Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sampling Point Placement
2.3. Evaluation Methods
2.4. Unmanned Vessels and Monitoring Imaging Investigations
3. Results
3.1. Unmanned Vessels and Monitoring Imaging Investigations
3.2. Soil/Sediment Assessment Results
3.3. Groundwater Assessment Results
3.4. Surface Water Assessment Results
3.5. Residual Waste in the Dumping Area
4. Discussion
4.1. Migration Analysis of Contamination
4.2. Analysis of Pollution Indicators
4.2.1. Analysis of Soil/Sediment Evaluation Results
4.2.2. Analysis of Groundwater Evaluation Results
4.3. Impacts of Residual Waste in the Dumping Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larson, S.L.; Martin, W.A.; Şengör, S.S.; Wade, R.; Altamimi, F. Amendment for increased methane production rate in municipal solid waste landfill gas collection systems. Sci. Total Environ. 2021, 772, 145574. [Google Scholar] [CrossRef] [PubMed]
- Shunda, l.; Jiang, X.; Zhao, Y.; Yan, J. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review. Environ. Pollut. 2022, 311, 119878. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Niu, D.; Chen, G.; Wu, F.; Chen, Y. Exploring Key Components of Municipal Solid Waste in Prediction of Moisture Content in Different Functional Areas Using Artificial Neural Network. Sustainability 2022, 14, 15544. [Google Scholar] [CrossRef]
- Liu, G.; Hao, Y.; Dong, L.; Yang, Z.; Zhang, Y.; Ulgiati, S. An emergy-LCA analysis of municipal solid waste management. Resour. Conserv. Recycl. 2017, 120, 131–143. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, J.; Liu, J.-W.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, Ç.; Pan, B.; Li, X.; et al. A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. J. Clean. Prod. 2021, 293, 126144. [Google Scholar] [CrossRef]
- Murphy, C. What A Waste; Ciwm: Sacramento, CA, USA, 2012; p. 12. [Google Scholar]
- Nhien, H.T.H.; Giao, N.T. Assessment of pollution levels and ecological potential risk of the soil influenced by landfilling in a Vietnamese Mekong Delta province. Sci. Total Environ. 2022, 845, 157263. [Google Scholar] [CrossRef]
- Xu, X.; Li, G.; Ni, D.; Feng, C.; Xu, S. Laboratory Model Tests of Leachate Drawdown Using Vertical Drainage Wells with Vacuum Pumping in Municipal Solid Waste Landfills with High Leachate Levels. Sustainability 2022, 14, 8101. [Google Scholar] [CrossRef]
- Cerar, S.; Serianz, L.; Koren, K.; Prestor, J.; Mali, N. Synoptic Risk Assessment of Groundwater Contamination from Landfills. Energies 2022, 15, 5150. [Google Scholar] [CrossRef]
- Kamal, A.; Makhatova, A.; Yergali, B.; Baidullayeva, A.; Satayeva, A.; Kim, J.; Inglezakis, V.J.; Poulopoulos, S.G.; Arkhangelsky, E. Biological Treatment, Advanced Oxidation and Membrane Separation for Landfill Leachate Treatment: A Review. Sustainability 2022, 14, 14427. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, X.; Liu, Q.; Hu, H.; Wu, C.; Xue, Q. Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environ. Pollut. 2022, 293, 118586. [Google Scholar] [CrossRef]
- Yang, H.; Ma, M.; Thompson, J.R.; Flower, R.J. Waste management, informal recycling, environmental pollution and public health. J. Epidemiol. Community Health 2018, 72, 237–243. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y. Transport of leachate through vertical curtain grouting in landfills. Acta Sci. Circumstantiae 2008, 28, 925–929. [Google Scholar]
- Szulc, J.; Okrasa, M.; Nowak, A.; Nizioł, J.; Ruman, T.; Kuberski, S. Assessment of Physicochemical, Microbiological and Toxicological Hazards at an Illegal Landfill in Central Poland. Int. J. Environ. Res. Public Health 2022, 19, 4826. [Google Scholar] [CrossRef]
- Yin, Q.; Yan, H.; Guo, X.; Liang, Y.; Wang, X.; Yang, Q.; Li, S.; Zhang, X.; Zhou, Y.; Nian, Y. Remediation Technology and Typical Case Analysis of Informal Landfills in Rainy Areas of Southern China. Int. J. Environ. Res. Public Health 2020, 17, 899. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Cheng, Z.; Yang, C.; Wang, H.; Zhu, N.; Cao, X.; Lou, Z. Booming microplastics generation in landfill: An exponential evolution process under temporal pattern. Water Res. 2022, 223, 119035. [Google Scholar] [CrossRef]
- Gu, Z.; Feng, K.; Li, Y.; Li, Q. Microbial characteristics of the leachate contaminated soil of an informal landfill site. Chemosphere 2022, 287, 132155. [Google Scholar] [CrossRef]
- Rao, S.M.; Sekhar, M.; Rao, P.R. Impact of pit-toilet leachate on groundwater chemistry and role of vadose zone in removal of nitrate and E. coli pollutants in Kolar District, Karnataka, India. Environ. Earth Sci. 2013, 68, 927–938. [Google Scholar] [CrossRef]
- Xue, Q.; Li, J.-S.; Liu, L. Experimental study on anti-seepage grout made of leachate contaminated clay in landfill. Appl. Clay Sci. 2013, 80–81, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Wydro, U.; Wołejko, E.; Sokołowska, G.; Leszczyński, J.; Jabłońska-Trypuć, A. Investigating Landfill Leachate Influence on Soil Microbial Biodiversity and Its Cytotoxicity. Water 2022, 14, 3634. [Google Scholar] [CrossRef]
- Yadav, V.; Sherly, M.A.; Ranjan, P.; Tinoco, R.O.; Boldrin, A.; Damgaard, A.; Laurent, A. Framework for quantifying environmental losses of plastics from landfills. Resour. Conserv. Recycl. 2020, 161, 104914. [Google Scholar] [CrossRef]
- Zeng, D.; Chen, G.; Zhou, P.; Xu, H.; Qiong, A.; Duo, B.; Lu, X.; Wang, Z.; Han, Z. Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan plateau. Ecotoxicol. Environ. Saf. 2021, 211, 111913. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Huang, J.; Wang, B.; Deng, S.; Wang, Y.; Yu, G. Contaminants of emerging concern in landfill leachate in China: A review. Emerg. Contam. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Masoner, J.R.; Cozzarelli, I.M. Spatial and Temporal Migration of a Landfill Leachate Plume in Alluvium. Water Air Soil Pollut. 2015, 226, 18. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, R.; Thirumalaisamy, S.; Lakshumanan, E. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India. Iran. J. Environ. Health Sci. Eng. 2012, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breza-Boruta, B.; Lemanowicz, J.; Bartkowiak, A. Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Jiang, S.; Wang, H.; Wang, Z.; Jia, R.; Yang, J.; He, S.; Cheng, R. Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: A review. Waste Manag. 2017, 61, 67–77. [Google Scholar] [CrossRef]
- Mandlburger, G.; Pfennigbauer, M.; Pfeifer, N. Analyzing near water surface penetration in laser bathymetry – A case study at the River Pielach. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W2, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Linjin, L.; Baohui, M.; Rui, P. Water Quality Evaluation of Wenyu River Based on Single Factor Evaluation and Comprehensive Pollution Index Method. Nat. Environ. Pollut. Technol. 2021, 20, 1041–1046. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Yan, X.; Liang, T.; Yang, X.; El-Naggar, A.; Liu, J.; Chen, H. Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: Correlations between soil contamination and polymetallic mining activity. J. Environ. Manag. 2021, 300, 113679. [Google Scholar] [CrossRef]
- GB 36600-2018; Soil Environmental Quality Soil Contamination Risk Control Standards for Construction Land (Trial). Chinese Standard Press: Beijing, China, 2018.
- GB 14848-2017; Groundwater Quality Standard. Chinese Standard Press: Beijing, China, 2017.
- GB 3838–2002; Environmental quality standards for surface water. Ministry of Ecology and Environment the People’s Republic of China: Beijing, China, 2002.
- Yang, Y.; Li, C.; Chen, Z.; Dong, Y.; Zhang, N.; Wei, Y.; Xi, H.; Wang, W. Characterization and Assessment of Organic Pollution at a Fumaric Acid Chemical Brownfield Site in Northwestern China. Sustainability 2022, 14, 12476. [Google Scholar] [CrossRef]
- Pei, J.; Yao, C.; Deng, Z.; Ren, Z.; Yang, Y. The Application of 3D Laser Scanning and Unmanned Ship Sounding in the Reexamination of Reservoir Storage Capacity. IOP Conf. Ser. Earth Environ. Sci. 2021, 719, 042052. [Google Scholar] [CrossRef]
- Naeem, W.; Xu, T.; Sutton, R.; Tiano, A. The design of a navigation, guidance, and control system for an unmanned surface vehicle for environmental monitoring. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2008, 222, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Garg, P.K. Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique. Water Resour. Manag. 2016, 30, 243–260. [Google Scholar] [CrossRef]
- Arisona, A.; Ishola, K.S.; Nawawi, M.N.M. Subsurface void mapping using geophysical and geotechnical techniques with uncertainties estimation: Case study of Kinta Valley, Perak, Malaysia. SN Appl. Sci. 2020, 2, 1171. [Google Scholar] [CrossRef]
- Wahlström, M.; Hakulinen, J.; Karvonen, H.; Lindborg, I. Human Factors Challenges in Unmanned Ship Operations—Insights from Other Domains. Procedia Manuf. 2015, 3, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Ahmad Fauzan Zakki, A.T.B.S.K.B. Design and Control of Autonomous Surface Vehicle to Support Bathymetry Survey in the Coastal Environment. Adv. Sci. Technol. Eng. Syst. J. 2019, 4, 458–461. [Google Scholar] [CrossRef] [Green Version]
- Frimpter, M.H. Massachusetts Ground-Water Quality; US Geological Survey: Volcano, HI, USA, 1987. [Google Scholar]
- GB 5749-2006; Sanitary Standard for Domestic Drinking Water. National Standard of the People’s Republic of China: Beijing, China, 2006.
- Zhan, T.L.T.; Guan, C.; Xie, H.J.; Chen, Y.M. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: A field and theoretical investigation. Sci. Total Environ. 2014, 470–471, 290–298. [Google Scholar] [CrossRef]
- Guo, S.-S.; Wu, H.; Tian, Y.-Q.; Chen, H.-X.; Wang, Y.; Yang, J.-Y. Migration and fate of characteristic pollutants migration from an abandoned tannery in soil and groundwater by experiment and numerical simulation. Chemosphere 2021, 271, 129552. [Google Scholar] [CrossRef]
- Davarzani, H.; Cochennec, M.; Djigo, O.A.; Menard, Y.; Colombano, S. Influence of water saturation and soil properties on the removal of organic pollutants using microwave heating. J. Contam. Hydrol. 2022, 251, 104095. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, L.; Luo, Y.; Zhang, H.; Christie, P. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties. Environ. Pollut. 2008, 151, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, J.; Feng, S.; Xiao, Z.; Chen, C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. Sci. Total Environ. 2022, 804, 150140. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, H.; Long, J.; Fan, J.; Wu, P.; Chen, M.; Liu, P.; Li, T. Migration mechanism of pollutants in karst groundwater system of tailings impoundment and management control effect analysis: Gold mine tailing impoundment case. J. Clean. Prod. 2022, 350, 131434. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Luo, S.; Zhang, Y.; Liu, Y. The Fate of Xylene Spilled into Soil: Effects of Heavy Metals and Rainfall. Water Air Soil Pollut. 2022, 233, 157. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Osako, M. Leaching characteristics of polycyclic aromatic hydrocarbons (PAHs) from spiked sandy soil. Chemosphere 2003, 51, 387–395. [Google Scholar] [CrossRef]
- Badea, S.-L.; Lundstedt, S.; Liljelind, P.; Tysklind, M. The influence of soil composition on the leachability of selected hydrophobic organic compounds (HOCs) from soils using a batch leaching test. J. Hazard. Mater. 2013, 254–255, 26–35. [Google Scholar] [CrossRef]
- Ishii, K.; Furuichi, T.; Nagao, Y. A needs analysis method for land-use planning of illegal dumping sites: A case study in Aomori–Iwate, Japan. Waste Manag. 2013, 33, 445–455. [Google Scholar] [CrossRef]
- Pongritsakda, T.; Nakamura, K.; Wang, J.; Watanabe, N.; Komai, T. Prediction and Remediation of Groundwater Pollution in a Dynamic and Complex Hydrologic Environment of an Illegal Waste Dumping Site. Appl. Sci. 2021, 11, 9229. [Google Scholar] [CrossRef]
Project Category | Test Items | Soils and Sediments | Limit of Detection (mg/kg) | Water | Limit of Detection (×10−3 mg/kg) | Reasons for Selection |
---|---|---|---|---|---|---|
General | pH | HJ 962-2018 | GB/T 6920-1986 | Determining contamination factors | ||
Heavy metals | Lead | GB/T 17141-1997 | 10 | Untested | Soil characteristic pollution factors | |
Copper, zinc | HJ 491-2019 | 1 | HJ 700-2014 | 0.08, 0.67 | Soil characteristic pollution factors | |
Mercury | HJ 923-2017 | 0.2 × 10−3 | HJ 694-2014 | 0.04 | Soil characteristic pollution factors | |
Nickel, arsenic | Untested | HJ 700-2014 | 0.06, 0.12 | Determining pollution factors | ||
Chromium (hexavalent) | Untested | GB/T 7467-1987 | 4 | Determining pollution factors | ||
Total petroleum hydrocarbons | Petroleum hydrocarbons (C₁₀–C₄₀) | HJ 1021-2019 | HJ 894-2017 | Soil characteristic pollution factor | ||
Petroleum hydrocarbons (C₆–C₉) | HJ 1020-2019 | HJ 893-2017 | Soil characteristic pollution factor | |||
Volatile phenols | Volatile phenols | USEPA 9065-1986 | HJ 639-2012 | Soil characteristic pollution factor | ||
VOCs | Carbon tetrachloride, chloroform, chloromethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, dichloromethane, 1,2-dichloropropane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, tetrachloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2 trichloroethylene, 1,2,3-trichloropropane, vinyl chloride, benzene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, ethylbenzene, styrene, toluene, m- & p-xylene, o-xylene, naphthalene, bromodichloromethane, tribromomethane, dibromochloromethane, 1,2-dibromoethane, 1,3,5-trimethylbenzene | HJ 605-2011 | HJ 639-2012 | Determining pollution factors | ||
SVOCs | Nitrobenzene, aniline, 2-chlorophenol, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, indenol(1,2,3-cd)pyrene, hexachlorocyclopentadiene, 2,4-dinitrotoluene, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,4-dinitrophenol, pentachlorophenol, di(2-ethylhexyl)phthalate, o-xylene methylphenyl phthalate, butyl benzyl phthalate, di-n-octyl phthalate, 3,3’-dichlorobenzidine, hexachlorobenzene, hexachlorobutadiene | HJ 834-2017 | USEPA 8270E-2018 | Determining pollution factors | ||
Waste-related characteristic pollutants | 2-bromotoluene, 1-bromo-4-ethylbenzene, 2-bromo-m-xylene, 3-bromo-o-xylene | USEPA 8260D-2018 | USEPA 8260D-2018 | Waste-related characteristic pollutants |
Description | Parameters |
---|---|
Model/size | S105/1050 × 550× 350 mm |
Resolution | Horizontal 1.25 cm, vertical 1/1000 range |
Ship type | Deep V |
Image transfer | 1080P, distance > 1000 km |
Standard weight | 20 kg |
Load | 10 kg |
Wind and wave rating | Class 4 wind, 1.5 m wave |
Sonar type | Side sweep, down sweep |
Manipulation | Mobile app, a distance greater than 1000 km |
Data analysis | Cloud platform |
Maximum speed | 8 m/s |
Description | Parameters |
---|---|
Operating temperature | −30–60 °C |
Continuous working time | >2 h |
Voltage input | 5–12 V input, 12 V output |
Measuring tape length | 10, 20, 30, 40, 50 m |
Measuring tape accuracy | 0.001 m |
Screen | 1024 × 600/800 × 480 HD display |
Storage | Support 128 GB TF memory card |
Battery capacity | 7000 mAh/4500 mAh Li-ion battery |
Signal input | HD-TVI, HD-CVI, AHD, CVBS mixed signal auto recognition input |
Minimum illumination | 0.0001 Lux @ F1.2 |
Digital noise reduction | Support |
Backlight compensation | Auto |
Auto gain | Auto |
Shutter/slow shutter | 1/25 s to 1/50,000 s, 16× MAX |
Video probe | Ultra-high pixels |
Type of Pollutant | Min. (mg/kg) | Max. (mg/kg) | Screening Value (mg/kg) | Control Values (mg/kg) | Detection Rate | Exceedance Rate | Pi |
---|---|---|---|---|---|---|---|
Hexachlorobenzene | ND | 30.9 | 1 | 10 | 1.60% | 1.60% | 30.90 |
Bis(2-Ethylhexyl) phthalate | ND | 271 | 121 | 1210 | 33.00% | 1.09% | 2.24 |
Trichloroethylene | ND | 4.78 | 2.8 | 20 | 2.70% | 1.09% | 1.71 |
Benzo(a)pyrene | ND | 1.8 | 1.5 | 15 | 20.90% | 0.54% | 1.20 |
Lead | 4.5 | 969 | 800 | 2500 | 100% | 0.50% | 1.21 |
Volatile phenols | ND | 76.6 | 0.01 ** | —— | 24.70% | 24.70% | 7660.00 |
2-bromotoluene | ND | 0.14 | 0.05 ** | —— | 0.54% | 0.54% | 2.80 |
1-Bromo-4-ethylbenzene | ND | 1.21 | 0.05 ** | —— | 1.08% | 1.08% | 24.20 |
2-Bromo-m-xylene | ND | 4.06 | 0.05 ** | —— | 1.63% | 1.63% | 81.20 |
3-Bromo-o-xylene | ND | 0.3 | 0.05 ** | —— | 1.08% | 1.08% | 6.00 |
Type of Pollutant | Min. (mg/kg) | Max. (mg/kg) | Screening Value (mg/kg) | Control Values (mg/kg) | Detection Rate | Exceedance Rate | Pi |
---|---|---|---|---|---|---|---|
Toluene | ND | 11,200 | 1200 | 1200 | 86.75% | 43.75% | 9.33 |
Ethylbenzene | ND | 3270 | 28 | 280 | 62.5% | 25% | 116.79 |
m-& p-xylene | ND | 1500 | 570 | 570 | 62.5% | 25% | 2.63 |
Petroleum hydrocarbons (C₆–C₉) | ND | 56,400 | 4500 | 9000 | 86.75% | 12.5% | 12.53 |
Benzene | ND | 53.3 | 4 | 40 | 25% | 12.5% | 13.33 |
o-xylene | ND | 311 | 640 | 640 | 25% | 12.5% | 0.49 |
1,2-Dichloroethane | ND | 212 | 5 | 21 | 25% | 12.5% | 42.40 |
Chlorobenzene | ND | 6750 | 270 | 1000 | 75% | 12.5% | 25.00 |
Chloromethane | ND | 22.3 | 5 | 47 | 6.25% | 6.25% | 4.46 |
Carbon tetrachloride | ND | 4.64 | 2.8 | 36 | 6.25% | 6.25% | 1.66 |
Chloroform | ND | 7.04 | 0.9 | 10 | 12.5% | 6.25% | 7.82 |
Tribromomethane | ND | 3.68 | 0.24 | 2.4 | 6.25% | 6.25% | 15.33 |
Di(2-ethylhexyl) phthalate | ND | 369 | 121 | 1210 | 62.5% | 6.25% | 3.05 |
Volatile phenols | ND | 84.4 | 0.01 ** | —— | 62.5% | 62.5% | 8440.00 |
2-bromotoluene | ND | 22.5 | 0.05 ** | —— | 12.5% | 12.5% | 450.00 |
1-Bromo-4-ethylbenzene | ND | 222 | 0.05 ** | —— | 18.75% | 18.75% | 4440.00 |
2-Bromo-m-xylene | ND | 709 | 0.05 ** | —— | 18.75% | 18.75% | 14,180.00 |
3-Bromo-o-xylene | ND | 10.4 | 0.05 ** | —— | 18.75% | 18.75% | 208.00 |
Type of Pollutant | Min. (mg/kg) | Max. (mg/kg) | Screening Value (mg/kg) | Detection Rate | Exceedance Rate | Pi |
---|---|---|---|---|---|---|
As | 0.001 | 0.14 | 0.05 | 100% | 4% | 2.74 |
Volatile phenols | ND | 11.80 | 0.01 | 25% | 13% | 1180.00 |
Xylene | ND | 2.60 | 1.00 | 40% | 8% | 2.60 |
Ethylbenzene | ND | 1.48 | 0.60 | 24% | 4% | 2.47 |
Benzene | ND | 0.14 | 0.12 | 56% | 4% | 1.21 |
Toluene | ND | 42.00 | 1.40 | 52% | 4% | 30.00 |
Chlorobenzene | ND | 4.47 | 0.6 | 32% | 4% | 7.45 |
1,2-Dichloroethane | ND | 0.066 | 0.04 | 12% | 4% | 1.65 |
Petroleum hydrocarbons | 0.04 | 59.37 | 5.00 ** | 4% | 4% | 11.87 |
Type of Pollutant | Min. (10−3 mg/kg) | Max. (10−3 mg/kg) | Screening Value (10−3 mg/kg) | Detection Rate | Exceedance Rate | Pi |
---|---|---|---|---|---|---|
Oil | ND | 5.48 | 1 * | 87.5% | 50% | 5.48 |
COD | 23 | 526 | 40 * | 100% | 50% | 13.15 |
BOD5 | 2.9 | 42.4 | 10 * | 100% | 50% | 4.24 |
NH4+-N | 0.227 | 67.4 | 2 * | 100% | 50% | 33.70 |
TN | 1.88 | 86.8 | 2 * | 100% | 75% | 43.40 |
TP | 0.11 | 3.16 | 0.4 * | 100% | 50% | 7.90 |
Testing Indicators | Dumping Area (Unit: mg/kg) | Sediment (Unit: mg/kg) | |||
---|---|---|---|---|---|
GW8-0.2 m | GW8-1.5 m | DN1-0.5 m | DN8-0.5 m | DN8-1.0 m | |
2-Bromotoluene | 0.14 | ND | 17.0 | ND | 22.5 |
1-Bromo-4-ethylbenzene | 0.71 | ND | 8.35 | 0.59 | 222 |
2-Bromo-m-xylene | 4.06 | 0.17 | 23.7 | 2.74 | 709 |
3-Bromo-o-xylene | 0.30 | ND | 2.66 | 0.15 | 10.4 |
Type of Site | Location | Source of Pollution | Characteristic Pollutants | Conclusion | References |
---|---|---|---|---|---|
Three illegal waste landfill sites | The forest area in the Bydgoszcz commune | Mixed waste, including debris and ceramic waste, glass, plastics, metals, textiles, and used electrotechnical equipment Organic waste from households | Heavy metal | The accumulation of waste on the site inhibits the development of microorganisms and their enzymatic activity. The fact that operating illegal waste dumps are a potential threat to the natural environment is confirmed by this study. | [27] |
An illegal dumping site | The boundary of the town of Takko and Ninohe City in Japan. | Ash, waste oils, sludge, waste plastic, and bark | PCE, Dichloromethane, Benzene, Cis-1,2-dichloroethylene, 1,2-dichloroethane | The study proposed a new needs analysis method for developing a conceptual land-use plan following the remediation of illegal dumping sites by considering economic and social aspects based on the potential needs of the region’s residents. | [53] |
A landfill | Lagos, Nigeria | Municipal solid waste | Heavy metal (Pb, Cr) | Active sites in landfills are a potential source of toxic lead, cadmium, and zinc, and if the current trend of indiscriminate waste disposal at the site is not controlled, environmental contamination can occur. Waste management and treatment policies should be developed for landfills and waste disposal must be pre-treated prior to disposal. | [14] |
Brownfield site | In the eastern part of the Guanzhong plain | Food-grade fumaric acid (anti-succinic acid) | 1,2,3-trichloropropane | Most of the soils within this fumaric acid brownfield site were at a severe contamination level. 1,2,3-TCP was the primary exceeded pollutant in the fumaric acid brownfield site, and it could be the focus of subsequent studies on fumaric acid brownfield sites. | [35] |
An illegal waste dumping site | In the Tohoku region of Japan | Incinerator ash, sludge, and refuse-derived fuel materials | 1,4-dioxane | The study shows that it is possible to predict and remedy pollution from illegal waste dumps and encourages further extensive research into the complex geological structure and groundwater changes at illegal waste dump. | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Y. Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site. Sustainability 2022, 14, 16948. https://doi.org/10.3390/su142416948
Liu X, Wang Y. Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site. Sustainability. 2022; 14(24):16948. https://doi.org/10.3390/su142416948
Chicago/Turabian StyleLiu, Xinyang, and Yu Wang. 2022. "Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site" Sustainability 14, no. 24: 16948. https://doi.org/10.3390/su142416948
APA StyleLiu, X., & Wang, Y. (2022). Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site. Sustainability, 14(24), 16948. https://doi.org/10.3390/su142416948