar] [CrossRef]
- Lee, B.E.; Soliman, B.F. An Investigation of the Forces on Three Dimensional Bluff Bodies in Lough Wall Turbulent Boundary Layers. Fluids Eng. 1977, 99, 503–509. [Google Scholar] [CrossRef]
- Grosso, M.; Parisi, E.; D’Elia, I.C. The Effect of Urban Form on Wind Pressure Drag. In Proceedings of the World Renewable Energy Congress VI, Pergamon, Germany, 1 January 2000; pp. 444–449. [Google Scholar]
- Ho, Y.-K.; Liu, C.-H.; Wong, M.S. Preliminary Study of the Parameterisation of Street-Level Ventilation in Idealised Two-Dimensional Simulations. Build. Environ. 2015, 89, 345–355. [Google Scholar] [CrossRef]
- Buccolieri, R.; Salizzoni, P.; Soulhac, L.; Garbero, V.; Di Sabatino, S. The Breathability of Compact Cities. Urban Clim. 2015, 13, 73–93. [Google Scholar] [CrossRef]
- Bentham, T.; Britter, R.E. Spatially Averaged Flow within Obstacle Arrays. Atmos. Environ. 2003, 37, 2037–2043. [Google Scholar] [CrossRef]
- Buccolieri, R.; Sandberg, M.; Di Sabatino, S. City Breathability and Its Link to Pollutant Concentration Distribution within Urban-like Geometries. Atmos. Environ. 2010, 44, 1894–1903. [Google Scholar] [CrossRef]
- Hang, J.; Wang, Q.; Chen, X.; Sandberg, M.; Zhu, W.; Buccolieri, R.; Di Sabatino, S. City Breathability in Medium Density Urban-like Geometries Evaluated through the Pollutant Transport Rate and the Net Escape Velocity. Build. Environ. 2015, 94, 166–182. [Google Scholar] [CrossRef]
- Skote, M.; Sandberg, M.; Westerberg, U.; Claesson, L.; Johansson, A.V. Numerical and Experimental Studies of Wind Environment in an Urban Morphology. Atmos. Environ. 2005, 39, 6147–6158. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Buccolieri, R.; Pulvirenti, B.; Britter, R.E. Simulations of Pollutant Dispersion within Idealised Urban-Type Geometries with CFD and Integral Models. Atmos. Environ. 2007, 41, 8316–8329. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y.; Claesson, L. Pollutant Dispersion in Idealized City Models with Different Urban Morphologies. Atmos. Environ. 2009, 43, 6011–6025. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y. Effect of Urban Morphology on Wind Condition in Idealized City Models. Atmos. Environ. 2009, 43, 869–878. [Google Scholar] [CrossRef]
- Bady, M.; Kato, S.; Huang, H. Towards the Application of Indoor Ventilation Efficiency Indices to Evaluate the Air Quality of Urban Areas. Build. Environ. 2008, 43, 1991–2004. [Google Scholar] [CrossRef]
- Sandberg, M. What Is Ventilation Efficiency? Build. Environ. 1981, 16, 123–135. [Google Scholar] [CrossRef]
- Etheridge, D.W.; Sandberg, M. Building Ventilation: Theory and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 1996; ISBN 9780471960874. [Google Scholar]
- Huang, H.; Kato, S.; Ooka, R.; Jiang, T. CFD Analysis of Ventilation Efficiency around an Elevated Highway Using Visitation Frequency and Purging Flow Rate. Wind Struct. Int. J. 2006, 9, 297–313. [Google Scholar] [CrossRef]
- Cheng, W.C.; Liu, C.H.; Leung, D.Y.C. Computational Formulation for the Evaluation of Street Canyon Ventilation and Pollutant Removal Performance. Atmos. Environ. 2008, 42, 9041–9051. [Google Scholar] [CrossRef]
- Bu, Z.; Kato, S.; Ishida, Y.; Huang, H. New Criteria for Assessing Local Wind Environment at Pedestrian Level Based on Exceedance Probability Analysis. Build. Environ. 2009, 44, 1501–1508. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y. Ventilation Strategy and Air Change Rates in Idealized High-Rise Compact Urban Areas. Build. Environ. 2010, 45, 2754–2767. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y.; Claesson, L. Flow Mechanisms and Flow Capacity in Idealized Long-Street City Models. Build. Environ. 2010, 45, 1042–1053. [Google Scholar] [CrossRef]
- Hang, J.; Luo, Z.; Sandberg, M.; Gong, J. Natural Ventilation Assessment in Typical Open and Semi-Open Urban Environments under Various Wind Directions. Build. Environ. 2013, 70, 318–333. [Google Scholar] [CrossRef]
- Mei, S.-J.; Hu, J.-T.; Liu, D.; Zhao, F.-Y.; Li, Y.; Wang, Y.; Wang, H.-Q. Wind Driven Natural Ventilation in the Idealized Building Block Arrays with Multiple Urban Morphologies and Unique Package Building Density. Energy Build. 2017, 155, 324–338. [Google Scholar] [CrossRef]
- Peng, Y.; Buccolieri, R.; Gao, Z.; Ding, W. Indices Employed for the Assessment of “Urban Outdoor Ventilation”—A Review. Atmos. Environ. 2020, 223, 117211. [Google Scholar] [CrossRef]
- Bady, M.; Kato, S.; Takahashi, T.; Huang, H. An Experimental Investigation of the Wind Environment and Air Quality within a Densely Populated Urban Street Canyon. J. Wind Eng. Ind. Aerodyn. 2011, 99, 857–867. [Google Scholar] [CrossRef]
- Carpentieri, M.; Robins, A.G. Influence of Urban Morphology on Air Flow over Building Arrays. J. Wind Eng. Ind. Aerodyn. 2015, 145, 61–74. [Google Scholar] [CrossRef]
- Juan, Y.-H.; Yang, A.-S.; Wen, C.-Y.; Lee, Y.-T.; Wang, P.-C. Optimization Procedures for Enhancement of City Breathability Using Arcade Design in a Realistic High-Rise Urban Area. Build. Environ. 2017, 121, 247–261. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Juan, Y.-H.; Yang, A.-S. Enhancement of City Breathability with Half Open Spaces in Ideal Urban Street Canyons. Build. Environ. 2017, 112, 322–336. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Li, Y. Application of a Multi-Variable Optimization Method to Determine Lift-up Design for Optimum Wind Comfort. Build. Environ. 2018, 131, 242–254. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Li, Y. A Multi-Stage Optimization of Pedestrian Level Wind Environment and Thermal Comfort with Lift-up Design in Ideal Urban Canyons. Sustain. Cities Soc. 2019, 46, 101424. [Google Scholar] [CrossRef]
- Melbourne, W.H. Criteria for Environmental Wind Conditions. J. Wind Eng. Ind. Aerodyn. 1978, 3, 241–249. [Google Scholar] [CrossRef]
- Williams, C.J.; Hunter, M.A.; Waechter, W.F. Criteria for Assessing the Pedestrian Wind Environment. J. Wind Eng. Ind. Aerodyn. 1990, 36, 811–815. [Google Scholar] [CrossRef]
- Lawson, T.V. The Wind Content of the Built Environment. J. Wind Eng. Ind. Aerodyn. 1978, 3, 93–105. [Google Scholar] [CrossRef]
- QGIS Documentation. Available online: https://docs.qgis.org/3.16/en/docs/training_manual (accessed on 9 June 2021).
- Carta Tecnica Regionale. Available online: http://dati.lazio.it/catalog/it/dataset/carta-tecnica-regionale-2002-2003-5k-roma/resource/ee089059-bdec-499c-a91c-a3f2a71f32ce (accessed on 28 November 2016).
- Urban Atlas. 2006. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 31 July 2014).
Daily Mean Temperature (°C) | |||
---|---|---|---|
<10 | 10–25 | >25 | |
Daily mean wind velocity range causing thermal discomfort due to insufficient wind speed (m/s) | - | - | <0.7 |
Daily mean wind velocity range realizing acceptable wind environment (m/s) | <1.3 | <1.5 | 0.7–1.7 |
Transition range of daily mean wind velocity from acceptable wind to strong wind (m/s) | 1.3–2.0 | 1.5–2.3 | 1.7–2.9 |
Daily mean wind velocity range causing strong wind-inducted discomfort (m/s) | >2.0 | >2.3 | >2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palusci, O.; Cecere, C. Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability 2022, 14, 3948. https://doi.org/10.3390/su14073948
Palusci O, Cecere C. Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability. 2022; 14(7):3948. https://doi.org/10.3390/su14073948
Chicago/Turabian StylePalusci, Olga, and Carlo Cecere. 2022. "Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas" Sustainability 14, no. 7: 3948. https://doi.org/10.3390/su14073948
APA StylePalusci, O., & Cecere, C. (2022). Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability, 14(7), 3948. https://doi.org/10.3390/su14073948