Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review
Abstract
:1. Introduction
Organisation of the Study
2. Methodology
2.1. Scoping
- Question 1. How do the adaptations (PCA, DA and RA) build significantly positive relationships with sustainable agricultural performance?
- Question 2. Do the adaptations (PCA, DA and RA) effectively complement each other in their contribution to sustainable agriculture performance?
2.2. Planning the Search Strategy and Eligibility Criteria
2.3. Identification and Searching to Build the Database of Literature
2.4. Screening
2.5. Eligibility Assessment
2.6. Presentation and Interpretation
3. Analysis
4. Discussion
4.1. Precision Conservation Agriculture
4.2. Digital Agriculture
4.3. Resilient Agriculture
4.4. Barriers to Adoption
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of Food Security and Nutrition in the World 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018.
- Baligar, V.; Fageria, N.; He, Z. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- GRDC Grains Research and Development Corporation. Cost of Production; Grains Research and Development Corporation: Canberra, Australia, 2013. [Google Scholar]
- Jacobs, A.; Van Tol, J.; Du Preez, C. Farmers perceptions of precision agriculture and the role of agricultural extension: A case study of crop farming in the Schweizer-Reneke region, South Africa. S. Afr. J. Agric. Ext. 2018, 46, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Marshall, N.A.; Gordon, I.J.; Ash, A. The reluctance of resource-users to adopt seasonal climate forecasts to enhance resilience to climate variability on the rangelands. Clim. Change 2011, 107, 511–529. [Google Scholar] [CrossRef]
- McKeon, G.; Hall, W.; Henry, B.; Stone, G.; Watson, I. Pasture Degradation and Recovery in Australia’s Rangelands: Learning from History; Natural Resource Sciences: Indooroopilly, Australia, 2004. [Google Scholar]
- Lal, R. A modest proposal for the year 2001: We can control greenhouse gases and feed the world… with proper soil management. J. Soil Water Conserv. 2000, 55, 429–433. [Google Scholar]
- McConnell, M.; Burger, L. Precision conservation to enhance wildlife benefits in agricultural landscapes. In Precision Conservation: Geospatial Techniques for Agricultural Natural Resources Conservation; American Society of Agronomy and Crop Science Society of America: Madison, WI, USA, 2016; pp. 285–312. [Google Scholar]
- Berry, J.K.; Delgado, J.; Khosla, R.; Pierce, F. Precision conservation for environmental sustainability. J. Soil Water Conserv. 2003, 58, 332–339. [Google Scholar]
- Delgado, J.A.; Khosla, R.; Mueller, T. Recent advances in precision (target) conservation. J. Soil Water Conserv. 2011, 66, 167A–170A. [Google Scholar] [CrossRef] [Green Version]
- Jat, R.A.; Sahrawat, K.L.; Kassam, A.H.; Friedrich, T. Conservation agriculture: For sustainable and resilient agriculture: Global status, prospects and challenges. In Conservation Agriculture: Global Prospects Challenges. CABI; Ram, A.J., Kanwar, L.S., Amir, H.K., Eds.; CABI: Wallingford, UK, 2013; pp. 1–25. [Google Scholar]
- Robertson, G.P.; Swinton, S.M. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 2005, 3, 38–46. [Google Scholar] [CrossRef]
- McConnell, M.; Burger, L. Precision conservation: A geospatial decision support tool for optimizing conservation and profitability in agricultural landscapes. J. Soil Water Conserv. 2011, 66, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.W. Realizing the potential benefits of climate prediction to agriculture: Issues, approaches, challenges. Agric. Syst. 2002, 74, 309–330. [Google Scholar] [CrossRef]
- Hertzler, G. Adapting to climate change and managing climate risks by using real options. Aust. J. Agric. Res. 2007, 58, 985–992. [Google Scholar] [CrossRef]
- Webb, N.P.; Marshall, N.A.; Stringer, L.C.; Reed, M.S.; Chappell, A.; Herrick, J.E. Land degradation and climate change: Building climate resilience in agriculture. Front. Ecol. Environ. 2017, 15, 450–459. [Google Scholar] [CrossRef]
- Balmford, A.; Beresford, J.; Green, J.; Naidoo, R.; Walpole, M.; Manica, A. A global perspective on trends in nature-based tourism. PLoS Biol. 2009, 7, e1000144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggs, D. Understanding resilience in a vulnerable industry: The case of reef tourism in Australia. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.; Temesgen, M.; Mawenya, L.; Barron, J.; Mutua, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Tillage Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Darnhofer, I.; Fairweather, J.; Moller, H. Assessing a farm’s sustainability: Insights from resilience thinking. Int. J. Agric. Sustain. 2010, 8, 186–198. [Google Scholar] [CrossRef]
- Whelan, B.; Taylor, J. Precision Agriculture for Grain Production Systems; CSIRO Publishing: Clayton, Australia, 2013. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Van der Knaap, L.M.; Leeuw, F.L.; Bogaerts, S.; Nijssen, L.T. Combining Campbell standards and the realist evaluation approach: The best of two worlds? Am. J. Eval. 2008, 29, 48–57. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An efficient framework for conducting systematic literature reviews in agricultural sciences. Sci. Total Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef]
- Clarivate. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (accessed on 1 November 2021).
- Scholar, G. Available online: https://scholar.google.com.au/ (accessed on 1 November 2021).
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- Yost, M.; Kitchen, N.; Sudduth, K.; Sadler, E.; Drummond, S.; Volkmann, M. Long-term impact of a precision agriculture system on grain crop production. Precis. Agric. 2017, 18, 823–842. [Google Scholar] [CrossRef]
- Birner, R.; Daum, T.; Pray, C. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Appl. Econ. Perspect. Policy 2021. [Google Scholar] [CrossRef]
- Delgado, J.A.; Groffman, P.M.; Nearing, M.A.; Goddard, T.; Reicosky, D.; Lal, R.; Kitchen, N.R.; Rice, C.W.; Towery, D.; Salon, P. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 118A–129A. [Google Scholar] [CrossRef] [Green Version]
- Yost, M.; Kitchen, N.; Sudduth, K.; Massey, R.; Sadler, E.; Drummond, S.; Volkmann, M. A long-term precision agriculture system sustains grain profitability. Precis. Agric. 2019, 20, 1177–1198. [Google Scholar] [CrossRef]
- Berry, J.; Delgado, J.A.; Pierce, F.; Khosla, R. Applying spatial analysis for precision conservation across the landscape. J. Soil Water Conserv. 2005, 60, 363–370. [Google Scholar]
- Delgado, J.; Berry, J.K. Advances in precision conservation. Adv. Agron. 2008, 98, 1–44. [Google Scholar] [CrossRef]
- Barasa, P.M.; Botai, C.M.; Botai, J.O.; Mabhaudhi, T. A Review of Climate-Smart Agriculture Research and Applications in Africa. Agronomy 2021, 11, 1255. [Google Scholar] [CrossRef]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Ghosh, A.; Rathore, N.S.; Kumar, B.; Pradhan, S.; Majumdar, K.; Satyanarayana, T.; Jat, M.L.; et al. Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water-use and radiation conversion under a semiarid agro-ecosystem. Agric. Water Manag. 2017, 192, 306–319. [Google Scholar] [CrossRef]
- Kitchen, N.; Sudduth, K.; Myers, D.; Massey, R.; Sadler, E.; Lerch, R.; Hummel, J.; Palm, H. Development of a conservation-oriented precision agriculture system: Crop production assessment and plan implementation. J. Soil Water Conserv. 2005, 60, 421–430. [Google Scholar]
- Mhlanga, B.; Ercoli, L.; Pellegrino, E.; Onofri, A.; Thierfelder, C. The crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa. Agron. Sustain. Dev. 2021, 41. [Google Scholar] [CrossRef]
- Lerch, R.; Kitchen, N.; Kremer, R.; Donald, W.; Alberts, E.; Sadler, E.; Sudduth, K.; Myers, D.; Ghidey, F. Development of a conservation-oriented precision agriculture system: Water and soil quality assessment. J. Soil Water Conserv. 2005, 60, 411–421. [Google Scholar]
- Delgado, J.A.; Bausch, W. Potential use of precision conservation techniques to reduce nitrate leaching in irrigated crops. J. Soil Water Conserv. 2005, 60, 379–387. [Google Scholar]
- Shitu, G.; Nain, M.; Kobba, F. Development of scale for assessing farmers’ attitude towards precision conservation agricultural practices. Indian J. Agric. Sci. 2018, 88, 498–503. [Google Scholar]
- Martens, J.R.T.; Entz, M.H.; Wonneck, M.D. Review: Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Can. J. Plant Sci. 2015, 95, 1049–1072. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Capmourteres, V.; Adams, J.; Berg, A.; Fraser, E.; Swanton, C.; Anand, M. Precision conservation meets precision agriculture: A case study from southern Ontario. Agric. Syst. 2018, 167, 176–185. [Google Scholar] [CrossRef]
- Bronson, K.; Knezevic, I. Big Data in food and agriculture. Big Data Soc. 2016, 3, 2053951716648174. [Google Scholar] [CrossRef] [Green Version]
- Bronson, K. Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS-Wagening. J. Life Sci. 2019, 90–91, 90–91. [Google Scholar] [CrossRef]
- Weersink, A.; Fraser, E.; Pannell, D.; Duncan, E.; Rotz, S. Opportunities and challenges for Big Data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 2018, 10, 19–37. [Google Scholar] [CrossRef]
- George, D.A.; Clewett, J.F.; Lloyd, D.; McKellar, R.; Tan, P.-L.; Howden, M.; Rickards, L.; Ugalde, D.; Barlow, S. Research priorities and best practices for managing climate risk and climate change adaptation in Australian agriculture. Australas. J. Environ. Manag. 2019, 26, 6–24. [Google Scholar] [CrossRef]
- Shang, L.M.; Heckelei, T.; Gerullis, M.K.; Borner, J.; Rasch, S. Adoption and diffusion of digital farming technologies-integrating farm-level evidence and system interaction. Agric. Syst. 2021, 190. [Google Scholar] [CrossRef]
- Boeckhout, M.; Zielhuis, G.A.; Bredenoord, A.L. The FAIR guiding principles for data stewardship: Fair enough? Eur. J. Hum. Genet. 2018, 26, 931–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musker, R.; Tumeo, J.; Schaap, B.; Parr, M. GODAN’s Impact 2014–2018–Improving Agriculture, Food and Nutrition with Open Data. F1000Research 2018, 7, 1328. [Google Scholar]
- Wise, J.; de Barron, A.G.; Splendiani, A.; Balali-Mood, B.; Vasant, D.; Little, E.; Mellino, G.; Harrow, I.; Smith, I.; Taubert, J. Implementation and relevance of FAIR data principles in biopharmaceutical R&D. Drug Discov. Today 2019, 24, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Foundation, G.F. GO FAIR Foundation. Available online: https://www.gofairfoundation.org/ (accessed on 1 November 2021).
- Wijk, V.M.; Hammond, J.; Gorman, L.; Adams, S.; Ayantunde, A.; Baines, D.; Bolliger, A.; Bosire, C.; Carpena, P.; Chesterman, S. The Rural Household Multiple Indicator Survey, data from 13,310 farm households in 21 countries. Sci. Data 2020, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Arnaud, E.; Laporte, M.-A.; Kim, S.; Aubert, C.; Leonelli, S.; Miro, B.; Cooper, L.; Jaiswal, P.; Kruseman, G.; Shrestha, R. The ontologies community of practice: A CGIAR initiative for big data in agrifood systems. Patterns 2020, 1, 100105. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 4. [Google Scholar] [CrossRef]
- Knickel, K.; Redman, M.; Darnhofer, I.; Ashkenazy, A.; Chebach, T.C.; Šūmane, S.; Tisenkopfs, T.; Zemeckis, R.; Atkociuniene, V.; Rivera, M. Between aspirations and reality: Making farming, food systems and rural areas more resilient, sustainable and equitable. J. Rural Stud. 2018, 59, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Urruty, N.; Tailliez-Lefebvre, D.; Huyghe, C. Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 15. [Google Scholar] [CrossRef] [Green Version]
- de Goede, D.M.; Gremmen, B.; Blom-Zandstra, M. Robust agriculture: Balancing between vulnerability and stability. NJAS-Wagening. J. Life Sci. 2013, 64–65, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Darnhofer, I. Resilience and why it matters for farm management. Eur. Rev. Agric. Econ. 2014, 41, 461–484. [Google Scholar] [CrossRef]
- Meuwissen, M.P.; Feindt, P.H.; Spiegel, A.; Termeer, C.J.; Mathijs, E.; de Mey, Y.; Finger, R.; Balmann, A.; Wauters, E.; Urquhart, J. A framework to assess the resilience of farming systems. Agric. Syst. 2019, 176, 102656. [Google Scholar] [CrossRef]
- Van Bueren, E.T.L.; Struik, P.C.; van Eekeren, N.; Nuijten, E. Towards resilience through systems-based plant breeding. A review. Agron. Sustain. Dev. 2018, 38. [Google Scholar] [CrossRef] [Green Version]
- Van der Windt, D.; Thomas, E.; Pope, D.P.; de Winter, A.F.; Macfarlane, G.J.; Bouter, L.M.; Silman, A.J. Occupational risk factors for shoulder pain: A systematic review. Occup. Environ. Med. 2000, 57, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, P.W.B.; Relf-Eckstein, J.A.; Jobe, G.; Wixted, B. Configuring the new digital landscape in western Canadian agriculture. NJAS-Wagening. J. Life Sci. 2019, 90–91, 90–91. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Turner, J.A. Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: Initial understandings and emerging organisational responses to digital agriculture. NJAS-Wagening. J. Life Sci. 2019, 90–91, 90–91. [Google Scholar] [CrossRef]
- Cook, S.; Jackson, E.L.; Fisher, M.J.; Baker, D.; Diepeveen, D. Embedding digital agriculture into sustainable Australian food systems: Pathways and pitfalls to value creation. Int. J. Agric. Sustain. 2021. [Google Scholar] [CrossRef]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef] [Green Version]
- Baseca, C.C.; Sendra, S.; Lloret, J.; Tomas, J. A Smart Decision System for Digital Farming. Agronomy 2019, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Capalbo, S.M.; Antle, J.M.; Seavert, C. Next generation data systems and knowledge products to support agricultural producers and science-based policy decision making. Agric. Syst. 2017, 155, 191–199. [Google Scholar] [CrossRef]
- Harrison, P.W.; Fan, J.; Richardson, D.; Clarke, L.; Zerbino, D.; Cochrane, G.; Archibald, A.L.; Schmidt, C.J.; Flicek, P. FAANG, establishing metadata standards, validation and best practices for the farmed and companion animal community. Anim. Genet. 2018, 49, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Dorich, C.D.; Conant, R.T.; Albanito, F.; Butterbach-Bahl, K.; Grace, P.; Scheer, C.; Snow, V.O.; Vogeler, I.; van der Weerden, T.J. Improving N2O emission estimates with the global N2O database. Curr. Opin. Environ. Sustain. 2020, 47, 13–20. [Google Scholar] [CrossRef]
- Specka, X.; Gärtner, P.; Hoffmann, C.; Svoboda, N.; Stecker, M.; Einspanier, U.; Senkler, K.; Zoarder, M.A.M.; Heinrich, U. The BonaRes metadata schema for geospatial soil-agricultural research data—Merging INSPIRE and DataCite metadata schemes. Comput. Geosci. 2019, 132, 33–41. [Google Scholar] [CrossRef]
- Singh, A.; Jones, S.; Ganapathysubramanian, B.; Sarkar, S.; Mueller, D.; Sandhu, K.; Nagasubramanian, K. Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping. Trends Plant Sci. 2021, 26, 56–69. [Google Scholar] [CrossRef]
- Hackett, R.A.; Belitz, M.W.; Gilbert, E.E.; Monfils, A.K. A data management workflow of biodiversity data from the field to data users. Appl. Plant Sci. 2019, 7, e11310. [Google Scholar] [CrossRef]
- Roitsch, T.; Cabrera-Bosquet, L.; Fournier, A.; Ghamkhar, K.; Jiménez-Berni, J.; Pinto, F.; Ober, E.S. Review: New sensors and data-driven approaches—A path to next generation phenomics. Plant Sci. 2019, 282, 2–10. [Google Scholar] [CrossRef]
- Elkington, J. Towards the sustainable corporation: Win-win-win business strategies for sustainable development. Calif. Manag. Rev. 1994, 36, 90–100. [Google Scholar] [CrossRef]
- Keeble, J.J.; Topiol, S.; Berkeley, S. Using indicators to measure sustainability performance at a corporate and project level. J. Bus. Ethics 2003, 44, 149–158. [Google Scholar] [CrossRef]
- Ali, B.; Dahlhaus, P. The role of FAIR data towards sustainable agricultural performance: A systematic literature review. Agriculture 2022, 12, 309. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Thinking. Sustaining Ecosystems and People in a Changing World; Island Press: London, UK, 2006; p. 174. [Google Scholar]
- Walker, B. Finding Resilience: Change and Uncertainty in Nature and Society; CSIRO Publishing: Clayton, Australia, 2020. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; The Free Press: New York, NY, USA, 2003. [Google Scholar]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Chkanikova, O.; Lehner, M. Private eco-brands and green market development: Towards new forms of sustainability governance in the food retailing. J. Clean. Prod. 2015, 107, 74–84. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Ramirez, A. The Influence of Social Networks on Agricultural Technology Adoption. In Proceedings of the 9th Conference on Applications of Social Network Analysis (ASNA), Zurich, Switzerland, 3–7 September 2012; pp. 101–116. [Google Scholar]
- Sampson, G.S.; Perry, E.D. Peer effects in the diffusion of water-saving agricultural technologies. Agric. Econ. 2019, 50, 693–706. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.S.; Bell, A.R.; Droppelmann, K.; Benton, T.G. Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Policy 2018, 70, 27–37. [Google Scholar] [CrossRef]
- Darnhofer, I.; Bellon, S.; Dedieu, B.; Milestad, R. Adaptiveness to enhance the sustainability of farming systems. A review. Agron. Sustain. Dev. 2010, 30, 545–555. [Google Scholar] [CrossRef] [Green Version]
Construct | Indicators | Sources |
---|---|---|
Precision conservation agriculture | Tillage/ Ploughing | Yost et al. [29]; Birner et al. [30]; Delgado, Groffman et al. [31]; Yost et al. [32]; Berry et al. [33]; Berry et al. [9]; Delgado & Berry [34]; Delgado, Khosla et al. [10]; Barasa et al. [35]; Parihar et al. [36]; Kitchen et al. [37]; Mhlanga et al. [38]; Lerch et al. [39]; Delgado & Bausch, [40]; Shitu et al. [41]; Martens et al. [42]; Altieri et al. [43]. |
Stubble Management | Yost et al. [29]; Delgado, Groffman et al. [31]; Yost et al. [32]; Berry et al. [33]; Berry et al. [9]; Delgado & Berry [34]; Delgado, Khosla et al. [10]; Barasa et al. [35]; Parihar et al. [36]; Mhlanga et al. [38]; Lerch et al. [39]; Delgado & Bausch [40]; Shitu et al. [41]; Martens et al. [42]; Altieri et al. [43]. | |
Precision nutrient management | Capmourteres et al. [44]; Yost et al. [29];McConnell & Burger et al. [13]; Bronson et al. [45];Birner et al. [30]; Delgado, Groffman et al. [31]; Yost et al. [32]; Berry et al. [33]; Berry et al. [9]; Delgado & Berry [34]; Delgado, Khosla et al. [10]; Bronson [46]; Barasa et al. [35]; Parihar et al. [36]; Kitchen et al. [37]; Mhlanga et al. [38]; Lerch et al. [39]; Delgado & Bausch [40]; Shitu et al. [41]; Wolfert et al. [22]; Weersink et al. [47]; Martens et al. [42]; Altieri et al. [43]. | |
Crop Diversification | Capmourteres et al. [44]; Yost et al. [29]; McConnell & Burger et al. [13]; Delgado, Groffman et al. [31]; Yost et al. [32]; Delgado, Khosla et al. [10]; Bronson [46]; Barasa et al. [35]; Parihar et al. [36]; Mhlanga et al. [38]; Shitu et al. [41]; Weersink et al. [47]; Martens et al. [42]; Altieri et al. [43]; George et al. [48]. | |
Alternate wet and drying | Capmourteres et al. [44]; Yost et al. [29]; McConnell & Burger et al. [13]; Birner et al. [30]; Delgado, Groffman et al. [31]; Yost et al. [32]; Shang et al. [49]; Delgado & Berry [34]; Delgado, Khosla et al. [10]; Barasa et al. [35]; Parihar et al. [36]; Kitchen et al. [37]; Mhlanga et al. [38]; Lerch et al. [39]; Delgado & Bausch [40]; Shitu et al. [41]; Martens et al. [42]; Altieri et al. [43]; George et al. [48]. | |
Digital agriculture | Findability | Boeckhout et al. [50]; Musker et al. [51]; Wise et al. [52]; GO FAIR [53]; Wijk et al. [54]; Giuliani et al. [55]; Arnaud et al. [56]. |
Accessibility | ||
Interoperability | ||
Reusability | ||
Resilient agriculture | Robustness | Folke et al. [57]; Knickel et al. [58]; Urruty et al. [59]; de Goede et al. [60]; Darnhofer [61]; Meuwissen et al. [62]; van Bueren et al. [63]; Martens et al. [42]; Altieri et al. [43]; Darnhofer et al. [20]; George et al. [48]. |
Adaptability | ||
Transformability |
Grade | Criteria |
---|---|
Substantiated |
|
Partially substantiated |
|
Unsubstantiated |
|
Serial # | Citation | Research Areas a | Indicators/Adaptations | Interrelationship | Scientific | Empirical/Exploratory | Case Study | Qualitative/Descriptive | Commentary/Editorial | Evidence b | Strength of Evidence c | Cited by d |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Capmourteres et al. [44] | Agri. | * | * | * | * | * | +++ | I | 11 | ||
2 | Yost et al. [29] | Agri. | * | * | * | * | * | +++ | I | 33 | ||
3 | McConnell & Burger et al. [13] | Env. Sci. & Eco.; Agri.; W.R. | * | * | * | * | * | +++ | I | 21 | ||
4 | Bronson et al. [45] | S.S.—Int.; O.T. | * | * | * | ++ | II | 90 | ||||
5 | Birner et al. [30] | Agri.; B&E | * | * | ++ | II | 03 | |||||
6 | Delgado, Groffman et al. [31] | Env. Sci. & Eco.; Agri.; W.R. | * | * | * | * | * | +++ | I | 127 | ||
7 | Yost et al. [32] | Agri. | * | * | * | * | * | +++ | I | 07 | ||
8 | Shang et al. [49] | Agri. | * | * | * | * | * | +++ | I | - | ||
9 | Phillips et al. [65] | Agri. | * | * | * | ++ | II | 11 | ||||
10 | Rijswijk et al. [66] | Agri. | * | * | * | * | ++ | II | 11 | |||
11 | Berry et al. [33] | Env. Sci. & Eco.; Agri.; W.R. | * | * | * | * | +++ | I | 44 | |||
12 | Berry et al. [9] | Env. Sci. & Eco.; Agri.; W.R. | * | * | * | * | * | * | +++ | I | 83 | |
13 | Delgado & Berry [34] | Agri. | * | * | * | * | * | +++ | I | 49 | ||
14 | Cook et al. [67] | Agri.; S&T—O.T. | * | * | * | * | +++ | I | 01 | |||
15 | Shepherd et al. [68] | Agri.; Chemistry; Food S&T | * | * | * | ++ | II | 32 | ||||
16 | Baseca et al. [69] | Agri.; P.Sci. | * | * | * | * | +++ | I | 25 | |||
17 | Delgado, Khosla et al. [10] | Env. Sci. & Eco.; Agri.; W.R. | * | * | ++ | II | 14 | |||||
18 | Bronson [46] | Agri. | * | * | * | ++ | II | 31 | ||||
19 | Barasa et al. [35] | Agri.; P.Sci. | * | * | * | * | * | +++ | I | - | ||
20 | Parihar et al. [36] | Agri.; W.R. | * | * | * | * | +++ | I | 13 | |||
21 | Kitchen et al. [37] | Env. Sci. & Eco.; Agri.; W.R. | * | * | * | * | * | +++ | I | 45 | ||
22 | Mhlanga et al. [38] | Agri.; S&T—O.T. | * | * | * | * | * | +++ | I | - | ||
23 | Lerch et al. [39] | Env. Sci. & Eco.; Agri.; W.R. | * | * | * | * | * | +++ | I | 45 | ||
24 | Delgado & Bausch [40] | Env. Sci. & Eco.; Agri.; W.R. | * | * | * | * | * | +++ | I | 50 | ||
25 | Shitu et al. [41] | Agri. | * | * | * | * | +++ | I | ||||
26 | Capalbo et al. [70] | Agri. | * | * | * | ++ | II | 33 | ||||
27 | Wolfert et al. [22] | Agri. | * | * | * | * | +++ | I | 550 | |||
28 | Weersink et al. [47] | Agri.; B&E; Env. Sci. & Eco. | * | * | * | ++ | II | 54 | ||||
29 | Wijk et al. [54] | S&T; MS—O.T. | * | * | * | * | * | +++ | I | 02 | ||
30 | Harrison et al. [71] | Agri.; Genetics & Heredity | * | * | * | * | +++ | I | 14 | |||
31 | Dorich et al. [72] | Env. Sci. & Eco.; S&T—O.T. | * | * | * | * | +++ | I | 05 | |||
32 | Giuliani et al. [55] | Remote sensing | * | * | * | * | * | +++ | I | 18 | ||
33 | Specka et al. [73] | CS; IP; GM | * | * | * | * | * | +++ | I | 02 | ||
34 | Arnaud et al. [56] | CS; IP | * | * | * | +++ | I | 02 | ||||
35 | Singh et al. [74] | P.Sci. | * | * | * | * | * | +++ | I | 09 | ||
36 | Hacket et al. [75] | P.Sci. | * | * | * | * | * | +++ | I | 01 | ||
37 | Roitsch et al. [76] | P.Sci.; BMB | * | * | * | * | +++ | I | 42 | |||
38 | Folke et al. [57] | Ecology; Env. Studies | * | * | * | ++ | II | 853 | ||||
39 | Knickel et al. [58] | R&UP; PAG | * | * | * | * | * | +++ | I | 40 | ||
40 | Urruty et al. [59] | Agri.; S&T—O.T. | * | * | * | * | ++ | II | 80 | |||
41 | de Goede et al. [60] | Agri. | * | * | * | * | ++ | II | 17 | |||
42 | Darnhofer [61] | Agri.; B&E | * | * | * | * | ++ | II | 121 | |||
43 | Meuwissen et al. [62] | Agri. | * | * | * | * | +++ | I | 83 | |||
44 | van Bueren et al. [63] | Agri.; S&T—O.T. | * | * | * | * | * | +++ | I | 24 | ||
45 | Martens et al. [42] | Agri.; P.Sci. | * | * | * | ++ | II | 14 | ||||
46 | Altieri et al. [43] | Agri.; S&T—O.T. | * | * | * | * | * | +++ | I | 283 | ||
47 | Darnhofer et al. [20] | Agri.; S&T—O.T. | * | * | * | ++ | II | 182 | ||||
48 | George et al. [48] | Env. Sci. & Eco. | * | * | * | ++ | II | 04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, B.; Dahlhaus, P. Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review. Sustainability 2022, 14, 3185. https://doi.org/10.3390/su14063185
Ali B, Dahlhaus P. Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review. Sustainability. 2022; 14(6):3185. https://doi.org/10.3390/su14063185
Chicago/Turabian StyleAli, Basharat, and Peter Dahlhaus. 2022. "Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review" Sustainability 14, no. 6: 3185. https://doi.org/10.3390/su14063185