Achieving Sustainability of the Seafood Sector in the European Atlantic Area by Addressing Eco-Social Challenges: The NEPTUNUS Project
Abstract
:1. Introduction
2. Research Methodology
2.1. Building a Robust Life Cycle Database and Model
2.2. Creating a Nexus Ecolabel
- Carbon footprint: quantifies greenhouse gas (GHG) emissions, the main driver of climate change, and helps understand how to mitigate it. LCA studies have shownn that the consumption of marine fuel and its subsequent burning by fleets are the main environmental burden from fishing production [49], together with feed production from farming seafood products [50];
- Water footprint: fishing is a high-water-demander and wastewater producer. This is particularly noteworthy in the processing stage during the cleaning and de-scale steps [51];
- Energy footprint: the consequences of rising fuel prices, taxes levied on emissions and tightening environmental regulations lead to the implementation of energy efficiency plans [52].
2.3. Packaging Eco-Design and Waste Management
2.4. Giving a Second Life to Seafood Waste
3. Identifying Threats and Challenges of Fishing in the Atlantic Area
3.1. Marine Debris
3.2. Climate Change
3.3. Green Economy
4. The Importance of a Transnational Approach
5. From Researching to Stakeholders
6. Expected Outputs and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gephart, J.A.; Deutsch, L.; Pace, M.L.; Troell, M.; Seekell, D.A. Shocks to fish production: Identification, trends, and consequences. Global Environ. Change 2017, 42, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Sigurðardóttir, S.; Stefánsdóttir, E.K.; Condie, H.; Margeirsson, S.; Catchpole, T.L.; Bellido, J.M.; Eliasen, S.Q.; Goñi, R.; Madsen, N.; Palialexis, A. How can discards in European fisheries be mitigated? Strengths, weaknesses, opportunities and threats of potential mitigation methods. Mar. Policy 2015, 51, 366–374. [Google Scholar] [CrossRef]
- Schröder, U. Challenges in the traceability of seafood. J. Verbrauch. Lebensm. 2008, 3, 45–48. [Google Scholar] [CrossRef]
- EUMOFA. EUMOFA Database–Fisheries and Aquaculture. 2021. Available online: https://www.eumofa.eu/data (accessed on 4 February 2022).
- European Commission. The EU Blue Economy Report 2019. Luxembourg. European Commission. 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/676bbd4a-7dd9-11e9-9f05-01aa75ed71a1/language-en/ (accessed on 4 February 2022).
- United Nations. Goal 12: Ensure Sustainable Consumption and Production Patterns. 2019. Available online: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/ (accessed on 4 February 2022).
- FAO. The State of World Fisheries and Aquaculture 2018-Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Peck, M.; Pinnegar, J.K. Climate Change Impacts, Vulnerabilities and Adaptations: North Atlantic and Atlantic Arctic Marine Fisheries. In Impacts of Climate Change on Fisheries and Aquaculture; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2019; ISBN 978-92-5-130607-9. ISSN 2070-7010. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Off. J. Eur. Union 2013, L 354, 22–61. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: On the implementation of the Circular Economy Action Plan, COM/2019/0090. 2019. Available online: https://ec.europa.eu/commission/sites/beta-political/files/report_implementation_circular_economy_action_plan.pdf (accessed on 4 March 2022).
- European Commission. Product Environmental Footprint Category Rules Guidance (Version 6.3–May 2018). 2018. Available online: https://eplca.jrc.ec.europa.eu/permalink/PEFCR_guidance_v6.3-2.pdf (accessed on 4 March 2022).
- European Commission. Communication from the Commission to the European Parliament and the Council: Building the Single Market for Green Products. Facilitating Better Information on the Environmental Performance of Products and Organisations, COM/2013/0196. 2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2013:0196:FIN:EN:PDF (accessed on 4 March 2022).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. COM(2019) 640 Final. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 4 March 2022).
- Rowan, N.J.; Galanakis, C.M. Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis? Sci. Total Environ. 2020, 748, 141362. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, E.; Rowan, N.J. Microalgae as a natural ecological bioindicator for the simple real-time monitoring of aquaculture wastewater quality including provision for assessing impact of extremes in climate variance—A comparative case study from the Republic of Ireland. Sci. Total Environ. 2021, 802, 149800. [Google Scholar] [CrossRef]
- O’Neill, E.; Rowan, N.J. Novel use of peatlands as future locations for the sustainable intensification of freshwater aquaculture production–A case study from the Republic of Ireland. Sci. Total Environ. 2020, 706, 136044. [Google Scholar] [CrossRef] [PubMed]
- Naugthon, S.; Kavanagh, S.; Lynch, M.; Rowan, N.J. Synchronizing use of sophisticated wet-laboratory and in-field handheld technologies for real-time monitoring of key microalgae, bacteria and physicochemical parameters influencing efficacy of water quality in a freshwater aquaculture recirculation system: A case study from the Republic of Ireland. Aquaculture 2020, 526, 735377. [Google Scholar] [CrossRef]
- Rowan, N.J.; Pogue, R. Editorial overview: Green new deal era—Current challenges and emerging opportunities for developing sustaining and disruptive innovation. Curr. Opin. Environ. Sci. Health 2021, 22, 100294. [Google Scholar] [CrossRef]
- Interreg Atlantic Area. What is Interreg Atlantic Area? 2019. Available online: https://www.atlanticarea.eu/page/2 (accessed on 4 February 2022).
- Neptunus Project 2019 Overall Objective of Neptunus Project. Available online: https://neptunus-project.eu/ (accessed on 4 February 2022).
- Sonnemann, G.; Valdivia, S. Medellin Declaration on Marine Litter in Life Cycle Assessment and Management. Int. J. Life Cycl. Assess 2017, 22, 1637–1639. [Google Scholar] [CrossRef]
- Hollowed, A.B.; Barange, M.; Garçon, V.; Ito, S.I.; Link, J.S.; Aricò, S.; Batchelder, H.; Brown, R.; Griffis, R.; Wawrzynski, W. Recent advances in understanding the effects of climate change on the world’s oceans. ICES J. Mar. Sci. 2019, 76, 1215–1220. [Google Scholar] [CrossRef]
- Steffen, W. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillie, N. The ILO Maritime Labour Convention, 2006: A new paradigm for global labour rights implementation. In Cross Border Social Dialogue and Agreements: An Emerging Global Industrial Relations Framework? Papadakis, K., Ed.; International Labour Office, United Nations: Geneva, Switzerland, 2008; p. 191. [Google Scholar]
- Anderson, J.L.; Asche, F.; Garlock, T. Globalization and commoditization: The transformation of the seafood market. J. Commod. Mark. 2018, 12, 2–8. [Google Scholar] [CrossRef]
- Mansfield, B. Spatializing globalization: A “geography of quality” in the seafood industry. Econ. Geogr. 2003, 79, 1–16. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycl. Assess 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Asselin-Balençon, A.; Broekema, R.; Gastaldi, G.; Houssier, J.; Moutia, A.; Rousseau, V.; Wermeille, A.; Colomb, V. AGRIBALYSE v3.0: The French agricultural and food LCI database. In Methodology for the Food Products; ADEME: Angers, France, 2020. [Google Scholar]
- Bengoa, X.; Guignard, C.; Liernur, A.; Kounina, A.; PapBeadimitriou, C.; Rossi, V.; Bayart, J.B. World Food LCA Database Documentation. Version 3.5.1; Quantis: Lausanne, Switzerland, 2020. [Google Scholar]
- ISO. Environmental Management: Life Cycle Assessment; Principles and Framework (No. 2006); ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method; European Commission, Joint Research Centre: Luxembourg, 2019. [Google Scholar]
- ISO. Environmental Management: Life Cycle Assessment: Requirements and Guidelines (No. 2006); ISO: Geneva, Switzerland, 2006. [Google Scholar]
- European Commission. International Reference Life Cycle Data System (ILCD) Data Network: Compliance Rules and Entry-Level Requirements; Publications Office: Luxembourg, 2012; Available online: https://op.europa.eu/en/publication-detail/-/publication/8d957e1b-7b96-4e2b-9a5e-92f324b781a3/language-en (accessed on 4 March 2022).
- ISO. ISO 14025. Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- UNEP. United Nations Environment Programme, 2020. The “Global LCA Data Access” Network (GLAD) WWW Document. Available online: https://www.globallcadataaccess.org/ (accessed on 22 October 2021).
- Free, C.M.; Mangin, T.; Molinos, J.G.; Ojea, E.; Burden, M.; Costello, C.; Gaines, S.D. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 2020, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Giacomarra, M.; Crescimanno, M.; Vrontis, D.; Miret Pastor, L.; Galati, A. The ability of fish ecolabels to promote a change in the sustainability awareness. Mar. Policy 2021, 123, 104292. [Google Scholar] [CrossRef]
- Thrane, M.; Ziegler, F.; Sonesson, U. Eco-labelling of wild-caught seafood products. J. Clean Prod. 2009, 17, 416–423. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Moreira, M.T.; Feijoo, G. Opportunities and challenges of implementing life cycle assessment in seafood certification: A case study for Spain. Int. Life Cycl. Assess 2016, 21, 451–464. [Google Scholar] [CrossRef]
- Bronnmann, J.; Asche, F. Sustainable Seafood. From Aquaculture and Wild Fisheries: Insights from a Discrete Choice Experiment in Germany. Ecol. Econ. 2017, 142, 113–119. [Google Scholar] [CrossRef]
- Domegan, C. Social marketing and behavioural change in a systems setting. Curr. Opin. Environ. Sci. Health 2021, 23, 100275. [Google Scholar] [CrossRef]
- European Commission. EU Ecolabel for Businesses. 2021. Available online: https://ec.europa.eu/environment/ecolabel/eu-ecolabel-for-businesses.html (accessed on 28 February 2022).
- ISO. ISO 14024. Environmental Labels and Declarations–Type I Environmental Labelling–Principles and Procedures; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Cantillo, J.; Martín, J.C.; Román, C. A hybrid fuzzy topsis method to analyze the coverage of a hypothetical eu ecolabel for fishery and aquaculture products (Faps). Appl. Sci. 2021, 11, 112. [Google Scholar] [CrossRef]
- Van Asselt, E.; Elamin, A.; Sánchez, C.G.; Kalesi, A.; Majoor, E. Incorporating sustainability into food-based dietary guidelines by “traffic light ecolabelling. ” South East. Eur. J. Public Health 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Avadí, A.; Fréon, P. Life cycle assessment of fisheries: A review for fisheries scientists and managers. Fish. Res. 2013, 143, 21–38. [Google Scholar] [CrossRef]
- Fréon, P.; Avadí, A.; Vinatea Chavez, R.A.; Iriarte Ahón, F. Life cycle assessment of the Peruvian industrial anchoveta fleet: Boundary setting in life cycle inventory analyses of complex and plural means of production. Int. J. Life Cycl. Assess 2014, 19, 1068–1086. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Hasan, M.R.; Robb, D.H.; Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Gutierrez, M.; Etxebarria, S.; Revilla, M.; Ramos, S.; Ciriza, A.; Sancho, L.; Zufia, J. Strategies for the controlled integration of food SMEs’ highly polluted effluents into urban sanitation systems. Water 2019, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Jafarzadeh, S.; Ellingsen, H.; Aanondsen, S.A. Energy efficiency of Norwegian fisheries from 2003 to 2012. J. Clean Prod. 2016, 112, 3616–3630. [Google Scholar] [CrossRef]
- Drewnowski, A. The nutrient rich foods index helps to identify healthy, affordable foods. Am. J. Clin. Nutr. 2010, 91, 1095–1101. [Google Scholar] [CrossRef]
- Burk, R.F. Selenium in Nutrition and Health. Am. J. Clin. Nutr. 2007, 86, 1. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Nerhus, I.; Markhus, M.W.; Nilsen, B.M.; Øyen, J.; Maage, A.; Ødegård, E.R.; Midtbø, L.K.; Frantzen, S.; Kögel, T.; Graff, I.E.; et al. Iodine content of six fish species, Norwegian dairy products and hen’s egg. Food Nutr. Res. 2018, 62, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rex, E.; Baumann, H. Beyond ecolabels: What green marketing can learn from conventional marketing. J. Clean Prod. 2007, 15, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Thøgersen, J.; Haugaard, P.; Olesen, A. Consumer responses to ecolabels. Eur. J. Mark. 2010, 44, 1787–1810. [Google Scholar] [CrossRef]
- Swartz, W.; Rashid Sumaila, U.; Watson, R.; Pauly, D. Sourcing seafood for the three major markets: The EU, Japan and the USA. Mar. Policy 2010, 34, 1366–1373. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Putten, V.; Farmery, A.K.; Green, B.S.; Hobday, A.J.; Parker, R.W. Environmental impact of two Australian rock lobster fishery supply chains under a changing climate. J. Ind. Ecol. 2015, 20, 1384–1398. [Google Scholar] [CrossRef]
- Svanes, E.; Vold, M.; Hanssen, O.J. Environmental assessment of cod (Gadus morhua) from autoline fisheries. Int. J. Life Cycle Assess 2011, 16, 611–624. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Life Cycle Assessment of fresh hake fillets captured by the Galician fleet in the Northern Stock. Fish. Res. 2011, 110, 128–135. [Google Scholar] [CrossRef]
- Almeida, C.; Vaz, S.; Ziegler, F. Environmental Life Cycle Assessment of a Canned Sardine Product from Portugal. J. Ind. Ecol. 2015, 19, 607–617. [Google Scholar] [CrossRef]
- Iribarren, D.; Moreira, M.T.; Feijoo, G. Life Cycle Assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain). Res. Conserv. Recy. 2010, 55, 106–117. [Google Scholar] [CrossRef]
- Laso, J.; Margallo, M.; Fullana, P.; Bala, A.; Gazulla, C.; Irabien, Á.; Aldaco, R. When product diversification influences life cycle impact assessment: A case study of canned anchovy. Sci. Total Environ. 2017, 629-639, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Loubet, P.; da Costa, T.P.; Quinteiro, P.; Laso, J.; Baptista de Sousa, D.; Cooney, R.; Mellett, S.; Sonnemann, G.; Rodríguez, C.J.; et al. Packaging environmental impact on seafood supply chains: A review of life cycle assessment studies. J. Ind. Ecol. 2021, 1, 1–18. [Google Scholar] [CrossRef]
- Abejón, R.; Bala, A.; Vázquez-Rowe, I.; Aldaco, R.; Fullana-i-Palmer, P. When plastic packaging should be preferred: Life cycle analysis of packages for fruit and vegetable distribution in the Spanish peninsular market. Resour. Conserv. Recycl. 2020, 155, 104666. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Pivnenko, K.; Faraca, G.; Boldrin, A.; Astrup, T.F. Dynamic Material Flow Analysis of PET, PE, and PP Flows in Europe: Evaluation of the Potential for Circular Economy. Environ. Sci. Technol. 2020, 54, 16166–16175. [Google Scholar] [CrossRef]
- Harris, P.T.; Westerveld, L.; Nyberg, B.; Maes, T.; Macmillan-Lawler, M.; Appelquist, L.R. Exposure of coastal environments to river-sourced plastic pollution. Sci. Total Environ. 2021, 769, 145222. [Google Scholar] [CrossRef]
- Loubet, P.; Couturier, J.; Horta Arduin, R.; Sonnemann, G. Life cycle inventory of plastics losses from seafood supply chains: Methodology and application to French fish products. Sci. Total Environ. 2022, 804, 150117. [Google Scholar] [CrossRef]
- De la Caba, K.; Guerrero, P.; Trung, T.S.; Cruz-Romero, M.; Kerry, J.P.; Fluhr, J.; Maurer, M.; Kruijssen, F.; Albalat, A.; Bunting, S.; et al. From seafood waste to active seafood packaging: An emerging opportunity of the circular economy. J. Clean Prod. 2019, 208, 86–98. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Kulikowska, D.; Bernat, K. Effect of Bio-Based Products on Waste Management. Sustainability 2020, 12, 2088. [Google Scholar] [CrossRef] [Green Version]
- Burch, V.M.; Binet, T.; Barthélemy, C.; Rigaud, A. Farnet Guide 2019. Circular Economy in Fisheries and Aquaculture Areas; European Commission: Luxemburg, 2019; ISBN 978-92-76-01901-5. [Google Scholar] [CrossRef]
- Bala, A.; Laso, J.; Abejón, R.; Margallo, M.; Fullana-i-Palmer, P.; Aldaco, R. Environmental assessment of the food packaging waste management system in Spain: Understanding the present to improve the future. Sci. Total Environ. 2020, 702, 134603. [Google Scholar] [CrossRef] [PubMed]
- Molina-Besch, K.; Wikström, F.; Williams, H. The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? Int. J. Life Cycle Assess. 2019, 24, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Love, D.C.; Fry, J.P.; Milli, M.C.; Neff, R.A. Wasted seafood in the United States: Quantifying loss from production to consumption and moving toward solutions. Global Environ. Change 2015, 35, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Wikström, F.; Verghese, K.; Auras, R.; Olsson, A.; Williams, H.; Wever, R.; Grönman, K.; Kvalvåg Pettersen, M.; Møller, H.; Soukka, R. Packaging Strategies That Save Food: A Research Agenda for 2030. J. Ind. Ecol. 2019, 23, 532–540. [Google Scholar] [CrossRef]
- Pauer, E.; Wohner, B.; Heinrich, V.; Tacker, M. Assessing the Environmental Sustainability of Food Packaging: An Extended Life Cycle Assessment including Packaging-Related Food Losses and Waste and Circularity Assessment. Sustainability 2019, 11, 925. [Google Scholar] [CrossRef] [Green Version]
- EUMOFA. The EU Fish Market 2020 Edition. European Union. 2020. Available online: https://www.eumofa.eu/documents/20178/415635/EN_The+EU+fish+market_2020.pdf (accessed on 5 November 2021).
- FAO. Global Food Losses and Food Waste–Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Gustafsson, J.; Cederberg, U.C.; Sonesson, A.E. The Methodology of the FAO Study: Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2013. [Google Scholar]
- Cammarelle, A.; Lombardi, M.; Viscecchia, R. Packaging Innovations to Reduce Food Loss and Waste: Are Italian Manufacturers Willing to Invest? Sustainability 2021, 13, 1963. [Google Scholar] [CrossRef]
- Hoehn, D.; Laso, J.; Cristobal, J.; Ruiz-Salmón, I.; Butnar, I.; Borrion, A.; Bala, A.; Fullana-i-Palmer, P.; Vázquez-Rowe, I.; Aldaco, R.; et al. Regionalized Strategies for Food Loss and Waste Management in Spain under a Life Cycle Thinking Approach. Foods 2020, 9, 1765. [Google Scholar] [CrossRef]
- Read, Q.D.; Brown, S.; Cuéllar, A.D.; Finn, S.M.; Gephart, J.A.; Marston, L.T.; Meyer, E.; Weitz, K.A.; Muth, M.K. Assessing the environmental impacts of halving food loss and waste along the food supply chain. Sci. Total Environ. 2020, 712, 136255. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.-I.; Williams, M. Feeding 9 billion by 2050–Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Gephart, J.A.; Davis, K.F.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; Pace, M.L. The environmental cost of subsistence: Optimizing diets to minimize footprints. Sci. Total Environ. 2016, 553, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Guillen, J.; Natale, F.; Carvalho, N.; Casey, J.; Hofherr, J.; Druon, J.-N.; Fiore, G.; Gibin, M.; Zanzi, A.; Martinsohn, J.T. Global seafood consumption footprint. Ambio 2019, 48, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohm, H.; Oostindjer, M.; Aschemann-Witzel, J.; Symmank, C.; Almli, V.L.; De Hooge, I.E.; Normann, A.; Karantininis, K. Consumers in a sustainable food supply chain (COSUS): Understanding consumer behavior to encourage food waste reduction. Foods 2017, 6, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stancu, V.; Haugaard, P.; Lähteenmäki, L. Determinants of consumer food waste behaviour: Two routes to food waste. Appetite 2016, 96, 7–17. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System, COM/2020/381; European Commission: Luxemburg, 2020. [Google Scholar]
- Hayes, M.; Gallaguer, M. Processing and recovery of valuable components from pelagic blood-water waste streams: A review and recommendations. J. Clean. Prod. 2019, 215, 410–422. [Google Scholar] [CrossRef]
- Madende, M.; Hayes, M. Fish By-Product Use as Biostimulants: An Overview of the Current State of the Art, Including Relevant Legislation and Regulations within the EU and USA. Molecules 2020, 25, 1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venugopal, V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Front. Sustain. Food Syst. 2021, 5, 132. [Google Scholar] [CrossRef]
- Venugopal, V.; Sasidharan, A. Seafood industry effluents: Environmental hazards, treatment and resource recovery. J. Environ. Chem. Eng. 2021, 9, 104758. [Google Scholar] [CrossRef]
- Malcorps, W.R.W.; Newton, M.; Sprague, B.D.; Glencross, D.; Little, C. Nutritional Characterisation of European Aquaculture Processing By-Products to Facilitate Strategic Utilisation. Front. Sustain. Food Syst. 2021, 5, 378. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Zhou, J.; Barba, F.J.; Lorenzo, J.M. Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules 2020, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Del Borghi, A.; Moreschi, L.; Gallo, M. Circular economy approach to reduce water–energy–food nexus. Curr. Opin. Environ. Sci. Health 2020, 13, 23–28. [Google Scholar] [CrossRef]
- Laso, J.; Margallo, M.; Celaya, J.; Fullana, P.; Bala, A.; Gazulla, C.; Irabien, A.; Aldaco, R. Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry. Waste Manag. Res. 2016, 34, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Salmón, I.; Margallo, M.; Laso, J.; Villanueva-Rey, P.; Mariño, D.; Quinteiro, P.; Dias, A.C.; Nunes, M.L.; Marques, A.; Feijoo, G.; et al. Addressing challenges and opportunities of the European seafood sector under a circular economy framework. Curr. Opin. Environ. Sci. Health 2020, 13, 101–106. [Google Scholar] [CrossRef]
- Aas, T.S.; Åsgård, T.E. Estimated Content of Nutrients and Energy in Feed Spill and Faeces in Norwegian Salmon Culture; Nofima Rapportserie; Nofima AS: Stavanger, Norway, 2017. [Google Scholar]
- Del Campo, L.M.; Ibarra, P.; Gutiérrez, X.; Takle, H.R. Utilization of Sludge from Recirculation Aquaculture Systems; Nofima Rapportserie; Nofima AS: Stavanger, Norway, 2010. [Google Scholar]
- Fassio, F.; Tecco, N. Circular Economy for Food: A Systemic Interpretation of 40 Case Histories in the Food System in Their Relationships with SDGs. Systems 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.B.; Vanapalli, K.R.; Samal, B.; Cheela, V.R.S.; Dubey, B.K.; Bhattacharya, J. Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery. Sci. Total Environ. 2021, 800, 149605. [Google Scholar] [CrossRef]
- Kanellakis, M.; Martinopoulos, G.; Zachariadis, T. European energy policy—A review. Energy Policy 2013, 62, 1020–1030. [Google Scholar] [CrossRef]
- Le Feon, S.; Thévenot, A.; Maillard, F.; Macombe, C.; Forteau, L.; Aubin, J. Life Cycle Assessment of fish fed with insect meal: Case study of mealworm inclusion in trout feed, in France. Aquaculture 2019, 500, 82–91. [Google Scholar] [CrossRef]
- Barr, W.J.; Landis, A.E. Comparative life cycle assessment of a commercial algal multiproduct biorefinery and wild caught fishery for small pelagic fish. Int. J. Life Cycl. Assess 2018, 23, 1141–1150. [Google Scholar] [CrossRef]
- Sainsbury, N.C.; Genner, M.J.; Saville, G.R.; Pinnegar, J.K.; O’Neill, C.K.; Simpson, S.D.; Turner, R.A. Changing storminess and global capture fisheries. Nat. Clim. Chang. 2018, 8, 655. [Google Scholar] [CrossRef]
- Nicola, G.G.; Elvira, B.; Jonsson, B.; Ayllón, D.; Almodóvar, A. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish Res. 2018, 198, 78–85. [Google Scholar] [CrossRef]
- Lusher, A.; Hollman, P.; Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety; Fisheries and Aquaculture Technical Paper 615; FAO: Rome, Italy, 2017. [Google Scholar]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, S.; Budziak, A.; Van Franeker, J.; Galgani, F.; Hanke, G.; Maes, T.; Matiddi, M.; Nilsson, P.; Oosterbaan, L.; Priestland, E.; et al. Harm Caused by Marine Litter; MSFD GES TG Marine Litter-Thematic Report; JRC Technical Report; European Commission: Luxemburg, 2016. [Google Scholar] [CrossRef]
- Peano, L.; Kounina, A.; Magaud, V.; Chalumeau, S.; Zgola, M.; Boucher, J. Plastic Leak Project. Methodological Guidelines; Quantis and EA: Zürich, Switzerland, 2020. [Google Scholar]
- Verones, F.; Woods, J.; Jolliet, O.; Boulay, A.-M.; Vazquez-Rowe, I. Drawing a framework to assess marine plastic litter impacts in life cycle impact assessment: The MarILCA project. In Proceedings of the SETAC Europe 30th Annual Meeting, Online, 3–7 May 2020. [Google Scholar]
- Gilman, E. Status of international monitoring and management of abandoned, lost and discarded fishing gear and ghost fishing. Mar. Policy 2015, 60, 225–239. [Google Scholar] [CrossRef]
- IPCC. The Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/ (accessed on 4 February 2022).
- Bargange, M.; Bahri, T.; Beveridge, M.; Cochrane, K.; Funge-Smith, S.; Poulain, F. Impacts of climate change on fisheries and aquaculture - Synthesis of current knowledge, adaptation and mitigation options. FAO fisheries and aquaculture technical paper 627. 2018, Rome. [Google Scholar]
- Cutler, M.J. Seeing and believing: The emergent nature of extreme weather perceptions. Environ. Soc. 2015, 1, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Laksa, U.; Laksafoss, M.; Arias-Hansen, J.; Gyalog, G.; Baudron, A.; Papandroukalis, N.; Ytteborg, E.; Hermansen, O.; Danielsdottir, A.K.; et al. European Seafood Production under Climate Change: Assessing Economic and Social Consequences. In Proceedings of the International Institute of Fisheries Economics & Trade, Seattle, WA, USA, 16–20 July 2018. [Google Scholar]
- Adger, W.N.; Hodbod, J. Ecological and social resilience. In Handbook of Sustainable Development; Edward Elgar Publishing: Cheltenham, UK, 2014. [Google Scholar]
- Marshall, N.A.; Tobin, R.C.; Marshall, P.A.; Gooch, M.; Hobday, A.J. Social vulnerability of marine resource users to extreme weather events. Ecosystems 2013, 16, 797–809. [Google Scholar] [CrossRef]
- Paris Agreement. 2015. Available online: https://ec.europa.eu/clima/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_es (accessed on 4 February 2022).
- Del Giudice, T.; Stranieri, S.; Caracciolo, F.; Ricci, E.C.; Cembalo, L.; Banterle, A.; Cicia, G. Corporate social responsibility certifications influence consumer preferences and seafood market price. J. Clean Prod. 2018, 178, 526–533. [Google Scholar] [CrossRef]
- Fletcher, C.A.; Saint Clair, R.; Sharmina, M. Seafood businesses’ resilience can benefit from circular economy principles. Nat. Food 2021, 2, 228–232. [Google Scholar] [CrossRef]
- Eisenhardt, K.M.; Martin, J.A. Dynamic capabilities: What are they? Strategic Manag. J. 2000, 21, 1105–1121. [Google Scholar] [CrossRef]
- Mellett, S.; Kelliher, F.; Harrington, D. Network-facilitated green innovation capability development in micro-firms. J. Small Bus. Enterp. Dev. 2018, 25, 1004–1024. [Google Scholar] [CrossRef]
- Teece, D.J. Business models and dynamic capabilities. Long Range Plan. 2018, 51, 40–49. [Google Scholar] [CrossRef]
- Kelliher, F.; Mellett, S.; Harrington, D. Enablers of green innovation in the micro-firm—Perspectives from Ireland and Canada. J. Small Bus. Entrep. 2020, 34, 74–93. [Google Scholar] [CrossRef]
- Mezger, F. Toward a capability-based conceptualization of business model innovation: Insights from an explorative study. R&D Manag. 2014, 44, 429–449. [Google Scholar]
- McKuin, B.; Watson, J.T.; Stohs, S.; Campbell, J.E. Rethinking sustainability in seafood: Synergies and trade-offs between fisheries and climate change. Elem. Sci. Anth. 2021, 9, 00081. [Google Scholar] [CrossRef]
- Fleming, A.; Hobday, A.J.; Farmery, A.; van Putten, E.I.; Pecl, G.T.; Green, B.S.; Lim-Camacho, L. Climate change risks and adaptation options across Australian seafood supply chains—A preliminary assessment. Clim. Risk Manag. 2014, 1, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Tlusty, M.F.; Tyedmers, P.; Bailey, M.; Ziegler, F.; Henriksson, P.J.; Béné, C.; Bush, S.; Newton, R.; Asche, F.; Little, D.C.; et al. Reframing the sustainable seafood narrative. Glob. Environ. Change 2019, 59, 101991. [Google Scholar] [CrossRef]
- Tseng, M.L.; Tran, T.P.T.; Wu, K.J.; Xue, B.; Chen, X. Causality seafood processing circular supply chain capabilities in qualitative data analytics. Ind. Manag. Data Syst. 2021, 121, 2760–2784. [Google Scholar] [CrossRef]
- Budiarti, L.; Setyorini, C.T.; Susilowati, D.; Sukardi, P.; Jannah, M. Triple helix as an empowerment strategy for labor fishermen: A proposed model through action research study. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 746, p. 012011. [Google Scholar]
- Fikri, M.M.; Rahmat, S.R. Assessing Malaysia Marine Fisheries sustainability under climate change pressure: A quintuple helix approach. In Economic and Social Development: Book of Proceedings; Varazdin Development and Entrepreneurship Agency: Varazdin, Croatia, 2019; pp. 199–207. [Google Scholar]
- Rowan, N.J.; Casey, O. Empower Eco Multi-Actor HUB: A triple helix “academia-industry-authority” approach to creating and sharing potentially disruptive tools for addressing novel and emerging new Green Deal opportunities under a United Nations’ Sustainable Development Goals framework. Curr. Opin. Environ. Sci. Health 2021, 21, 100254. [Google Scholar]
- Carayannis, E.G.; Campbell, D.F.; Grigoroudis, E. Helix Trilogy: The Triple, Quadruple, and Quintuple Innovation Helices from a Theory, Policy, and Practice Set of Perspectives. J. Knowl. Econ. 2021, 1–30. Available online: https://www.researchgate.net/publication/352753525_Helix_Trilogy_the_Triple_Quadruple_and_Quintuple_Innovation_Helices_from_a_Theory_Policy_and_Practice_Set_of_Perspectives (accessed on 4 February 2022). [CrossRef]
- Zhou, C.; Etzkowitz, H. Triple Helix Twins: A Framework for Achieving Innovation and UN Sustainable Development Goals. Sustainability 2021, 13, 6535. [Google Scholar] [CrossRef]
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular economy performance assessment methods: A systematic literature review. J. Clean Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Jacob, C.; Noirot, C.; Anglada, C.; Binet, T. The benefits of integrating socio-economic dimensions of circular economy practices in the seafood sector. Curr. Opin. Environ. Sci. Health 2021, 22, 100255. [Google Scholar] [CrossRef]
- Le Gouvello, R. L’économie circulaire appliquée à un système socio-écologique halio-alimentaire localisé: Caractérisation, évaluation, opportunités et défis. Ph.D. Thesis, Université de Bretagne Occidentale-Brest, Brest, France, 2019. [Google Scholar]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Loiseau, E. Élaboration d’une démarche d’évaluation environnementale d’un territoire basée sur le cadre méthodologique de l’Analyse du Cycle de Vie (ACV): Application au territoire du Bassin de Thau. Ph.D. Thesis, Doctorat Génie des Procédés, Montpellier SupAgro, Montpellier, France, 2014. [Google Scholar]
- Iacovidou, E.; Millward-Hopkins, J.; Busch, J.; Purnell, P.; Velis, C.A.; Hahladakis, J.N.; Brown, A. A pathway to circular economy: Developing a conceptual framework for complex value assessment of resources recovered from waste. J. Clean Prod. 2017, 168, 1279–1288. [Google Scholar] [CrossRef]
- Bruel, A.; Kronenberg, J.; Troussier, N.; Guillaume, B. Linking industrial ecology and ecological economics: A theoretical and empirical foundation for the circular economy. J. Ind. Ecol. 2018, 23, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Rizos, V.; Tuokko, K.; Behrens, A. The Circular Economy: A Review of Definitions, Processes and Impacts (No. 12440); Centre for European Policy Studies: Brussels, Belgium, 2017. [Google Scholar]
- Petit, G.; Sablayrolles, C.; Yannou-Le Bris, G. Combining eco-social and environmental indicators to assess the sustainability performance of a food value chain: A case study. J. Clean Prod. 2018, 191, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Walz, M.; Günther, E. What effects does material flow cost accounting have for companies? Evidence from a case studies analysis. J. Ind. Ecol. 2021, 25, 593–613. [Google Scholar] [CrossRef]
- Grealis, E.; Hynes, S.; O’Donoghue, C.; Vega, A.; Van Osch, S.; Twomey, C. The economic impact of aquaculture expansion: An input-output approach. Mar. Policy 2017, 81, 29–36. [Google Scholar] [CrossRef]
- Cerceau, J.; Junqua, G.; Gonzalez, C.; Laforest, V.; Lopez-Ferber, M. Quel territoire pour quelle écologie industrielle? Contribution à la définition du territoire en écologie industrielle. Développement durable et territoires. Écon. Géogr. Polit. Droit Sociol. 2014, 5, 1–24. [Google Scholar] [CrossRef]
- Beaurain, C.; Brullot, S. L’écologie industrielle comme processus de développement territorial: Une lecture par la proximité. Rev. Econ. Reg. Urbaine 2011, 2, 313–340. [Google Scholar] [CrossRef]
- Doré, G. Économie circulaire et écologie industrielle. Approche empirique à partir d’expériences de clusters et de territoires. Développement durable et territoires. Écon. Géogr. Polit. Droit Sociol. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Bourdin, S.; Torre, A. The territorial big bang: Which assessment about the territorial reform in France? Eur. Plan. Stud. 2020, 29, 1981–1998. [Google Scholar] [CrossRef]
- Ruiz-Salmón, I.; Laso, J.; Margallo, M.; Villanueva-Rey, P.; Rodríguez, E.; Quinteiro, P.; Dias, A.C.; Almeida, C.; Nunes, M.L.; Marques, A.; et al. Life cycle assessment of fish and seafood processed products—A review of methodologies and new challenges. Sci. Total Environ. 2021, 761, 14094. [Google Scholar] [CrossRef]
- Cortés, A.; González-García, S.; Franco-Uría, A.; Moreira, M.T.; Feijoo, G. Evaluation of the environmental sustainability of the inshore great scallop (Pecten maximus) fishery in Galicia. J. Ind. Ecol. 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Laso, J.; Campos, C.; Ruiz-Salmón, I.; Hoehn, D.; Cristóbal, J.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Puig, R.; et al. Towards a Water-Energy-Food (WEF) nexus index: A review of nutrient profile models as a fundamental pillar of food and nutrition security. Sci. Total Environ. 2021, 789, 147936. [Google Scholar] [CrossRef]
- Cortés, A.; Esteve-Llorens, X.; González-García, S.; Moreira, M.T.; Feijoo, G. Multi-product strategy to enhance the environmental profile of the canning industry towards circular economy. Sci. Total Environ. 2021, 791, 148249. [Google Scholar] [CrossRef]
- Cooney, R.; Wan, A.H.L.; O’Donncha, F.; Clifford, E. Designing environmentally efficient aquafeeds through the use of multicriteria decision support tools. Curr. Opin. Environ. Sci. Health 2021, 23, 100276. [Google Scholar] [CrossRef]
- Ruiz-Salmón, I.; Fernández-Ríos, A.; Campos, C.; Laso, J.; Margallo, M.; Aldaco, R. The fishing and seafood sector in the time of COVID-19: Considerations for local and global opportunities and responses. Curr. Opin. Environ. Sci. Health 2021, 23, 100286. [Google Scholar] [CrossRef]
Country | Total (t) | Top Species | Tonnage of Top Species (t) | % of Total Production by Top Species |
---|---|---|---|---|
Fisheries Production | ||||
France | 332,666. | Great Atlantic scallop | 67,053 | 20% |
Ireland | 212,282 | Mackerel | 57,371 | 27% |
Portugal | 128,302 | Mackerel | 31,946 | 25% |
Spain | 843,159 | Skipjack tuna | 191,795 | 23% |
United Kingdom | 440,366 | Mackerel | 94,907 | 22% |
Total Fisheries | 1,956,775 | - | 443,073 | 23% |
Aquaculture | ||||
France | 188,327 | Oyster | 92,946 | 49% |
Ireland | 34,605 | Blue mussel | 13,889 | 40% |
Portugal | 13,512 | Clam | 4190 | 31% |
Spain | 318,597 | Mussel Mytilus spp | 242,725 | 76% |
United Kingdom | 185,296 | Atlantic salmon | 156,025 | 84% |
Total aquaculture | 740,336 | - | 509,775 | 69% |
Atlantic Area Seafood Production | ||||
Total seafood | 2,697,111 | - | 952,848 | 35% |
Activity/Datasets | Allocation Rule | Modelling Instructions |
---|---|---|
Fishing | Mass | Despite fishing gears selectivity, several species are caught apart from target species. In this sense, allocation shall be done on the basis of the total amount of catches of each species. |
Aquaculture | Mass | Aquaculture operations are usually focused on the production of a single species, although in some cases, it is possible that several species are produced together. In those cases, the same procedure as in fishing allocation shall be applied. |
Seafood processing | Mass | This is an example of a multi-product industry, so that different products can be obtained from a single species of fish. For example, from hake, fillets, tails, fish sticks and croquettes could be obtained. In this case, the total annual production of each production line shall be used to establish the allocation factors. It is important to note that the edible weight should be used to establish the annual production. |
Article No. | Reference | Title | Keywords |
---|---|---|---|
1 | [100] | Addressing challenges and opportunities of the European seafood sector under a circular economy framework | Seafood, aquaculture, LCA, circular economy, climate change |
2 | [156] | Life cycle assessment of fish and seafood processed products—A review of methodologies and new challenges | Life cycle assessment, seafood, fisheries, nexus, environmental impacts, sustainability |
3 | [142] | The benefits of integrating socioeconomic dimensions of circular economy practices in the seafood sector | Circular economy, seafood sector, socio-economic dimension, bibliometric analysis |
4 | [157] | Evaluation of the environmental sustainability of the inshore great scallop (Pecten maximus) fishery in Galicia | Environmental impacts, fisheries, gastronomic product, industrial ecology, life cycle assessment, seafood |
5 | [158] | Towards a water-energy-food (WEF) nexus index: A review of nutrient profile models as a fundamental pillar of food and nutrition security | Diet quality, nutrition value, food analysis, dietary assessment, public health, sustainability |
6 | [159] | Multi-product strategy to enhance the environmental profile of the canning industry towards circular economy | Life cycle assessment, canned tuna, value chain, valorisation, by-products |
7 | [160] | Designing environmentally efficient aquafeeds through the use of multicriteria decision support tools | Sustainable aquaculture, aquafeed, life cycle assessment, nutrition, machine learning, seafood |
8 | [161] | The fishing and seafood sector in the time of COVID-19: Considerations for local and global opportunities and responses | Seafood, COVID-19, SARS-CoV-2, fisheries, pandemic |
9 | [67] | Packaging environmental impact on seafood supply chains: A review of life cycle assessment studies | Canning, fish, food packaging, industrial ecology, life cycle assessment, plastic |
10 | [138] | Empower Eco multiactor HUB: A triple helix ‘academia-industry-authority’ approach to creating and sharing potentially disruptive tools for addressing novel and emerging new Green Deal opportunities under a United Nations Sustainable Development Goals framework | Just transition, New Green Deal, sustainability, open research, multiactor hub, circularity, UN Sustainable Development Goals |
11 | [71] | Life cycle inventory of plastics losses from seafood supply chains: Methodology and application to French fish products | Life cycle assessment, marine debris, plastic pollution, lost fishing gears, microplastics, macroplastics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laso, J.; Ruiz-Salmón, I.; Margallo, M.; Villanueva-Rey, P.; Poceiro, L.; Quinteiro, P.; Dias, A.C.; Almeida, C.; Marques, A.; Entrena-Barbero, E.; et al. Achieving Sustainability of the Seafood Sector in the European Atlantic Area by Addressing Eco-Social Challenges: The NEPTUNUS Project. Sustainability 2022, 14, 3054. https://doi.org/10.3390/su14053054
Laso J, Ruiz-Salmón I, Margallo M, Villanueva-Rey P, Poceiro L, Quinteiro P, Dias AC, Almeida C, Marques A, Entrena-Barbero E, et al. Achieving Sustainability of the Seafood Sector in the European Atlantic Area by Addressing Eco-Social Challenges: The NEPTUNUS Project. Sustainability. 2022; 14(5):3054. https://doi.org/10.3390/su14053054
Chicago/Turabian StyleLaso, Jara, Israel Ruiz-Salmón, María Margallo, Pedro Villanueva-Rey, Lucía Poceiro, Paula Quinteiro, Ana Cláudia Dias, Cheila Almeida, António Marques, Eduardo Entrena-Barbero, and et al. 2022. "Achieving Sustainability of the Seafood Sector in the European Atlantic Area by Addressing Eco-Social Challenges: The NEPTUNUS Project" Sustainability 14, no. 5: 3054. https://doi.org/10.3390/su14053054