Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing Methods
2.2.1. Preparation of the Samples
2.2.2. Water Retention Curve Measurement
2.2.3. Measurement of Thermal Properties
2.3. Statistical Evaluation of the Model Prediction
3. Model Development for Estimating Thermal Conductivity
3.1. Existing Models for Estimating Thermal Conductivity
3.2. The New Models for Estimating Thermal Conductivity
3.2.1. Linear Model
3.2.2. Simple Closed-Form Model
4. Results and Discussion
4.1. Measured Thermal Conductivity and Heat Capacity
4.2. Performance of the Predictive Models for Thermal Conductivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
AAC | Autoclaved aerated concrete |
AIC | Akaike’s information criterion |
CDW | Construction and demolition waste |
LA | Los Angeles abrasion |
RC | Recycled concrete |
RCB | Recycled clay brick |
RMSE | Root mean square error |
WRCs | Water retention curves |
A, B, C, D, E | Parameters dependent on physical properties of the soil (Equation (18)) (-) |
a1, b1 | Empirical parameters in the linear model used for estimating λdry (Equation (24)) (-) |
a2 | Parameter in linear model (Equation (25)) (-) |
C* | Specific moisture capacity (-) |
Cu | Coefficient of uniformity (-) |
D50 | Mean particle size (mm) |
F | Soil texture dependent parameter in Equation (21) (-) |
f | Proportion of aggregate in the mixtures |
G, H | Coefficients in Equation (22) (-) |
ga, gb, gc | Depolarization factor of the ellipsoid in different directions (-) |
HC | Heat capacity (MJ m−3 K−1) |
HCdry | Heat capacity at air dried (MJ m−3 K−1) |
k | Number of model parameters (-) |
ka | Weighting factors for the air phase (-) |
ks | Weighting factors for the solid phase (-) |
mc | Clay mass fraction of the soil (kg) |
r | Equivalent pore radius (μm) |
Se | Effective saturation (-) |
Sr | Degree of saturation (%) |
wabs | Water absorption capacity (%) |
wAD | Water content in air-dried condition (%) |
α, n, m | Parameters of van Genuchten WRC (Equation (1)) |
αi, wi, ni, mi | Parameters of Durner WRC (Equation (2)) (-) |
χ | Coefficient accounting for soil type (-) |
ε | Air-filled porosity (m3 m−3) |
ϕ | Total porosity (m3 m−3) |
η | Coefficient accounting for grain shape (-) |
κ | Material dependent parameter (-) |
λ | Thermal conductivity (W m−1 K−1) |
λa | Thermal conductivity of air (W m−1 K−1) |
λapp | Apparent thermal conductivity of the air-filled pore space (W m−1 K−1) |
λdry | Thermal conductivities at air dry (W m−1 K−1) |
λe | Normalized thermal conductivity (-) |
λs | Thermal conductivity of solid phase (W m−1 K−1) |
λsat | Thermal conductivity at water saturation (W m−1 K−1) |
λw | Thermal conductivity of water (W m−1 K−1) |
λv | Apparent thermal conductivity of vapor movement (W m−1 K−1) |
θ | Volumetric water content (m3 m−3) |
θr | Residual volumetric water content (m3 m−3) |
θs | Saturated volumetric water content (m3 m−3) |
ρd | Dry density (kg m−3) |
ρs | Density of solid phase (kg m−3) |
σ | Volumetric solid content (m3 m−3) |
|ψ| | Water potential (kPa) |
Appendix A
References
- Nguyen, H.G.; Nguyen, T.D.; Nghiem, H.T.; Tran, V.C.; Kato, A.; Matsuno, A.; Isobe, Y.; Kawasaki, M.; Kawamoto, K. Current management condition and waste composition characteristics of construction and demolition waste landfills in hanoi of vietnam. Sustainability 2021, 13, 10148. [Google Scholar] [CrossRef]
- Hoang, N.H.; Ishigaki, T.; Kubota, R.; Yamada, M.; Kawamoto, K. A review of construction and demolition waste management in Southeast Asia. J. Mater. Cycles Waste Manag. 2020, 22, 315–325. [Google Scholar] [CrossRef]
- Hoang, T.; Nguyen, V.P.; Thai, H.N. Use of coal ash of thermal power plant for highway embankment construction. In CIGOS 2019, Innovation for Sustainable Infrastructure. Lecture Notes in Civil Engineering; Ha-Minh, C., Dao, D., Benboudjema, F., Derible, S., Huynh, D., Tang, A., Eds.; Springer: Singapore, 2020; Volume 54, pp. 433–439. [Google Scholar] [CrossRef]
- Deloitte. Resource Efficient Use of Mixed Wastes Improving Management of Construction and Demolition Waste. Available online: https://op.europa.eu/en/publication-detail/-/publication/78e42e6c-d8a6-11e7-a506-01aa75ed71a1/language-en (accessed on 15 January 2022).
- Ministry of Natural Resources and Environment (MONRE). Report on National Environment: Solid Waste; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2011. (In Vietnamese)
- Nguyen, V.T.; Tong, T.K.; Dang, T.T.H.; Tran, T.V.N.; Nguyen, H.G.; Nguyen, T.D.; Isobe, Y.; Ishigaki, T.; Kawamoto, K. Current status of construction and demolition waste management in Vietnam: Challenges and opportunities. Int. J. GEOMATE 2018, 15, 23–29. [Google Scholar] [CrossRef]
- Farouki, O.T. Thermal Properties of Soils; Defense Tactical Information Center: Hanover, NH, USA, 1981. [Google Scholar]
- Chen, S.X. Thermal conductivity of sands. Heat Mass Transf. 2008, 44, 1241–1246. [Google Scholar] [CrossRef]
- Deng, H.; Deng, D.; Du, Y.; Lu, X. Using lightweight materials to enhance thermal resistance of asphalt mixture for cooling asphalt pavement. Adv. Civ. Eng. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, Z.; Hu, J.; Zheng, D. Evaluation of stone mastic asphalt containing ceramic waste aggregate for cooling asphalt pavement. Materials 2020, 13, 2964. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.N.; Kato, A.; Nguyen, H.G.; Nguyen, V.T.; Phan, Q.M.; Kawamoto, K. Gas transport parameters of recycled concrete and clay brick aggregate blended with autoclaved aerated concrete grains. Int. J. GEOMATE 2021, 20, 93–100. [Google Scholar] [CrossRef]
- Poon, C.S.; Chan, D. Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Constr. Build. Mater. 2006, 20, 578–585. [Google Scholar] [CrossRef]
- Thai, H.N.; Kato, A.; Nguyen, H.G.; Nguyen, T.D.; Tong, T.K.; Nguyen, V.T.; Uchimura, T.; Maki, T.; Kawamoto, K. Effects of particle size and type of aggregate on mechanical properties and environmental safety of unbound road base and subbase materials: A Literature Review. Int. J. GEOMATE 2021, 20, 148–157. [Google Scholar] [CrossRef]
- Thai, H.N.; Nguyen, T.D.; Nguyen, V.T.; Nguyen, H.G.; Kawamoto, K. Characterization of compaction and CBR properties of recycled concrete aggregates for unbound road base and subbase materials in Vietnam. J. Mater. Cycles Waste Manag. 2022, 24, 34–48. [Google Scholar] [CrossRef]
- TCVN 8859:2011. Aggregate Bases and Subbases of Pavement Structure—Material, Construction, and Acceptance. Vietnam, 2011. Available online: https://thuvienphapluat.vn/TCVN/Xay-dung/Tieu-chuan-Viet-Nam-TCVN-8859-2011-lop-mong-cap-phoi-da-dam-trong-ket-cau-ao-904056.aspx (accessed on 15 January 2022). (In Vietnamese).
- TCVN 8857:2011. Natural Aggregate for Road Pavement Layers Specification for Material, Construction and Acceptance. Vietnam, 2011. Available online: https://thuvienphapluat.vn/TCVN/Giao-thong/TCVN-8857-2011-Lop-ket-cau-ao-duong-o-to-bang-cap-phoi-thien-nhien-904969.aspx (accessed on 15 January 2022). (In Vietnamese).
- TCVN 12790:2020. Soils, Aggregates for Transport Infrastructure—Proctor Compaction Test. Vietnam, 2020. Available online: https://thuvienphapluat.vn/TCVN/Giao-thong/TCVN-12790-2020-Dat-da-dam-dung-trong-cong-trinh-giao-thong-Dam-nen-Proctor-918809.aspx (accessed on 15 January 2022). (In Vietnamese).
- ASTM D1557-12; ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef][Green Version]
- Durner, W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 1994, 30, 211–223. [Google Scholar] [CrossRef]
- Seki, K. SWRC fit—A nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 407–437. [Google Scholar] [CrossRef][Green Version]
- Brutsaert, W. Probability laws for pore size distribution. Soil Sci. 1966, 101, 85–92. [Google Scholar] [CrossRef]
- Schober, G. Porosity in autoclaved aerated concrete (AAC): A review on pore structure, types of porosity, measurement methods and effects of porosity on properties. Cem. Wapno Bet. 2011, 39–43. [Google Scholar]
- Chen, G.; Li, F.; Jing, P.; Geng, J.; Si, Z. Effect of pore structure on thermal conductivity and mechanical properties of autoclaved aerated concrete. Materials. 2021, 14, 339. [Google Scholar] [CrossRef]
- Nagihara, S.; Hedlund, M.; Zacny, K.; Taylor, P.T. Improved data reduction algorithm for the needle probe method applied to in-situ thermal conductivity measurements of lunar and planetary regoliths. Planet. Space Sci. 2014, 92, 49–56. [Google Scholar] [CrossRef]
- Yuksel, N. The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials. In Insulation Materials in Context of Sustainability; Almusaed, A., Almssad, A., Eds.; IntechOpen: London, UK, 2016; pp. 113–140. [Google Scholar] [CrossRef]
- Tavman, I.H. Effective thermal conductivity of granular porous materials. Int. Commun. Heat Mass Transf. 1996, 23, 169–176. [Google Scholar] [CrossRef]
- Hermansson, Å.; Charlier, R.; Collin, F.; Erlingsson, S.; Laloui, L.; SršenSr, M. Heat transfer in soils. In Water in Road Structures, Geotechnical, Geological and Earthquake Engineering; A. Dawson, Ed.; Springer: Dordrecht, The Netherlands, 2009; Volume 5, pp. 69–79. [Google Scholar] [CrossRef]
- Jury, W.A.; Horton, R. Soil Physics, 6th ed.; John Wiley and Sons Inc.: New York, NY, USA, 2004. [Google Scholar]
- Woodside, W. Calculation of the thermal conductivity of porous media. Canada J. Phys. 1958, 36, 815–823. [Google Scholar] [CrossRef][Green Version]
- Woodside, W.; Messmer, J.H. Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys. 1961, 32, 1688–1699. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Carrera, J.; Neuman, S.P. Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resour. Res. 1986, 22, 199–210. [Google Scholar] [CrossRef]
- Minasny, B.; Mcbratney, A.B.; Bristow, K.L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 1999, 93, 225–253. [Google Scholar] [CrossRef]
- Lichteneker, K. The electrical conductivity of periodic and random aggregates. Phys. Zeitschrift 1926, 27, 115. [Google Scholar]
- Beziat, A.; Dardaine, M.; Mouche, E. Measurements of the thermal conductivity of clay-sand and clay-graphite mixtures used as engineered barriers for high-level radioactive waste disposal. Appl. Clay Sci. 1992, 6, 245–263. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z. Review of soil thermal conductivity and predictive models. Int. J. Therm. Sci. 2017, 117, 172–183. [Google Scholar] [CrossRef]
- de Vries, D.A. Thermal properties of soils. In Physics of the Plant Environment; van Wijk, W.R., Ed.; John Wiley & Sons: New York, NY, USA, 1963; pp. 210–235. [Google Scholar]
- Johansen, O. Thermal Conductivity of Soils. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1977. [Google Scholar]
- Campbell, G.S. Soil physics with BASIC. Transport Models for Soil-Plant Systems; Elsevier Science B. V.: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Côté, J.; Konrad, J.M. Thermal conductivity of base-course materials. Can. Geotech. J. 2005, 42, 61–78. [Google Scholar] [CrossRef]
- Lu, S.; Ren, T.; Gong, Y.; Horton, R. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 2007, 71, 8–14. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Boersma, L. Thermal conductivity of soils as a function of temperature and water content. Soil Sci. Soc. Am. J. 1979, 43, 439–444. [Google Scholar] [CrossRef]
- Becker, B.R.; Misra, A.; Fricke, B.A. Development of correlations for soil thermal conductivity. Int. Commun. Heat mass Transf. 1992, 19, 59–68. [Google Scholar] [CrossRef][Green Version]
- Hamamoto, S.; Moldrup, P.; Kawamoto, K.; Komatsu, T. Excluded-volume expansion of Archie’s law for gas and solute diffusivities and electrical and thermal conductivities in variably saturated porous media. Water Resour. Res. 2010, 46, 1–14. [Google Scholar] [CrossRef]
- Dong, Y.; McCartney, J.S.; Lu, N. Critical review of thermal conductivity models for unsaturated soils. Geotech. Geol. Eng. 2015, 33, 207–221. [Google Scholar] [CrossRef]
- Dissanayaka, S.H.; Hamamoto, S.; Kawamoto, K.; Komatsu, T.; Moldrup, P. Thermal properties of peaty soils: Effects of liquid-phase impedance factor and shrinkage. Vadose Zo. J. 2012, 11, vzj2011.0092. [Google Scholar] [CrossRef]
- Kamoshida, T.; Hamamoto, S.; Kawamoto, K.; Sakaki, T.; Komatsu, T. Thermal properties of sands at variably-saturated condition: Effectsof particle size and shape, and quartz content. J. Jpn. Soc. Soil Phys. 2013, 16, 11–16. (In Japanese) [Google Scholar] [CrossRef]
- ACI Committee 213R-03. Guide for Structural Lightweight-Aggregate Concrete; American Concrete Institute: Farmington Hills, MI, USA, 1992. [Google Scholar]
- Tasdemir, C.; Sengul, O.; Tasdemir, M.A. A comparative study on the thermal conductivities and mechanical properties of lightweight concretes. Energy Build. 2017, 151, 469–475. [Google Scholar] [CrossRef]
- Nassiri, S.; Nantasai, B. Thermal conductivity of pervious concrete for various porosities. ACI Mater. J. 2017, 114, 265–271. [Google Scholar] [CrossRef]
- Asadi, I.; Shafigh, P.; Bin Abu Hassan, Z.F.; Mahyuddin, N.B. Thermal conductivity of concrete—A review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
Tested Materials | ρs | wAD | wabs (%) | θabs (m3 m−3) | LA | ||
---|---|---|---|---|---|---|---|
kg m−3 | % | Fine Aggregate (<4.75 mm) | Coarse Aggregate (≥4.75 mm) | Fine Aggregate (<4.75 mm) | Coarse Aggregate (≥4.75 mm) | % | |
RC | 2630 | 0.85 | 8.5 | 5.2 | 0.06 | 0.06 | 38.0 |
RCB | 2640 | 0.34 | 14 | 13 | 0.09 | 0.13 | 45.6 |
AAC | 2510 | 2.07 | 61 | - | 0.50 | - | 55.6 |
Tested Samples | Percentage in Mixture (%) | ρd (kg m−3) | ϕ (m3 m−3) | ||
---|---|---|---|---|---|
RC | RCB | AAC | |||
RC100% | 100 | 0 | 0 | 1980 | 0.24 |
RC80% + AAC20% | 80 | 0 | 20 | 1560 | 0.42 |
RC60% + AAC40% | 60 | 0 | 40 | 1260 | 0.52 |
RCB100% | 0 | 100 | 0 | 1650 | 0.38 |
RCB80% + AAC20% | 0 | 80 | 20 | 1410 | 0.47 |
RCB60% + AAC40% | 0 | 60 | 40 | 1150 | 0.54 |
AAC100% | 0 | 0 | 100 | 820 | 0.70 |
Tested Samples | θs (m3 m−3) | θr(a) (m3 m−3) | α1 | n1 | m1 | w1 | α2 | n2 | m2 | w2 |
---|---|---|---|---|---|---|---|---|---|---|
RC100% | 0.24 | 0.09 | 0.06 | 1.2 | 0.17 | - | - | - | - | - |
RC80% + AAC20% | 0.42 | 0.11 | 0.20 | 1.4 | 0.29 | 0.50 | 1.7 × 10−04 | 3.1 | 0.68 | 0.50 |
RC60% + AAC40% | 0.52 | 0.14 | 0.11 | 1.4 | 0.28 | 0.61 | 1.1 × 10−04 | 3.8 | 0.73 | 0.39 |
RCB100% | 0.38 | 0.06 | 0.07 | 1.2 | 0.15 | - | - | - | - | - |
RCB80% + AAC20% | 0.47 | 0.09 | 0.09 | 1.6 | 0.35 | 0.45 | 9.0 × 10−05 | 2.7 | 0.63 | 0.55 |
RCB60% + AAC40% | 0.54 | 0.10 | 0.07 | 1.9 | 0.48 | 0.42 | 8.0 × 10−05 | 2.8 | 0.64 | 0.58 |
AAC100% | 0.70 | 0.16 | 0.08 | 1.3 | 0.22 | 0.56 | 9.0 × 10−05 | 3.8 | 0.74 | 0.44 |
Samples | ϕ (m3 m−3) | 1 − ϕ (m3 m−3) | λsat (W m−1 K−1) | λw(a) (W m−1 K−1) | λs(b) (W m−1 K−1) |
---|---|---|---|---|---|
AAC100% | 0.70 | 0.30 | 0.935 | 0.57 | 2.933 |
RC100% | 0.24 | 0.76 | 1.974 | 0.57 | 2.898 |
RCB100% | 0.38 | 0.62 | 1.197 | 0.57 | 1.884 |
Models | All Tested Samples | Mixtures | ||||
---|---|---|---|---|---|---|
RMSE | Bias | AIC | RMSE | Bias | AIC | |
Woodside and Messmer (1961; Equation (8)) | 0.34 | −0.18 | 42.9 | 0.25 | −0.15 | 11.8 |
de Vries (1963; Equation (10)) | 0.45 | −0.32 | 78.6 | 0.37 | −0.29 | 40.5 |
Johansen (1975; Equations (13), (15)–(17)) | 0.47 | −0.34 | 75.1 | 0.37 | −0.30 | 33.7 |
Campbell (1985; Equation (18)) | 0.46 | 0.34 | 68.0 | 0.34 | 0.27 | 24.7 |
Conte and Konrad (2005; Equations (13), (16), (19) and (20)) | 0.49 | −0.36 | 80.4 | 0.39 | −0.32 | 36.6 |
Lu et al. (2007; Equations (13), (16), (21) and (22)) | 0.45 | −0.33 | 70.9 | 0.35 | −0.29 | 31. 7 |
Linear model (this study, Equation (25)) | 0.14 | −0.02 | −46.7 | 0.12 | −0.01 | −33.1 |
J-CK-GM model (this study, Equation (30)) | 0.25 | −0.13 | 17.9 | 0.21 | −0.15 | 7.1 |
J-CK-L model (this study, Equation (32)) | 0.14 | 0.06 | −48.9 | 0.12 | 0.06 | −32.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thai, H.N.; Kawamoto, K.; Nguyen, H.G.; Sakaki, T.; Komatsu, T.; Moldrup, P. Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains. Sustainability 2022, 14, 2417. https://doi.org/10.3390/su14042417
Thai HN, Kawamoto K, Nguyen HG, Sakaki T, Komatsu T, Moldrup P. Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains. Sustainability. 2022; 14(4):2417. https://doi.org/10.3390/su14042417
Chicago/Turabian StyleThai, Hong Nam, Ken Kawamoto, Hoang Giang Nguyen, Toshihiro Sakaki, Toshiko Komatsu, and Per Moldrup. 2022. "Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains" Sustainability 14, no. 4: 2417. https://doi.org/10.3390/su14042417