Fertilizer Efficiency and Risk Assessment of the Utilization of AOD Slag as a Mineral Fertilizer for Alfalfa (Medicago sativa L.) and Perennial Ryegrass (Lolium perenne L.) Planting
Abstract
:1. Introduction
2. Materials and Methods
2.1. AOD Slag
2.2. Pot Experiment
2.3. Characterization
2.3.1. Soil Properties
2.3.2. Plant Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects of AOD Slag Addition on Soil Properties
3.1.1. pH
3.1.2. Electrical Conductivity (EC)
3.1.3. Total N, P and K Content
3.2. Morpho-Physiological Properties of Plants
3.3. Biochemical Properties of Plants
3.4. Chromium Accumulation and Toxicity Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gwon, H.S.; Khan, M.I.; Alam, M.A.; Das, S.; Kim, P.J. Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.). J. Hazard. Mater. 2018, 353, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Sohn, I. Selective metal cation concentration during the solidification of stainless steel EAF dust and slag mixtures from high temperatures for increased Cr recovery. J. Hazard. Mater. 2018, 359, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Zhang, Y.; Long, Y.; Zou, Z.; Pei, J. Crystallisation behaviour of blast furnace slag modified by adding fly ash. Ceram. Int. 2018, 44, 11628–11634. [Google Scholar] [CrossRef]
- Deng, L.; Wang, S.; Zhang, Z.; Li, Z.; Jia, R.; Yun, F.; Li, H.; Ma, Y.; Wang, W. The viscosity and conductivity of the molten glass and crystallization behavior of the glass ceramics derived from stainless steel slag. Mater. Chem. Phys. 2020, 251, 123159. [Google Scholar] [CrossRef]
- Park, B.; Moon, E.-J.; Choi, Y.C. Investigation of microstructure and mechanical performance of carbon-capture binder using AOD stainless steel slag. Constr. Build Mater. 2020, 242, 118174. [Google Scholar] [CrossRef]
- Mladenovič, A.; Mirtič, B.; Meden, A.; Zalar Serjun, V. Calcium aluminate rich secondary stainless steel slag as a supplementary cementitious material. Constr. Build Mater. 2016, 116, 216–225. [Google Scholar] [CrossRef]
- Rosales, J.; Cabrera, M.; Agrela, F. Effect of stainless steel slag waste as a replacement for cement in mortars. Mechanical and statistical study. Constr. Build Mater. 2017, 142, 444–458. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, G.; Chen, X.; Tan, J.; Gu, X. Recycling of steel slag aggregate in portland cement concrete: An overview. J. Cleaner Prod. 2021, 282, 124447. [Google Scholar] [CrossRef]
- Moon, E.-J.; Choi, Y.C. Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation. J. Cleaner Prod. 2018, 180, 642–654. [Google Scholar] [CrossRef]
- Guerrini, I.A.; Croce, C.G.G.; Bueno, O.D.C.; Jacon, C.P.R.P.; Nogueira, T.a.R.; Fernandes, D.M.; Ganga, A.; Capra, G.F. Composted sewage sludge and steel mill slag as potential amendments for urban soils involved in afforestation programs. Urban For. Urban Green. 2017, 22, 93–104. [Google Scholar] [CrossRef]
- Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An Overview of Utilization of Steel Slag. Procedia. Environ. Sci. 2012, 16, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Ferreira Preston, H.A.; Henrique De Sousa Nunes, G.; Preston, W.; Barbosa De Souza, E.; De Lima Ramos Mariano, R.; Datnoff, L.E.; Araújo Do Nascimento, C.W. Slag-based silicon fertilizer improves the resistance to bacterial fruit blotch and fruit quality of melon grown under field conditions. Crop Prot. 2021, 147, 105460. [Google Scholar] [CrossRef]
- Chen, D.; Meng, Z.W.; Chen, Y.P. Toxicity assessment of molybdenum slag as a mineral fertilizer: A case study with pakchoi (Brassica chinensis L.). Chemosphere 2019, 217, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Pietrini, F.; Iori, V.; Beone, T.; Mirabile, D.; Zacchini, M. Effects of a ladle furnace slag added to soil on morpho-physiological and biochemical parameters of Amaranthus paniculatus L. plants. J. Hazard. Mater. 2017, 329, 339–347. [Google Scholar] [CrossRef]
- Ali, M.A.; Oh, J.H.; Kim, P.J. Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming. Agric. Ecosyst. Environ. 2008, 128, 21–26. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R. Effects of thin-film accelerated carbonation on steel slag leaching. J. Hazard. Mater. 2015, 286, 369–378. [Google Scholar] [CrossRef]
- Ao, M.; Chen, X.; Deng, T.; Sun, S.; Tang, Y.; Morel, J.L.; Qiu, R.; Wang, S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. J. Hazard. Mater. 2022, 424, 127233. [Google Scholar] [CrossRef]
- Mandiwana, K.L.; Panichev, N.; Kataeva, M.; Siebert, S. The solubility of Cr(III) and Cr(VI) compounds in soil and their availability to plants. J. Hazard. Mater. 2007, 147, 540–545. [Google Scholar] [CrossRef]
- Reijonen, I.; Hartikainen, H. Risk assessment of the utilization of basic oxygen furnace slag (BOFS) as soil liming material: Oxidation risk and the chemical bioavailability of chromium species. Environ. Technol. Innov. 2018, 11, 358–370. [Google Scholar] [CrossRef]
- Arienzo, M.; Adamo, P.; Cozzolino, V. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci. Total Environ. 2004, 319, 13–25. [Google Scholar] [CrossRef]
- Wassie, M.; Zhang, W.; Zhang, Q.; Ji, K.; Cao, L.; Chen, L. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicol. Environ. Saf. 2020, 191, 110206. [Google Scholar] [CrossRef] [PubMed]
- Hattab, S.; Hattab, S.; Boussetta, H.; Banni, M. Influence of nitrate fertilization on Cd uptake and oxidative stress parameters in alfalfa plants cultivated in presence of Cd. J. Soil Sci. Plant Nutr. 2014, 14, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Almomin, S.; Al-Shatti, A.; Al-Aqeel, H.; Al-Salameen, F.; Shajan, A.B.; Nair, S.M. Enhancement of heavy metal tolerance and accumulation efficiency by expressing Arabidopsis ATP sulfurylase gene in alfalfa. Int. J. Phytoremediat. 2019, 21, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Norini, M.P.; Thouin, H.; Miard, F.; Battaglia-Brunet, F.; Gautret, P.; Guegan, R.; Le Forestier, L.; Morabito, D.; Bourgerie, S.; Motelica-Heino, M. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J. Environ. Manag. 2019, 232, 117–130. [Google Scholar] [CrossRef]
- Kim, E.; Spooren, J.; Broos, K.; Horckmans, L.; Quaghebeur, M.; Vrancken, K.C. Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching. Hydrometallurgy 2015, 158, 139–148. [Google Scholar] [CrossRef]
- Adegoloye, G.; Beaucour, A.L.; Ortola, S.; Noumowe, A. Mineralogical composition of EAF slag and stabilised AOD slag aggregates and dimensional stability of slag aggregate concretes. Constr. Build Mater. 2016, 115, 171–178. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.L.; Qu, Z.M. Physicochemical property and chromium leaching behavior in different environments of glass ceramics prepared from AOD stainless steel slag. J. Alloys Compd. 2019, 805, 1106–1116. [Google Scholar] [CrossRef]
- Samada, Y.; Miki, T.; Hino, M. Prevention of chromium elution from stainless steel slag into seawater. ISIJ Int. 2011, 51, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Li, Y.; Li, H.; Cheng, F. Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 2018, 197, 382–388. [Google Scholar] [CrossRef]
- Cen, R.; Feng, W.; Yang, F.; Wu, W.; Liao, H.; Qu, Z. Effect mechanism of biochar application on soil structure and organic matter in semi-arid areas. J. Environ. Manag. 2021, 286, 112198. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Shen, J.; Chen, D.; Li, Y.; Jiang, B.; Wu, J. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agric. Ecosyst. Environ. 2018, 262, 83–96. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Song, N. Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agric. Ecosyst. Environ. 2021, 315, 107425. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Guo, J.; Tan, Z.; Dong, W.; Wang, H. Changes in the understory diversity of secondary Pinus tabulaeformis forests are the result of stand density and soil properties. Glob. Ecol. Conserv. 2021, 28, e01628. [Google Scholar] [CrossRef]
- GB 9836-1988 Method for Determination of Total Potassium in Soils; Standardization Administration of the People’s Republic of China: Beijing, China, 1988.
- Chen, K.; Chen, L.; Fan, J.; Fu, J. Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. Photosynth. Res. 2013, 116, 21–31. [Google Scholar] [CrossRef]
- De Windt, L.; Chaurand, P.; Rose, J. Kinetics of steel slag leaching: Batch tests and modeling. Waste Manag. 2011, 31, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, J.; Wang, Z.; Zeng, Y.; Ren, Q. Long-term leaching characterization and geochemical modeling of chromium released from AOD slag. Environ. Sci. Pollut. Res. 2020, 27, 921–929. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Xia, S.; Zhang, R.; Zhang, R.; Chen, P.; Pan, J.; Liu, Y. K fertilizer alleviates N2O emissions by regulating the abundance of nitrifying and denitrifying microbial communities in the soil-plant system. J. Environ. Manag. 2021, 291, 112579. [Google Scholar] [CrossRef]
- Trap, J.; Blanchart, E.; Ratsiatosika, O.; Razafindrakoto, M.; Becquer, T.; Andriamananjara, A.; Morel, C. Effects of the earthworm Pontoscolex corethrurus on rice P nutrition and plant-available soil P in a tropical Ferralsol. Appl. Soil Ecol. 2021, 160, 103867. [Google Scholar] [CrossRef]
- Tunesi, S.; Poggi, V.; Gessa, C. Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonate minerals. Nutr. Cycl. Agroecosyst. 1999, 53, 219–227. [Google Scholar] [CrossRef]
- Fredeen, A.L.; Rao, I.M.; Terry, N. Influence of Phosphorus Nutrition on Growth and Carbon Partitioning in Glycine max. Plant Physiol. 1989, 89, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Elsevier Ltd.: Waltham, MA, USA, 2012. [Google Scholar]
- Zhang, W.; Zwiazek, J.J. Responses of Reclamation Plants to High Root Zone pH: Effects of Phosphorus and Calcium Availability. J. Environ. Qual. 2016, 45, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, F.; Zwiazek, J.J. Responses of jack pine (Pinus banksiana) seedlings to root zone pH and calcium. Environ. Exp. Bot. 2015, 111, 32–41. [Google Scholar] [CrossRef]
- Gahoonia, T.S.; Care, D.; Nielsen, N.E. Root hairs and phosphorous acquisition of wheat and barely cultivars. Plant Soil 1997, 191, 181–188. [Google Scholar] [CrossRef]
- Hannaway, D.; Fransen, S.; Cropper, J. Perennial ryegrass (Lolium perenne L.). In A Pacifific Northwest Extension Publication; Oregon State University: Corvallis, OR, USA, 1999; Volume PNW 503. [Google Scholar]
- Peters, J.B.; Kelling, K.A.; Speth, P.E.; Offer, S.M. Alfalfa Yield and Nutrient Uptake as Affected by pH and Applied K. Commun. Soil Sci. Plant Anal. 2005, 36, 583–596. [Google Scholar] [CrossRef]
- Dalcorso, G.; Manara, A.; Piasentin, S.; Furini, A. Nutrient metal elements in plants. Metallomics 2014, 6, 1770–1788. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Sinam, G.; Kumar Mishra, R.; Sinha, S. Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol. Environ. Saf. 2010, 73, 987–995. [Google Scholar] [CrossRef]
- Zhang, W.; Calvo-Polanco, M.; Chen, Z.C.; Zwiazek, J.J. Growth and physiological responses of trembling aspen (Populus tremuloides), white spruce (Picea glauca) and tamarack (Larix laricina) seedlings to root zone pH. Plant Soil 2013, 373, 775–786. [Google Scholar] [CrossRef]
- Sytar, O.; Kumar, A.; Latowski, D.; Kuczynska, P.; Strzałka, K.; Prasad, M.N.V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 2012, 35, 985–999. [Google Scholar] [CrossRef]
- Bhaduri, A.M.; Fulekar, M.H. Antioxidant enzyme responses of plants to heavy metal stress. Rev. Environ. Sci. Bio/Technol. 2011, 11, 55–69. [Google Scholar] [CrossRef]
- GB 13078-2017 Hygienical Standard for Feeds; Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- Liu, B.; Li, J.; Zeng, Y.; Wang, Z. Toxicity assessment and geochemical model of chromium leaching from AOD slag. Chemosphere 2016, 144, 2052–2057. [Google Scholar] [CrossRef]
CaO | SiO2 | MgO | Al2O3 | Fe2O3 | Cr2O3 | TiO2 |
62.076 | 26.213 | 4.863 | 1.722 | 0.358 | 0.378 | 0.212 |
MnO | SrO | ZrO2 | Nb2O5 | SO3 | P2O5 | F |
0.171 | 0.024 | 0.012 | 0.007 | 0.594 | 0.006 | 3.363 |
Addition Rate | pH | EC (mS cm−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) |
---|---|---|---|---|---|
0% | 6.13 | 0.50 | 7.06 | 0.72 | 1.01 |
0.25% | 6.85 | 0.66 | 6.79 | 0.70 | 0.96 |
0.5% | 7.08 | 0.64 | 6.13 | 0.68 | 0.92 |
1% | 7.63 | 0.67 | 5.66 | 0.65 | 0.87 |
2% | 7.88 | 0.65 | 5.23 | 0.62 | 0.73 |
4% | 8.05 | 0.69 | 4.57 | 0.60 | 0.62 |
8% | 8.85 | 0.61 | 3.28 | 0.54 | 0.50 |
16% | 9.87 | 0.63 | 2.60 | 0.31 | 0.48 |
Addition Rate | Alfalfa | Perennial Ryegrass | ||||||
---|---|---|---|---|---|---|---|---|
Length (cm) | Surface Area (cm2) | Root Tips | Root Hairs | Length (cm) | Surface Area (cm2) | Root Tips | Root Hairs | |
0% | 77.82 | 18.89 | 116 | 345 | 244.21 | 78.14 | 560 | 1981 |
0.25% | 116.21 | 29.75 | 132 | 402 | 264.56 | 111.59 | 578 | 2729 |
0.5% | 120.16 | 19.86 | 112 | 320 | 276.26 | 100.72 | 742 | 2943 |
1% | 62.74 | 7.30 | 91 | 65 | 241.39 | 82.47 | 819 | 2015 |
2% | 49.49 | 6.86 | 88 | 51 | 206.15 | 73.42 | 527 | 1831 |
4% | 43.12 | 6.17 | 81 | 56 | 151.34 | 47.78 | 411 | 849 |
8% | 33.83 | 4.96 | 75 | 41 | 112.35 | 37.31 | 381 | 697 |
16% | 28.28 | 3.47 | 63 | 33 | 74.93 | 23.27 | 318 | 579 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, S.; Liu, B.; Li, J.; Zhang, Y.; Zeng, Y.; Wang, Y.; Liu, T. Fertilizer Efficiency and Risk Assessment of the Utilization of AOD Slag as a Mineral Fertilizer for Alfalfa (Medicago sativa L.) and Perennial Ryegrass (Lolium perenne L.) Planting. Sustainability 2022, 14, 1575. https://doi.org/10.3390/su14031575
Cai S, Liu B, Li J, Zhang Y, Zeng Y, Wang Y, Liu T. Fertilizer Efficiency and Risk Assessment of the Utilization of AOD Slag as a Mineral Fertilizer for Alfalfa (Medicago sativa L.) and Perennial Ryegrass (Lolium perenne L.) Planting. Sustainability. 2022; 14(3):1575. https://doi.org/10.3390/su14031575
Chicago/Turabian StyleCai, Shuang, Bao Liu, Junguo Li, Yuzhu Zhang, Yanan Zeng, Yajun Wang, and Tianji Liu. 2022. "Fertilizer Efficiency and Risk Assessment of the Utilization of AOD Slag as a Mineral Fertilizer for Alfalfa (Medicago sativa L.) and Perennial Ryegrass (Lolium perenne L.) Planting" Sustainability 14, no. 3: 1575. https://doi.org/10.3390/su14031575
APA StyleCai, S., Liu, B., Li, J., Zhang, Y., Zeng, Y., Wang, Y., & Liu, T. (2022). Fertilizer Efficiency and Risk Assessment of the Utilization of AOD Slag as a Mineral Fertilizer for Alfalfa (Medicago sativa L.) and Perennial Ryegrass (Lolium perenne L.) Planting. Sustainability, 14(3), 1575. https://doi.org/10.3390/su14031575