Optimized Isolation and Characterization of the Major Polysaccharide from Grape Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of GPP
2.3. Single Parameter Optimization
2.3.1. Material to Solvent Ratio
2.3.2. Extraction Time
2.3.3. Extraction Temperature
2.4. Orthogonal Test Design of GPP Extraction
2.5. Purification of GPP
2.6. Chemical Analysis of Purified GPP
2.6.1. UV-Vis Spectroscopy
2.6.2. FT-IR Spectroscopy
2.6.3. Monosaccharide Composition Analysis with a Pre-Column PMP-HPLC Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Single Parameter on the Extraction Yield of GPP
3.2. Optimization of the Polysaccharide Extraction Parameters Condition
3.3. Purification of GPP
3.4. Monosaccharide Composition of Purified GPP
3.5. FT-IR Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canalejo, D.; Guadalupe, Z.; Martínez-Lapuente, L.; Ayestarán, B.; Pérez-Magariño, S. Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem. 2021, 365, 130445. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, D. Economical and eco-friendly isolation of anthocyanins from grape pomace with higher efficiency. Food Chem. X 2022, 15, 100419. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Z.; Song, T.; Lv, G. Optimization of enzyme-assisted extraction of antitumor polysaccharides from Hericium erinaceus mycelia. Food Sci. Technol. Res. 2017, 23, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.; Hu, J.; Fu, L.; Zhang, L. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohydr. Polym. 2015, 115, 701–706. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Wang, T.; Cai, Z.; Cao, H.; Zhang, H.; Cao, Y.; Chen, B.; Yang, D. Statistics on the bioactive anthocyanin/proanthocyanin products in China online sales. Food Sci. Nutr. 2021, 9, 5428–5434. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, W.; Wen, P.; Shen, M.; Li, H.; Ren, Y.; Xiao, Y.; Song, Q.; Chen, Y.; Yu, Q.; et al. Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocoll. 2020, 100, 105412. [Google Scholar] [CrossRef]
- Su, Y.; Li, L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Cano-Mozo, E.; Bueno-Herrera, M.; Canalejo, D.; Doco, T.; Ayestarán, B.; Guadalupe, Z. The effects of grape polysaccharides extracted from grape by-products on the chemical composition and sensory characteristics of white wines. Molecules 2022, 27, 4815. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Chen, T.; Chen, X. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci. Technol. 2022, 123, 264–280. [Google Scholar] [CrossRef]
- Yarley, O.P.N.; Kojo, A.B.; Zhou, C.; Yu, X.; Gideon, A.; Kwadwo, H.H.; Richard, O. Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides. Int. J. Biol. Macromol. 2021, 183, 2262–2271. [Google Scholar] [CrossRef]
- Meng, X.; Zheng, J.; Wang, F.; Zheng, J.; Yang, D. Dietary fiber chemical structure determined gut microbiota dynamics. iMeta 2022, e64. [Google Scholar] [CrossRef]
- Ye, G.; Li, J.; Zhang, J.; Liu, H.; Ye, Q.; Wang, Z. Structural characterization and antitumor activity of a polysaccharide from Dendrobium wardianum. Carbohydr. Polym. 2021, 269, 118253. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ma, X.; Zhang, K.; Li, S.; Wang, X.; Liu, X.; Liu, J.; Fan, W.; Li, Y.; et al. Study on the kinetic model, thermodynamic and physicochemical properties of Glycyrrhiza polysaccharide by ultrasonic assisted extraction. Ultrason. Sonochem. 2019, 51, 249–257. [Google Scholar] [CrossRef]
- Amutha Gnana Arasi, M.A.; Gopal Rao, M.; Bagyalakshmi, J. Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits. Int. J. Biol. Macromol. 2016, 91, 227–232. [Google Scholar] [CrossRef]
- Rondeau, P.; Gambier, F.; Jolibert, F.; Brosse, N. Compositions and chemical variability of grape pomaces from French vineyard. Ind. Crops Prod. 2013, 43, 251–254. [Google Scholar] [CrossRef]
- Li, Q.; Ju, H.; Zhai, C. Extraction technology of crude polysaccharide from Schisandra chinensis. J. Food Sci. 2004, 25, 5. [Google Scholar]
- Zhang, F.; Zheng, J.; Li, Z.; Cai, Z.; Wang, F.; Yang, D. Purification, characterization, and self-assembly of the polysaccharide from Allium Schoenoprasum. Foods 2021, 10, 1352. [Google Scholar] [CrossRef]
- Wu, G.-H.; Hu, T.; Huang, Z.-L.; Jiang, J.-G. Characterization of water and alkali-soluble polysaccharides from Pleurotus tuberregium sclerotia. Carbohydr. Polym. 2013, 96, 284–290. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Amid, B.T. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res. Int. 2012, 46, 387–398. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Zheng, W.; Gao, Y.; Wang, M.; Zhang, Y.; Gao, Q. Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii. Int. J. Biol. Macromol. 2016, 92, 30–36. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Z.-G.; Zhu, H.-J. An efficient enzymatic modification of lily polysaccharide in ionic liquid under ultrasonic irradiation. Biochem. Eng. J. 2013, 79, 25–28. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Wu, J.Y. Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochem. Eng. J. 2013, 79, 214–220. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, N.; Xiong, S.; Li, S.; Yang, B. Extraction of BaChu mushroom polysaccharides and preparation of a compound beverage. Carbohydr. Polym. 2008, 73, 289–294. [Google Scholar]
- Liu, X.; Zhou, B.; Lin, R.; Jia, L.; Deng, P.; Fan, K.; Wang, G.; Wang, L.; Zhang, J. Extraction and antioxidant activities of intracellular polysaccharide from Pleurotus sp. mycelium. Int. J. Biol. Macromol. 2010, 47, 116–119. [Google Scholar] [CrossRef]
- Li, P.; Yan, Z.; Chen, Y.; He, P.; Yang, W. Analysis of monosaccharide composition of water-soluble polysaccharides from Codium fragile by ultra-performance liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2021, 44, 1452–1460. [Google Scholar] [CrossRef]
- Zhang, R.; Edgar, K.J. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules 2014, 15, 1079–1096. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Li, S.; Li, Q.; Fan, W.; Kiatoukosin, L.; Chen, J. Extracellular polysaccharides of endophytic fungus Alternaria tenuissima F1 from Angelica sinensis: Production conditions, purification, and antioxidant properties. Int. J. Biol. Macromol. 2019, 133, 172–183. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, Y.; Jia, J.; Ren, X.; Wang, Y. Extraction, purification and properties of water-soluble polysaccharides from mushroom Lepista nuda. Int. J. Biol. Macromol. 2019, 128, 858–869. [Google Scholar] [CrossRef]
- Ji, P.; Wei, Y.; Xue, W.; Hua, Y.; Zhang, M.; Sun, H.; Song, Z.; Zhang, L.; Li, J.; Zhao, H.; et al. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products. Int. J. Biol. Macromol. 2014, 67, 195–200. [Google Scholar] [CrossRef]
- Chylińska, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Carbohydr. Polym. 2016, 154, 48–54. [Google Scholar] [CrossRef]
- Sardari, R.R.R.; Kulcinskaja, E.; Ron, E.Y.C.; Björnsdóttir, S.; Friðjónsson, Ó.H.; Hreggviðsson, G.Ó.; Karlsson, E.N. Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus. Carbohydr. Polym. 2017, 156, 1–8. [Google Scholar] [CrossRef]
Variable | Levels | ||
---|---|---|---|
1 | 2 | 3 | |
(A) Ratio of material to solvent (n) | 1:25 | 1:30 | 1:35 |
(B) Extraction temperature (°C) | 65 | 70 | 75 |
(C) Extraction time (min) | 30 | 40 | 50 |
Exp NO. | (A) Ratio of Raw Material to Solvent (n) | (B) Extraction Temperature (°C) | (C) Extraction Time (min) | Extraction Yield (%) |
---|---|---|---|---|
1 | 1 | 1 | 1 | 13.22 |
2 | 1 | 2 | 2 | 14.55 |
3 | 1 | 3 | 3 | 14.22 |
4 | 2 | 1 | 2 | 14.66 |
5 | 2 | 2 | 3 | 13.66 |
6 | 2 | 3 | 1 | 13.11 |
7 | 3 | 1 | 3 | 13.66 |
8 | 3 | 2 | 1 | 12.88 |
9 | 3 | 3 | 2 | 14.33 |
K1 | 14.00 | 13.85 | 13.07 | |
K2 | 13.81 | 13.70 | 14.51 | |
K3 | 13.62 | 13.89 | 13.85 | |
R | 0.38 | 0.19 | 1.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Ning, Y.; Yuan, W.; Yang, D. Optimized Isolation and Characterization of the Major Polysaccharide from Grape Pomace. Sustainability 2022, 14, 16058. https://doi.org/10.3390/su142316058
Meng X, Ning Y, Yuan W, Yang D. Optimized Isolation and Characterization of the Major Polysaccharide from Grape Pomace. Sustainability. 2022; 14(23):16058. https://doi.org/10.3390/su142316058
Chicago/Turabian StyleMeng, Xin, Yanyan Ning, Wenjun Yuan, and Dong Yang. 2022. "Optimized Isolation and Characterization of the Major Polysaccharide from Grape Pomace" Sustainability 14, no. 23: 16058. https://doi.org/10.3390/su142316058
APA StyleMeng, X., Ning, Y., Yuan, W., & Yang, D. (2022). Optimized Isolation and Characterization of the Major Polysaccharide from Grape Pomace. Sustainability, 14(23), 16058. https://doi.org/10.3390/su142316058