Global Advances on Insect Pest Management Research in Oil Palm
Abstract
:1. Introduction
2. Overview of Key Oil Palm Pests and Their Managements
2.1. Defoliators
2.1.1. Nettle and Slug Caterpillars
2.1.2. Bagworms
2.1.3. Other Defoliating Lepidopterans
2.1.4. Leaf Beetles
2.1.5. Grasshoppers
2.2. Fruit Scrapers
2.3. Sap Feeders
2.4. Borers
2.4.1. Palm Weevils
2.4.2. Rhinoceros Beetles
2.4.3. Lepidopteran Borers
3. Selected Research Advances on Sustainable Management of Oil Palm Pests
3.1. Semiochemicals
3.2. Bioacoustics and Other Signal Sensors
3.3. Entomophagy
3.4. Host Plant Resistance
3.5. Nanotechnology
3.6. Insect Growth Regulators
3.7. Geospatial Predictive Modeling
4. Regulatory Management of Oil Palm Pests
5. Conclusions and Future Research Directions
- Application of synthetic insecticides;
- Biological control techniques such as entomopathogens (e.g., fungi, bacteria and nematodes), predators and parasitoids;
- Monitoring and mass trapping with semiochemicals;
- Cultural practices, and occasionally,
- A combination of the different techniques in an integrated pest management approach.
- Exploration of semiochemical attractants for the majority of pests with no previous semiochemical work, and integration of the chemical lures with microbial pathogens in the attract-and-infect technique;
- Expansion of the application of modern pest management techniques such as digital sensing, predictive modeling and nano-technology;
- Developing effective technologies for mass trapping of edible oil palm insect pests for food or feed, especially among communities with a tradition of entomophagy.;
- Strengthening quarantine regulatory frameworks and building requisite human resource capacity for their implementation in the management of invasive oil palm insect pests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, D.J.; Goggin, K.; Paterson, R.R.M. Oil palm in the 2020s and beyond: Challenges and solutions. CABI Agric. Biosci. 2021, 2, 39. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Forests and Deforestation. Available online: https://ourworldindata.org/forests-and-deforestation (accessed on 30 June 2022).
- Kuepper, B.; Drost, S.; Piotrowski, M. Latin American Palm Oil Linked to Social Risks, Local Deforestation; Chain Reaction Research: Washington, DC, USA, 2021. [Google Scholar]
- Obahiagbon, F.I. A review: Aspects of the African oil Palm (Elaeis guineesis Jacq.) and the implications of its bioactives in human health. Am. J. Biochem. Mol. Biol. 2012, 2, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Pirker, J.; Mosnier, A.; Kraxner, F.; Havlík, P.; Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 2016, 40, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Woittiez, L.S.; Van Wijk, M.T.; Slingerland, M.; Van Noordwijk, M.; Giller, K.E. Yield gaps in oil palm: A quantitative review of ontributing factors. Eur. J. Agron. 2017, 83, 57–77. [Google Scholar] [CrossRef]
- de Oliveira, T.A.; Martins, I.C.F.; Silva, J.G.; Lemos, W.P. Oil palm age and genotype interfere with defoliator lepidopteran infestation. Arq. Inst. Biol. 2021, 88, e00472020. [Google Scholar] [CrossRef]
- Howard, F.; Moore, D.; Giblin-Davis, R.; Abad, R. Insects on Palms, 1st ed.; CABI Publishing: Oxon, UK, 2001. [Google Scholar]
- Hushiri, A.; Abdu, M.; Nambiappan, N.; Hisamuddin, E.; Bidin, M.N.I.Z.; Ghazali, R.; Subranian, V.; Sundram, S.; Parveez, G.K.A. Oil palm economic performance in Malaysia and R & D progress in 2018. J. Oil Palm Res. 2019, 31, 165–194. [Google Scholar] [CrossRef]
- Giblin-Davis, R.M.; Faleiro, J.R.; Jacas, J.A.; Pena, J.E.; Vidyasagar, P. Biology and management of the red palm weevil, Rhynchophorus ferrugineus. In Potential Invasive Pests of Agricultural Crops; Pena, J., Ed.; CAB International: Wallingford, UK, 2013; pp. 1–34. [Google Scholar]
- Wattanapongsiri, A. A revision of the Genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1996. [Google Scholar]
- Hallett, R.H.; Crespi, B.J.; Borden, J. Synonymy of Rhynchophorus ferrugineus (Olivier) 1790 and R. vulneratus (Panzer) 1798 (Coleoptera, Curculionidae, Rhynchophorinae). J. Nat. Hist. 2004, 38, 2863–2882. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Martínez, L.C.; Fernandes, F.L.; Ramalho, F.S.; Zanuncio, J.C.; Serrão, J.E. Interactions between the Bud Rot disease of oil palm and Rhynchophorus palmarum (Coleoptera: Curculionidae). J. Econ. Entomol. 2016, 109, 962–965. [Google Scholar] [CrossRef]
- Giblin-Davis, R.M.; Oehlschlager, A.C.; Perez, A.; Gries, G.; Gries, R.; Weissling, T.J.; Chinchilla, C.M.; Peña, J.E.; Hallett, R.H.; Pierce, H.D.; et al. Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Fla. Entomol. 1996, 9, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Priwiratama, H.; Prasetyo, A.E.; Pradana, M.G.; Rozziansha, T.A.P.; Susanto, A.; Desmier de Chenon, P. Weevil stem borer and mesocarp-eating beetle: New threat to oil palm plantations in Indonesia. In Proceedings of the PIPOC International Palm Oil Congress, Kuala Lumpur, Malaysia, 9–21 November 2019; pp. 67–81. [Google Scholar]
- Giblin-Davis, R. Borers. In Insects on Palms; Howard, F.W., Moore, D., Giblin-Davis, R.M., Abad, R., Eds.; CABI Publishing: Oxon, UK, 2001. [Google Scholar]
- CABI. Invasive Species Compendium. Available online: www.cabi.org/isc (accessed on 5 June 2022).
- Dewhurst, C.F.; Pilotti, C.A. First record of the base-borer weevil, Sparganobasis subcruciata Marshall (Coleoptera: Curculionidae: Dryopthorinae), from oil palm (‘Elaeis guineensis’ Jacq.) in Papua New Guinea and its association with decaying stem tissue. Aust. Entomol. 2012, 39, 197–207. [Google Scholar]
- Cortés, C.V.; Pérez, S.M.; Aldana de la Torre, R.C.; Mesa, E.; de Olivera, H.G. Pathogenicity level of entomopatogenic fungus from Metarhizium genera on Strategus aloeus larvae (Coleoptera: Scarabaeidae), under laboratory conditions. Palmas 2011, 32, 30–40. [Google Scholar]
- Pallares, C.H.; de la Torre, J.A.A.; de Lucas, P.R.; Calvache, H.H.; Luque, J.E.; Correa, N. Análisis del comportamiento y comunicación química intraespecífica en Strategus aloeus (L.) (Coleoptera, Scarabaeidae-Dynastinae). Palmas 2000, 21, 185–194. [Google Scholar]
- Aldana de La Torre, R.C.; Montes Bazurto, L.G.; Barrios Trilleras, C.E.; Matabanchoy Solarte, J.E.; Beltrán Aldana, I.J.; Guerrero, M.R.; Pardey, A.E.B. Guía de Bolsillo para el Reconocimiento de las Plagas más Frecuentes en la Palma de Aceite; Cenipalma: Bogotá, D.C., Colombia, 2017. [Google Scholar]
- Genty, P.; Desmier de Chenon, R.; Morin, J.P. Ravageurs du palmier à huile en Amérique latine—Las plagas de la palma aceitera en America Latina—Oil palm pests in Latin America. Oléagineux 1978, 33, 325–417. [Google Scholar]
- Howard, F.W.; Abad, R.G. Lepidoptera. In Insects on Palms; Howard, F.W., Moore, D., Giblin-Davis, R.M., Abad, R., Eds.; CABI Publishing: Oxon, UK, 2001. [Google Scholar]
- Ferreira, J.M.S.; Warwick, D.R.N.; Siqueira, L.A. Cultura do Coqueiro no Brasil; EMBRAPA–SPI: Aracajú, Brazil, 1994. [Google Scholar]
- Susanto, A.; Purba, R.Y.P.; Prasetyo, A.E. Hama dan Penyakit Kelapa Sawit; Pusat Penelitian Kelapa Sawit: Medan, Indonesia, 2010. [Google Scholar]
- Martínez, L.C.; Plata-Rueda, A.; Zanuncio, J.C.; Serrao, J.E. Leucothyreus femoratus (Coleoptera: Scarabaeidae): Feeding and behavioral activities as an oil palm defoliator. Fla. Entomol. 2013, 96, 55–63. [Google Scholar] [CrossRef]
- Saravanan, L.; Kalidas, P.; Phanikumar, T.; Dwarakakumar, D.; Gupta, A.; Arunkumar, R. Life history, phenology, host range and natural enemies of Acria meyricki Shashank and Ramamurthy (Lepidoptera: Depressariidae): An emerging defoliator of oil palm, Elaeis guineenis Jacq. In India. Phytoparasitica 2020, 48, 427–454. [Google Scholar] [CrossRef]
- Monroy, S.M.M.; Aldana, J.A.; Mesa, E.; Aldana de la Torre, R.C.; Cortés, C.V.; de Oleveira, H.G. Pathogenicity level of different isolates from Beauveria on Loxotoma elegans larvae: An oil palm leaf eater at the East Colombian region. Palmas 2011, 32, 47–55. [Google Scholar]
- Martínez, L.C.; Plata-Rueda, A. Lepidoptera vectors of Pestalotiopsis fungal disease: First records in oil palm plantations from Colombia. Int. J. Trop. Insect Sci. 2013, 33, 239–246. [Google Scholar] [CrossRef]
- Martínez, L.C.; Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E. Life history traits and damage potential of an invasive pest Acharia fusca (Lepidoptera: Limacodidae) on oil palm. Ann. Entomol. Soc. Am. 2014, 107, 1086–1093. [Google Scholar] [CrossRef]
- Alvarado, H.; de La Torre, R.A.; Barrera, E.; Martínez, L.; Bustillo, A. Ciclo de vida y tasa de consumo de Euprosterna elaeasa Dyar (Lepidoptera: Limacodidae) defoliador de la palma de aceite. Rev. Palmas 2014, 35, 41–51. [Google Scholar]
- Mathew, G.; Pulikkal, U.K. Biology of the palm king Amathusia phidippus, an extremely rare and endangered butterfly of peninsular India. J. Bombay Nat. Hist. Soc. 2009, 106, 118–120. [Google Scholar]
- Hernández-Martínez, M.; Sánchez-Soto, S.; Romero-Nápoles, J.; García-López, E.; Pérez-Flores, J. Efficiency of three trap designs for the capture of Opsiphanes cassina fabricii in Elaeis guineensis. Agro Product. 2016, 9, 34–38. [Google Scholar]
- Rozziansha, T.A.P.; Priwiratama, H.; Susanto, A. Existing and emerging bagworms in oil palm plantation in Indonesia. In Proceedings of the Fourth IOPRI-MPOB International Seminar: Existing and Emerging Pests and Diseases of Oil Palm Advances in Research and Management, Bandung, Indonesia, 13–14 December 2012. [Google Scholar]
- Hisham, N.B. Study of Duration Larvae Stage Bagworm (Lepidoptera: Psychidae) on Michelia champaca Trees In Ex-Situ and In-Situ Rearing and Its Species Identification. Bachelor’s Thesis, University Malaysia, Kota Samarahan, Sarawak, Malaysia, 2012. [Google Scholar]
- Murgianto, F.; Edyson, E.; Setyawan, Y.P.; Tamba, L.M.; Ardiyanto, A.; Siregar, A.H. First report of an ice cream cone bagworm Manatha conglacia Haettenschwiler (Lepidoptera: Psychidae) in oil palm plantations of Central Kalimantan, Indonesia. In Proceedings of the International Conference on Tropical Agrifood, Feed and Fuel (ICTAFF 2021), Virtual, 7 January 2022. [Google Scholar]
- Kok, C.C.; Eng, O.; Razak, A.R.; Arshad, A.M. Microstructure and life cycle of Metisa plana Walker (Lepidoptera: Psychidae). J. Sustain. Sci. Manag. 2011, 6, 51–59. [Google Scholar]
- Cheong, Y.L.; Sajap, A.S.; Hafidzi, M.N.; Omar, D.; Abood, F. Outbreaks of bagworms and their natural enemies in an oil palm, Elaeis guineensis, plantation at Hutan Melintang, Perak, Malaysia. J. Entomol. 2010, 7, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Pierre, E.M.; Idris, A.H. Studies on the predatory activities of Oecophylla smaragdina (Hymenoptera: Formicidae) on Pteroma pendula (Lepidoptera: Psychidae) in oil palm plantations in Teluk Intan, Perak (Malaysia). Asian Myrmecol. 2013, 5, 163–176. [Google Scholar]
- Zenker, M.M.; Specht, A.; Fronza, E.; Poletto, G.; Marcon, F.; Formentini, A.C.; Gedoz, M. Biology and life table of Dirphia araucariae (Lepidoptera: Saturniidae): A herbivore of potentially high impact on Araucaria angustifolia. Zoologia 2013, 30, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Desmier de Chenon, R.; Sudharo, P.; Poelongan, Z.H. Nettle caterpillars and grasshoppers of oil palm in Indonesia. In Proceedings of the International Conference on Pests and Diseases of Importance to the Oil Palm Industry, Kuala Lumpur, Malaysia, 18–19 May 2004; pp. 75–95. [Google Scholar]
- Kantharaju, S.; Thippeswamy, N.; Siddalingappa, C.; Yalavar, H.V. Incidence of arecanut spindle bug, Carvalhoia arecae Miller and China (Heteroptera: Miridae). Environ. Ecol. 2011, 29, 143–147. [Google Scholar]
- Yeshwanth, H.M.; Prathapan, K.D. First report of the occurrence of the arecanut spindle bug, Mircarvalhoia arecae (Miller & China) in the Andaman and Nicobar Islands. J. Trop. Agric. 2014, 52, 82–84. [Google Scholar]
- Martínez, L.C.; Plata-Rueda, A.; Serrão, J.E. Effects of insect growth regulators on mortality, survival, and feeding of Euprosterna elaeasa. Agronomy 2021, 11, 2002. [Google Scholar] [CrossRef]
- Tigvattnanont, S. Studies on the bionomics and local distribution of some lace bugs in Thailand. II: Stephanitis typicus (Hemiptera: Tingidae). Kaen Kaset. 1990, 18, 200–212. [Google Scholar]
- Barrios, C.; Castillo, N.; Bustillo, A.; Méndez, A. Biología del raspador de la flecha, Cephaloleia vagelineata Pic. (Coleoptera: Chrysomelidae), plaga de la palma de aceite en Colombia. Palmas 2018, 39, 59–65. [Google Scholar]
- Mariau, D. Leaf beetles of oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera). In New Developments in the Biology of Chrysomelidae; Jolivet, J.A., Santiago-Blay, M., Schmitt, P., Eds.; SPB Academic Publishing: Hague, The Netherlands, 2004; pp. 603–612. [Google Scholar]
- Martínez, L.C.; Plata-Rueda, A. Biological aspects and food consumption of fruit scraper of oil palm, Demotispa neivai (Coleoptera: Chrysomelidae). J. Oil Palm Res. 2014, 26, 47–53. [Google Scholar]
- Corley, R.H.V.; Tinker, P.B.H. The Oil Palm, 5th ed.; Wiley-Blackwell: West Sussex, UK, 2016; 626p, ISBN 9781405189392. [Google Scholar]
- Martínez, L.C.; Hurtado, R.; Araque, L.; Rincón, V. Avances de la campaña regional para el manejo de la información de insectos defoliadores en la zona central. Palmas 2009, 30, 51–61. [Google Scholar]
- Hernández-Lambraño, R.; Caballero-Gallardo, K.; Olivero-Verbel, J. Toxicity and antifeedant activity of essential oils from three aromatic plants grown in Colombia against Euprosterna elaeasa and Acharia fusca (Lepidoptera: Limacodidae). Asian Pac. J. Trop. Biomed. 2014, 4, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.C.; Plata-Rueda, A.; Serrão, J.E. Effect of benzoylphenyl ureas on survival and reproduction of the lace bug, Leptopharsa gibbicarina. Insects 2021, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Zeddam, J.L.; Cruzado, J.A.; Rodriguez, J.L.; Ravallec, M. A new nucleopolyhedrovirus from the oil-palm leaf-eater Euprosterna elaeasa (Lepidoptera: Limacodidae): Preliminary characterization and field assessment in Peruvian plantation. Agric. Ecosyst. Environ. 2003, 96, 69–75. [Google Scholar] [CrossRef]
- Rhainds, M.; Davis, D.R.; Price, P.W. Bionomics of bagworms (Lepidoptera: Psychidae). Annu. Rev. Entomol. 2009, 54, 209–226. [Google Scholar] [CrossRef]
- Leong, T.M.; Lim, K.K.P. Record of the bagworm moth, Mahasena corbetti Tams in Singapore (Lepidoptera: Psychidae). NiS 2012, 5, 1–5. [Google Scholar]
- Firake, D.M.; Behere, G.T.; Arnscheid, W.R.; Kumar, R.; Ngachan, S.V. First report of coconut case caterpillar, Mahasena corbetti Tams (Lepidoptera: Psychidae) from India. Phytoparasitica 2018, 46, 355–364. [Google Scholar] [CrossRef]
- Batugal, P.V.; Rao, R.; Oliver, J. (Eds.) Coconut Genetic Resources; International Plant Resources Genetic Institute-Regional Office for Asia; The Pacific and Oceania (IPGRI-APO): Sardang, Selangor DE, Malaysia, 2005. [Google Scholar]
- Rahman, M.A.; Jahan, H.; Talukdar, S.; Kazi1, R. First Record of the Bagworm Moth, Mahasena corbetti Tams (Lepidoptera: Psychidae) in Bangladesh. Int. J. Innov. Res. 2019, 4, 22–26. [Google Scholar]
- Yew Cheong, L.; Chin Chong, T. Understanding pest biology and behaviour for effective control of oil palm bagworm. Planter 2012, 88, 669–715. [Google Scholar]
- Basri, W.M.; Ramlah, A.A.S.; Norman, K. Status report on the use of Bacillus thuringiensis in the control of some oil palm pests. Elaeis 1994, 6, 82–101. [Google Scholar]
- Priwiratama, H.; Rozziansha, T.A.P.; Susanto, A.; Prasetyo, A.E. Effect of bagworm Pteroma pendula Joannis attack on the decrease in oil palm productivity. J. Hama Penyakit Tumbuh. Trop. 2019, 19, 101–108. [Google Scholar] [CrossRef]
- Mazuan, S.; Mohamed, S.; Ishak, I.; Omar, D.; Asib, N. Optimization of motorized backpack mistblower for efficient application of insecticides against the bagworm. Pak. J. Agric. Sci. 2001, 34, 479–485. [Google Scholar] [CrossRef]
- Aldana de la Torre, R.C.; Aldana, J.; Calvache, H.; Franco, P. Manual de Plagas de la Palma de Aceite en Colombia, 4th ed.; Cenipalma: Bogota, Colombia, 2010. [Google Scholar]
- Barrios, C.; Aldana-De La Torre, R.C.; Bustillo-Pardey, A. Biología del defoliador de la palma de aceite, Stenoma cecropia Meyrick (Lepidoptera: Elachistidae). Palmas 2013, 34, 13–19. [Google Scholar]
- de Sousa Brandão, A.D.; Farias, P.R.S.; Dionisio, L.F.S.; Tinôco, R.S.; da Silva, A.G.; da Silva, T.A.F. Spatial and temporal distribution of Opsiphanes invirae (Lepidoptera: Nymphalidae) in oil palm, Pará State, Brazil. Rev. Bras. Cienc. Agrar. 2017, 12, 464–469. [Google Scholar] [CrossRef]
- Morais, W.D.C.; Plata-Rueda, A.; Martínez, L.C.; Zanuncio, A.J.V.; Fernandes, F.L.; Wilcken, C.F.; Zanuncio, J.C.; Serrão, J.E. Potential of Diaphania hyalinata and Tenebrio molitor as alternative host for mass rearing of Palmistichus elaeisis (Hymenoptera: Eulophidae). Entomol. Gen. 2019, 39, 285–294. [Google Scholar] [CrossRef]
- Flower, R.W. Leaf beetles (Coleoptera: Chrysomelidae). In Encyclopedia of Entomology; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Castillo Carrillo, C.I. Biodiversity in Ecuador and its immense potential for agricultural pest control. In Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery; Springer: Cham, Switzerland, 2020; pp. 143–161. [Google Scholar]
- Kathirithamby, J.; Solulu, T.; Caudwell, R. Descriptions of female Myrmecolacidae (Strepsiptera) parasitic in Orthoptera (Tettigoniidae) in Papua New Guinea. Tijdschr. Entomol. 2001, 144, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.C.; Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E. Bioactivity of six plant extracts on adults of Demotispa neivai (Coleoptera: Chrysomelidae). J. Insect Sci. 2015, 15, 34. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.C.; Plata-Rueda, A.; Ramírez, A.; Serrão, J.E. Susceptibility of Demotispa neivai (Coleoptera: Chrysomelidae) to Beauveria bassiana and Metarhizium anisopliae entomopathogenic fungal isolates. Pest Manag. Sci. 2022, 78, 123–133. [Google Scholar] [CrossRef]
- Kantharaju, N.C.; Venkatesh, H.; Yalavar, S. Biology of arecanut spindle bug, Carvalhoia arecae Miller and China (Heteroptera: Miridae). J. Ecol. Environ. 2011, 29, 148–151. [Google Scholar]
- Kantharaju, N.; Thippeswamy, C.; Venkatesh, H. Efficacy of certain insecticides against arecanut spindle bug, Carvalhoia arecae Miller and China (Heteroptera: Miridae) under field conditions. Int. J. Plant Prot. 2009, 2, 237–239. [Google Scholar]
- Poorani, J.; Padmanaban, B.; Thanigairaj, R. Natural enemies of banana lacewing bug, Stephanitis typica (Distant) in India, including first report of Anagrus sp. (Hymenoptera: Mymaridae) as its egg parasitoid. Mun. Ent. Zool. 2019, 14, 83–87. [Google Scholar]
- Zenner de Polanía, I.; Posada Flórez, F.J. Manejo de Insectos, Plagas y Benéficos, de la Palma Africana; Manuel de Asistencia Técnica No. 54; Instituto Colombiano Agropecuario: Santa Fé de Bogotá, Colombia, 1992. [Google Scholar]
- Aldana de la Torre, J.; Calvache Guerrero, H.; Méndez, A. Distribución de hormigas y su efecto sobre Leptopharsa gibbicarina en una plantación de palma de aceite. Palmas 1995, 16, 19–23. [Google Scholar]
- Ramos, Y.P.; Ibagué, D.F.; Arias, N.A.A.; Alzate, O. Relación entre el anaranjamiento foliar y la presencia del ácaro de fronde (Retracrus elaeis) y su manejo con aspersiones de azufre en el cultivo de palma de aceite (Elaeis guineensis Jacq.). Palmas 2019, 40, 161–169. [Google Scholar]
- Matsumura, Y.; Jafarpour, M.; Reut, M.; Shams Moattar, B.; Darvizeh, A.; Gorb, S.N.; Rajabi, H. Excavation mechanics of the elongated female rostrum of the acorn weevil Curculio glandium (Coleoptera; Curculionidae). Appl. Phys. A 2021, 127, 348. [Google Scholar] [CrossRef]
- Fiaboe, K.K.M.; Peterson, A.T.; Kairo, M.T.K.; Roda, A.L. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Fla. Entomol. 2012, 95, 659–673. [Google Scholar] [CrossRef]
- Baguma, J.; Otema, M.; Ddamulira, G.; Naluyimba, R.; Egonyu, J.P. Distribution and incidence of the oil palm weevil Rhynchophorus phoenicis (Fabricius, 1801) (Coleoptera: Curculionidae) in selected agro-ecological zones of Uganda. Afr. Entomol. 2019, 27, 477–487. [Google Scholar] [CrossRef]
- Egonyu, J.P.; Gitonga, K.J.; Khamis, F.M.; Copeland, R.S.; Finyange, P.; Odhiambo, R.; Ddamulira, G. Trapping, identification and rearing of edible palm weevils in Kenya and Uganda. J. Insects Food Feed 2021, 7, 1243–1253. [Google Scholar] [CrossRef]
- Faleiro, R.J.; Al-Dandan, A.M.; Raikar, S.P.; Abdallah, A.B.; Al-Abdullah, A.L.; Gadi, I. Attract and kill technology to control Red palm weevil: Experiences on date palm in Saudi Arabia and oil palm in India. In Proceedings of the 2nd Date’s Festival, Siwa Oasis, Egypt, 27–29 October 2016. [Google Scholar]
- Cabello, T. Biology and population dynamics of the Red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Dryophthoridae) in Spain. In I Jornada Internacional sobre el Picudo Rojo de las Palmeras; Fundación Agrolimed, Generalitat Valenciana: Valencia, Spain, 2007; pp. 12–13. [Google Scholar]
- Abraham, V.A.; Al-Shuaib, M.A.; Falleiro, J.R.; Abozuhairah, R.A.; Vidyasagar, P.S.P.V. An integrated management approach for the red palm weevil Rhynchophorus ferrugineus Oliv. A key pest of date palm in the Middle East. J. Sci. Res. Agric. Sci. 1998, 3, 77–84. [Google Scholar] [CrossRef] [Green Version]
- El-Sabea, A.M.R.; Faleiro, J.R.; Abo-El-Saad, M.M. The threat of red palm weevil Rhynchophorus ferrugineus to date plantations of the Gulf region in the Middle-East: An economic perspective. Outlooks Pest Manag. 2009, 20, 131. [Google Scholar] [CrossRef]
- Abozuhairah, R.A.; Vidyasagar, P.S.P.V.; Abraham, V. Integrated management of red palm weevil Rhynchophorus ferrugineus in date palm plantations of the Kingdom of Saudi Arabia. In Proceedings of the International Congress of Entomology, Florence, Italy, 25–31 August 1996; pp. 25–36. [Google Scholar]
- Aldryhim, Y.; Al-Bukiri, S. Effect of irrigation on within-grove distribution of red palm weevil Rhynchophorus ferrugineus. J. Agric. Mar. Sci. 2003, 8, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Vidyasagar, P.S.P.V.; Al-Saihati, A.A.; Al-Mohanna, O.E.; Subbei, A.I.; Abdul Mohsin, A.M. Management of red palm weevil Rhynchophorus ferrugineus Olivier. A serious pest of date palm in Al-Qatif, Kingdom of Saudi Arabia. Plant. Crops 2000, 28, 35–43. [Google Scholar]
- Asante, S.K.; Kumar, R.A.D. Distribution and abundance of Temnoschoita quadrimaculata Gly (Coleoptera: Curculionidae) on oil palm, Elaeis guineensis Jacq. in Ghana. Insect Sci. Appl. 1987, 8, 115–120. [Google Scholar] [CrossRef]
- Alouw, J.C.; Hosang, M.L.; Nguyen, Q. Biotechnology contributing to integrated pest management: The example of two major coconut pests, Oryctes rhinoceros and Brontispa longissima. In Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’; Adkins, S., Foale, M., Bourdeix, R., Nguyen, Q., Biddle, J., Eds.; Springe: Cham, Switzerland, 2020; pp. 151–168. [Google Scholar]
- Manjeri, G.; Muhamad, R.; Tan, S.G. Oryctes rhinoceros beetles, an oil palm pest in Malaysia. Annu. Res. Rev. Biol. 2014, 4, 3429–3439. [Google Scholar] [CrossRef]
- Hallett, R.H.; Perez, A.L.; Gries, G.; Gries, R.; Pierce, H.D.; Yue, J.; Oehlschlager, A.C.; Gonzalez, L.M.; Borden, J.H. Aggregation pheromone of coconut rhinoceros beetle, Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae). J. Chem. Ecol. 1995, 95, 1549–1570. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, A.K.; Chandrashekharaiah, M.; Kandakoor, S.B.; Nagaraj, D.N. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms. J. Environ. Biol. 2014, 35, 479–484. [Google Scholar]
- Nordin, A.B.A.; Simeh, M.A.; Amiruddin, M.N.; Weng, C.K.; Salam, B.A. Economic feasibility of organic palm oil production in Malaysia. OPIEJ 2004, 4, 29–38. [Google Scholar]
- Paudel, S.; Mansfield, S.; Villamizar, L.F.; Jackson, T.A.; Marshall, S.D. Can biological control overcome the threat from newly invasive coconut rhinoceros beetle populations (Coleoptera: Scarabaeidae)? A review. Ann. Entomol. Soc. Am. 2021, 114, 247–256. [Google Scholar] [CrossRef]
- Martínez, L.C.; Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E. Comparative toxicity of six insecticides on the rhinoceros beetle (Coleoptera: Scarabaeidae). Fla. Entomol. 2014, 97, 1056–1062. [Google Scholar] [CrossRef]
- Peña, E.A.; Jiménez, O.D. Distribución del daño del insecto Sagalassa valida Walker en el sistema radical de la palma de aceite (Elaeis guineensis Jacquin) en la zona de Tumaco. Palmas 1994, 15, 19–23. [Google Scholar]
- El-Shafie, H.A.F.; Faleiro, J.R. Semiochemicals and Their Potential Use in Pest Management. In Biological Control of Pest and Vector Insects; Shields, V.D.C., Ed.; IntechOpen: London, UK, 2017; pp. 1–21. [Google Scholar] [CrossRef] [Green Version]
- Oehlschlager, A.C.; Chinchilla, C.; Castillo, G.; Gonzalez, L. Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Fla. Entomol. 2002, 85, 507–513. [Google Scholar] [CrossRef]
- Guarino, S.; Bue, P.L.; Peri, E.; Colazza, S. Responses of Rhynchophorus ferrugineus adults to selected synthetic palm esters: Electroantennographic studies and trap catches in an urban environment. Pest Manag. Sci. 2011, 67, 77–81. [Google Scholar] [CrossRef]
- Oehlschlager, C. Current Status of Trapping Palm Weevils and Beetles; Chem Tica Internacional: San Jose, Costa Rica, 2004. [Google Scholar]
- Oehlschlager, C. Optimizing Trapping of Palm Weevils and Beetles Optimizing Trapping of Palm Weevils and Beetles; ChemTica Internacional: San Jose, Costa Rica, 2007. [Google Scholar] [CrossRef]
- Sasaerila, Y.; Gries, R.; Gries, G.; Khaskin, G.; King, S.; Boo, T. Decadienoates: Sex pheromone components of nettle caterpillars Darna trima and D. bradleyi. J. Chem. Ecol. 2000, 26, 1969–1981. [Google Scholar] [CrossRef]
- Sharma, A.; Sandhi, R.K.; Reddy, G.V.P. A review of interactions between insect biological control agents and semiochemicals. INMUEX 2019, 10, 439. [Google Scholar] [CrossRef] [Green Version]
- Nangai, V.L.; Martin, B. Interpreting the acoustic characteristics of Red Palm Weevil towards its detection—A review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 012178. [Google Scholar] [CrossRef] [Green Version]
- Hetzroni, A.; Soroker, V.; Cohen, Y. Toward practical acoustic red palm weevil detection. Comput. Electron. Agric. 2016, 124, 100–106. [Google Scholar] [CrossRef]
- Siriwardena, K.A.P.; Fernando, L.C.P.; Nanayakkara, N.; Perera, K.F.G.; Kumara, A.D.N.T.; Nanayakkara, T. Portable acoustic device for detection of coconut palms infested by Rynchophorus ferrugineus (Coleoptera: Curculionidae). J. Crop Prot. 2010, 29, 25–29. [Google Scholar] [CrossRef]
- Herrick, N.J.; Mankin, R.W. Acoustical detection of early instar Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Canary Island date palm, Phoenix canariensis (Arecales: Arecacae). Fla. Entomol. 2012, 95, 983–990. [Google Scholar] [CrossRef]
- Ashry, I.; Mao, Y.; Al-fehaid, Y.; Al-shawaf, A. Early detection of red palm weevil using distributed optical sensor. Sci. Rep. 2020, 10, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Mao, Y.; Ashry, I.; Al-fehaid, Y.; Al-shawaf, A. Towards detecting red palm weevil using machine learning and fiber optic distributed acoustic sensing. Sensors 2001, 21, 1592. [Google Scholar] [CrossRef]
- Rach, M.M.; Gomis, H.M.; Granado, O.L.; Malumbres, M.P.; Campoy, A.M.J.J.; Serrano Martín, A. On the design of a bioacoustic sensor for the early detection of the Ped palm weevil. Sensors 2013, 13, 1706–1729. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic nose and its applications: A survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef] [Green Version]
- Anankware, P.J.; Fening, K.; Osekre, E.; Obeng-Ofori, D. Insects as food and feed: A review. Int. J. Agric. Res. Rev. 2015, 3, 143–151. [Google Scholar]
- Anankware, J.P.; Roberts, B.J.; Cheseto, X.; Osuga, I.; Savolainen, V.; Collins, C.M. The nutritional profiles of five important edible insect species from West Africa—An analytical and literature synthesis. Front. Nutr. 2021, 8, 29–41. [Google Scholar] [CrossRef]
- Okia, C.; Odongo, W.; Nzabamwita, P.; Ndimubandi, J.; Nalika, N.; Nyeko, P. Local knowledge and practices on use and management of edible insects in Lake Victoria basin, East Africa. J. Insects Food Feed 2017, 3, 83–93. [Google Scholar] [CrossRef]
- Hanboonsong, Y. Edible insects and associated food habits in Thailand. In Forest Insects as food: Humans Bite Back, Proceedings of the Workshop on Asia-Pacific Resources and Their Potential for Development, Bangkok, Thailand, 19–21 February, 2008; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; pp. 173–182. [Google Scholar]
- Ukoroije, R.; Bobmanuel, R. The acceptability of Oryctes owariensis Beauvois (Coleoptera: Scarabaeidae) larva as food in Bayelsa State, Nigeria. East Afr. Sch. J. Agric. Life Sci. 2019, 2, 509–515. [Google Scholar] [CrossRef]
- Manno, N.; Estraver, W.Z.; Tafur, C.M.; Torres, C.L.; Schwarzinger, C.; List, M.; Schoefberger, W.; Coico, F.R.M.; Leon, J.M.; Battisti, A.; et al. Edible insects and other chitin-bearing foods in ethnic Peru: Accessibility, nutritional acceptance, and food-security implications. J. Ethnobiol. 2018, 38, 424–447. [Google Scholar] [CrossRef]
- Stout, M.J. Host-plant resistance in pest management. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 1–21. [Google Scholar] [CrossRef]
- Martin, J.J.J.; Yarra, R.; Wei, L.; Cao, X. Oil palm breeding in the modern era: Challenges and opportunities. Plants 2022, 11, 1395. [Google Scholar] [CrossRef] [PubMed]
- Joshi, H.; Choudhary, P.; Mundra, S.L. Future prospects of nanotechnology in agriculture. Int. J. Chem. Stud. 2019, 7, 957–963. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z.; Idris, A.S. An Overview of the oil palm industry: Challenges and some emerging opportunities for nanotechnology development. Agronomy 2020, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Elizabath, A.; Babychan, M.; Mathew, A.M.; Syriac, G.M. Application of nanotechnology in agriculture. Int. J. Pure Appl. Biosci. 2019, 7, 131–139. [Google Scholar] [CrossRef]
- Bhan, S.; Mohan, L.; Srivastava, C.N. Nanopesticides: A recent novel ecofriendly approach in insect pest management. J. Entomol. Res. 2018, 42, 263–270. [Google Scholar] [CrossRef]
- Agarwal, M.; Verma, A. Modern Technologies for Pest Control: A Review. In Heavy Metals—Their Environmental Impacts and Mitigation; Nazal, M.K., Zhao, H., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Tunaz, H. Insect Growth Regulators for Insect Pest Control. Turk. J. Agric. For. 2004, 28, 377–387. [Google Scholar]
- Anwer, A.; Singh, G. Geo-spatial technology for plant disease and insect pest management. Bull. Environ. Pharmacol. Life 2019, 8, 1–12. [Google Scholar]
- Balijepalli, S.B.; Faleiro, J.R. Is policy analysis on quarantine issues in the Near East and North Africa region leading to the buildup and spread of red palm weevil Rynchophorus ferrugineus? Arab. J. Plant Prot. 2019, 37, 89–100. [Google Scholar] [CrossRef]
- Orden de 18 de Noviembre de 1996 por la que se Establecen Medidas Provisionales de Protección Contra el Curculiónido Ferruginoso de las Palmeras [Rhynchophorus ferrugineus (Olivier)]. Available online: www.boe.es/diarioboe/txt.php?id=BOE-A-1996-26385 (accessed on 14 June 2022).
- Ministry of Agriculture, Fisheries and Food 2000. Order of February 28, 2000, Establishing Provisional Protection Measures against the Ferruginous Curculionid of Palm Trees [“Rhynchophorus ferrugineus” (“Olivier”)]. Available online: https://noticias.juridicas.com/base_datos/Admin/o280200-mapa.html (accessed on 10 November 2022).
- OJEU. Commission Decision 2007/365/EC on Emergency Measures against the Introduction and Spread within the EU of R. ferrugineus (Olivier) [Notified under Document Number C (2007) 2161]; Official Journal of the European Union L 139; OJEU: Luxembourg, 2007; pp. 24–27. [Google Scholar]
- OJEU. Commission Decision of 6 October 2008 amending Decision 2007/365/EC on Emergency Measures to Prevent the Introduction into and the Spread within the Community of R. ferrugineus (Olivier) [Notified under Document Number C (2008) 5550]. Official Journal of the European Union L 266; OJEU: Luxembourg, 2008; pp. 51–54. [Google Scholar]
- OJEU. Commission Decision of 17 August 2010 amending Decision 2007/365/EC on Emergency Measures to Prevent the Introduction into and the Spread within the Community of R. ferrugineus (Olivier) [Notified under Document Number C (2010) 5640]. Official Journal of the European Union L 226; OJEU: Luxembourg, 2010; pp. 42–44. [Google Scholar]
Type of Pest | Order | Family | Pest | Stage | Distribution | Life Cycle | Extent of Damage | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Borers | Coleoptera | Curculionidae | Rhynchophorus ferrugineus Olivier | Larva | Native to Southeast Asia but with a recently expanded range to Europe, North Africa, and North and South America, | 45–180 days | The attacked palm tree trunk is structurally weakened, making the plant liable to collapse. | [10,11,12] | ||||||||
Rhynchophorus palmarum L. | Larva | North, Central and South America | 45–180 days | The attacked palm tree trunk is structurally weakened, making the plant liable to collapse. The insect is a vector of the Red-Ring disease and is also associated with the Bud-Rot disease. | [11,12,13] | |||||||||||
Rhynchophorus phoenicis Fabricius | Larva | Central, eastern and southern Africa | 45–180 days | The attacked palm tree trunk is structurally weakened, making the plant liable to collapse. | [10,11,12] | |||||||||||
Rhynchophorus quadrangulus (Quedenfeld) | Larva | West-Central Africa | 45–180 days | The attacked palm tree trunk is structurally weakened, making the plant liable to collapse. | [10,11,12] | |||||||||||
Metamasius inaequalis Gyllenhal | Adult | Central and South America | – | Attacks the pruned frond bases. | [14] | |||||||||||
Rhynchophorus bilineatus (Montrouzier) | Larva | Eastern Indonesia, Papua New Guinea | – | Larvae live and feed inside oil palm trunk near the bud area. The attacked palm tree trunk is structurally weakened, making the plant liable to collapse. | [15] | |||||||||||
Temnoshoia quadrimaculata Scopoli | Adult | Democratic Republic of Congo and Ghana | 33–52 days | Injury symptoms include premature withering of fronds and necrosis of the terminal shoot. Young palms can be killed by damage to the crown. | [16,17] | |||||||||||
Dryophthoridae | Sparganobasis subcruciata Marshall | Larva | Eastern Indonesia, Papua New Guinea | – | Larvae live and feed inside the basal part of the oil palm trunk making the plant liable to collapse. | [15,18] | ||||||||||
Scarabaeidae | Oryctes rhinoceros L. | Adult | Southern and Southeast Asia and the western Pacific Islands | 115–162 days | Adults penetrate 10–50 cm down the center of the spear cluster to feed on juice from host tissue. In addition to the damage by the beetle, the burrows may provide secondary access by pathogens that can kill the palm. | [8] | ||||||||||
Strategus aloeus L. | Adult | South America | 308 days | Burrow up to 50 cm in the soil just under the stem base of 1–3-year-old palms and then tunnel up into the base of the plant, sometimes moving into the stem above the soil line. | [19,20] | |||||||||||
Lepidoptera | Brachodidae | Sagalassa valida Walker | Larva | Brazil, Colombia, Ecuador and Venezuela | 78–81 days | Root-boring results in premature frond death and poor rooting. Causes significant damage to the roots of young palms (2–6-year-old). | [8,21] | |||||||||
Castniidae | Cyparissius daedalus Cramer | Larva | Brazil, Colombia, Peru and Venezuela | 217–493 days | Later instars make shallow galleries between the petioles and the stem, causing premature frond abscission. In a few cases, palm death occurs when larvae bore the growing point of the palm. Oil palm trees become susceptible at about 5 years after planting. | [8,16,22] | ||||||||||
Crambidae | Pimelephila ghesquierei (Tams) | Larvae | West Africa | – | Two or three neonates penetrate the leaflets of the growing, unopened spears, forming galleries and mostly destroying the bases of young palms. | [8,17,23] | ||||||||||
Defoliators | Coleoptera | Buprestidae | Taphrocerus cocois Bondar | Larva | Brazil | 49 days | The larvae make mines in the fronds. | [24] | ||||||||
Chrysomelidae | Alurnus humeralis Rosenberg | Larva/Adult | Colombia and Ecuador | 334–532 days | This insect attacks spear leaves and young opened leaves. | [8,22] | ||||||||||
Gyllenhalius palmarum Maulik | Larva | Ghana and Nigeria | – | - | [8] | |||||||||||
Spaethiella tristis Boheman | Larva/Adult | Brazil, Colombia and Suriname | 45 days | Adults feed on leaflets, making small longitudinal grooves. Larvae scrape only the undersides of leaflets. Damage can reach between 50–60% of leaf surface | [8,22] | |||||||||||
Scarabaeidae | Adoretus compressus Webb. | Adult | Southeast Asia | – | Adult feeds on leaflets of oil palm seedlings | [25] | ||||||||||
Apogonia expeditionis Ritsema | Adult | Southeast Asia | – | Adult feeds on leaflets of oil palm seedlings | [25] | |||||||||||
Leucothyreus femoratus Burmeister | Larva/Adult | Colombia | 170 days | Adult cut irregular square or rectangular holes on leaves. Leaf consumption per adult is 13mm2/day. Larvae also feed on roots. | [21,26] | |||||||||||
Lepidoptera | Depressariidae | Acria meyricki Shashank and Ramamurthy | Larva | India | 33 days | Early instars feed on green parenchymatous tissues of the leaflets from the underside, leaving a thin parchment-like upper epidermis undamaged, while the later stages defoliate the leaves. | [27] | |||||||||
Elachistidae | Loxotoma elegans Zeller | Larva | Brazil, Bolivia, Colombia and Panama | 100–124 days | Damage begins with the lower leaves and can reach all the levels. Infestation symptoms include defoliation of the apical part and the center of the leaves. | [21,28] | ||||||||||
Stenoma cecropia Meyrick | Larva | Colombia | 74–89 days | Leaf consumption by each larva is 40–50 cm2 | [21] | |||||||||||
Stenoma impressella Busck | Larva | Colombia, Ecuador, Guatemala, Honduras, Panama, Peru and Venezuela | 60–67 days | A single larva consumes a mean of 40–50 cm2 of leaf material. In later feeding, the entire leaf tissue, except for midveins, is consumed. | [8,29] | |||||||||||
Antaeotricha phaeuneura Meyrick | Larva | Argentina, Brazil, Colombia and Ecuador | 47 days | Larvae scrape the upper and undersides of the leaflet, causing progressive dryness, but the overall damage is minimal. | [7,22] | |||||||||||
Limacodidae | Acharia fusca Stoll | Larva | Colombia, Ecuador, Guyana, Honduras, Peru, Suriname and Venezuela | 76–94 days | A single larva can consume 400 cm2 of leaf area in a few days. | [30] | ||||||||||
Darna bradleyi Holloway | Larva | Southeast Asia | 44–48 days | Causes severe damage to oil palm canopy at population density of 30 larva per frond | [25] | |||||||||||
Darna trima Moore | Larva | Southeast Asia | 60 days | Causes severe damage to oil palm canopy at population density of 10–20 larva per frond | [25] | |||||||||||
Euclea diversa Druce | Larva | Brazil, Costa Rica, Colombia, Honduras and Peru | 61–88 days | A single larva can consume 50–60 cm2 of leaf area in a few days. Under favorable conditions, the pest can swarm and cause more damage | [7,22] | |||||||||||
Euprosterna elaeasa Dyar | Larva | Brazil, Colombia, Ecuador, Guyana, Mexico, Panamá, Peru, Suriname, Trinidad and Tobago, and Venezuela | 64 days | A single larva consumes ~66 cm2 in a few days, and the pest causes ~80% loss of plant canopy. | [31] | |||||||||||
Natada subpectinata Dyar | Larva | Argentina, Brazil, Colombia, Costa Rica, Paraguay and Suriname | 35–106 days | Damage is uniform and, in some cases, they damage the whole blade leaving only the midrib of the leaflet. | [7,21] | |||||||||||
Sibine fusca Stoll | Larva | Colombia and Peru | 78–103 days | A single larva can consume 400-600 cm2 of leaflets. | [22] | |||||||||||
Talima straminea Schaus | Larva | Brazil, Colombia, Ecuador, Guyana and Mexico | 120–160 days | Sporadic leaf scrapping, with minimal harm to the tree. | [7] | |||||||||||
Nymphalidae | Amathusia phidippus L. | Larva | Southeast Asia and the Malay Archipelago | 60 days | Larvae are voracious feeders on the underside of the leaf, eating backwards towards the base from the tip of the leaf. | [8,32] | ||||||||||
Brassolis sophorae L. | Larva | Argentina, Brazil, Bolivia, Colombia and Ecuador | 81–125 days | A single larva can consume 500-600 cm2 of leaf area in a few days. | [7,21] | |||||||||||
Opsiphanes cassina Felder | Larva | Central America, Colombia, Ecuador and Peru | 59–77 days | An individual larva may consume up to 800 cm2 of foliar tissue | [8,21,33] | |||||||||||
Opsiphanes invirae Huebner | Larva | Brazil | 59–77 days | Initially, the infestation occurs at the plantation edges, with subsequent spread to the entire area. Larvae disperse by passing from one plant to another, infesting all the area. | [7,11] | |||||||||||
Psychidae | Clania tertia Templeton | Larva | Indonesia and Malaysia | 120 days | A single larva can consume 4.8–5.4 cm2 leaf area per day. | [34] | ||||||||||
Mahasena corbetti Tams | Larva | Southeast Asia | 143–166 days | The severe defoliation can be lethal to infested trees and can cause 40–50% yield loss of oil palm in two years. | [35] | |||||||||||
Manatha conglacia Haettenschwiler | Larva | Indonesia and Papua New Guinea | – | Young larvae scrape the parenchyma. | [36] | |||||||||||
Metisa plana Walker | Larva | Indonesia and Malaysia | 103.5 days | Causes high yield losses up to 43% in years | [37] | |||||||||||
Oiketicus kirbyi Guilding | Larva | Colombia, Costa Rica, Ecuador, Mexico and Trinidad and Tobago | 235–320 days | First to third instars scrape the parenchyma but from fourth instar onwards, the larvae consume the entire leaf in circular patterns. | [7,8] | |||||||||||
Pteroma pendula Joannis | Larva | Indonesia and Malaysia | 43–46 days | Cuts small holes which result in leaf desiccation with high infestation, with almost all fronds being affected and plantation dieback at severe infestation levels. | [25,38,39] | |||||||||||
Saturniidae | Automeris liberia Cramer | Larva | Central and South America | 78–80 days | Larvae destroy the underside of the leaflets at any stage of the palm. Their stinging hairs are hazardous to nursery and landscape workers. | [7,21] | ||||||||||
Dirphia gragatus Bouvier | Larva | Colombia, Ecuador and Peru | 60–166 days | A single larva can consume 400–600 cm2 in a few days. | [21,40] | |||||||||||
Orthoptera | Tettigoniidae | Segestes decoratus Redtenbacher | Nymph/Adult | Papua New Guinea | - | Often attack the younger fronds first, but dense populations can effectively defoliate the entire palm. Their damage is noticeable before the insects themselves are seen. | [8] | |||||||||
Segestidea defoliaria Uvarok | Nymph/Adult | Papua New Guinea | - | Same as S. defoliaria | [8] | |||||||||||
Segestidea novaeguineae (Brancsik) | Nymph/Adult | Papua New Guinea | - | Same as S. defoliaria | [8] | |||||||||||
Sexava coriaceae L. | Nymph/Adult | Eastern Indonesia | - | Similar to S. defoliaria | [41] | |||||||||||
Sap suckers | Hemiptera | Cixiidae | Haplaxius crudus Van Duzee | Adult | Colombia, Mexico and USA | 45 days | Vector of lethal yellowing disease. | [8,21] | ||||||||
Miridae | Carvalhoia arecae Miller and China | Adult | India | - | Occupies the leaf axils of the youngest fronds and attack the spear leaf, which develops chlorotic streaks in the newly unfolded frond. | [42,43] | ||||||||||
Tingidae | Leptopharsa gibbicarina Froeschner | Adult | Colombia and Venezuela | 62–75 days | Vector of Pestalotiopsis fungal complex through piercing and sucking of sap from leaves. | [44] | ||||||||||
Stephanitis typica (Distant) | Nymph/Adult | New Guinea and Tropical Asia | 50 days | Stylets are inserted through the stomata, rupturing cell walls, terminating in the phloem, and penetrating to a maximum of 600 μm. | [17,45] | |||||||||||
Scrapers and Miner | Coleoptera | Chrysomelidae | Cephaloleia vagelineata Piceus | Larva/ Adult | Brazil, Colombia, Costa Rica, Guatemala, Honduras, Mexico and Venezuela | 130 days | Adults scrape leaflets of young fronds before they are fully unfolded, forming fossae parallel to major veins; whereas larvae feed on surfaces of the rachis of spear leaves and young fronds causing necrosis. | [8,21,46] | ||||||||
Delocrania cossyphoides Guérin | Larva/ Adult | South America to Panama | - | The larvae and adult beetles occur together on young foliage, both of them feeding on the abaxial epidermis of palm leaflets, starting near the midvein and extending laterally. | [47] | |||||||||||
Demotispa neivai Bondar | Larva/ Adult | Brazil, Colombia, Panama and Venezuela | 270 days | Larvae and adults scrape green fruits causing wounds that turn greyish. | [22,48] | |||||||||||
Hispoleptis subfasciata Piceus | Larva/ Adult | Brazil and Colombia | 104 days | Adult feeding makes grooves parallel to the midrib of the leaflet. Larvae mine inside the leaflet forming a gallery. | [8,21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egonyu, J.P.; Baguma, J.; Martínez, L.C.; Priwiratama, H.; Subramanian, S.; Tanga, C.M.; Anankware, J.P.; Roos, N.; Niassy, S. Global Advances on Insect Pest Management Research in Oil Palm. Sustainability 2022, 14, 16288. https://doi.org/10.3390/su142316288
Egonyu JP, Baguma J, Martínez LC, Priwiratama H, Subramanian S, Tanga CM, Anankware JP, Roos N, Niassy S. Global Advances on Insect Pest Management Research in Oil Palm. Sustainability. 2022; 14(23):16288. https://doi.org/10.3390/su142316288
Chicago/Turabian StyleEgonyu, James P., John Baguma, Luis C. Martínez, Hari Priwiratama, Sevgan Subramanian, Chrysantus M. Tanga, Jacob P. Anankware, Nanna Roos, and Saliou Niassy. 2022. "Global Advances on Insect Pest Management Research in Oil Palm" Sustainability 14, no. 23: 16288. https://doi.org/10.3390/su142316288
APA StyleEgonyu, J. P., Baguma, J., Martínez, L. C., Priwiratama, H., Subramanian, S., Tanga, C. M., Anankware, J. P., Roos, N., & Niassy, S. (2022). Global Advances on Insect Pest Management Research in Oil Palm. Sustainability, 14(23), 16288. https://doi.org/10.3390/su142316288