A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing
Abstract
:1. Introduction
2. HTC
2.1. Overview of HTC
2.2. Characteristics of the Biomass
2.3. Temperature
2.4. Residence Time
2.5. Feedstock: Water Ratio
2.6. Catalyst
3. Pelletizing of Hydrochar
3.1. Pelletizing Parameters
3.2. Properties of the Fuel Pellets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canada’s Energy Future 2021. Available online: https://www.cer-rec.gc.ca/en/data-analysis/canada-energy-future/2021/#:~:text=Welcome%20to%20Canada’s%20Energy%20Future,modelling%20for%20the%20first%20time (accessed on 20 August 2022).
- Akbarian, A.; Andooz, A.; Kowsari, E.; Ramakrishna, S.; Asgari, S.; Cheshmeh, Z.A. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresour. Technol. 2022, 362, 127774. [Google Scholar] [CrossRef]
- Singh, T.A.; Sharma, M.; Sharma, M.; Sharma, G.D.; Passari, A.K.; Bhasin, S. Valorization of agro-industrial residues for production of commercial biorefinery products. Fuel 2022, 322, 124284. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef]
- Igbokwe, V.C.; Ezugworie, F.N.; Onwosi, C.O.; Aliyu, G.O.; Obi, C.J. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. J. Environ. Manag. 2021, 305, 114333. [Google Scholar] [CrossRef]
- Mahari, W.A.W.; Waiho, K.; Fazhan, H.; Necibi, M.C.; Hafsa, J.; Ben Mrid, R.; Fal, S.; El Arroussi, H.; Peng, W.; Tabatabaei, M.; et al. Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. Chemosphere 2021, 291, 133036. [Google Scholar] [CrossRef]
- Pattnaik, F.; Tripathi, S.; Patra, B.R.; Nanda, S.; Kumar, V.; Dalai, A.K.; Naik, S. Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: A review. Environ. Chem. Lett. 2021, 19, 4119–4136. [Google Scholar] [CrossRef]
- Shen, X.; Sun, R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr. Polym. 2021, 261, 117884. [Google Scholar] [CrossRef]
- López Barreiro, D.; Prins, W.; Ronsse, F.; Brilman, W. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass-Bioenergy 2013, 53, 113–127. [Google Scholar] [CrossRef]
- Hu, Y.; Gallant, R.; Salaudeen, S.; Farooque, A.A.; He, S. Hydrothermal Carbonization of Spent Coffee Grounds for Producing Solid Fuel. Sustainability 2022, 14, 8818. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, S.; Yuan, Z.; Xu, C.; Bassi, A. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Bioresour. Technol. 2017, 239, 151–159. [Google Scholar] [CrossRef]
- Duman, G.; Akarsu, K.; Yilmazer, A.; Gundogdu, T.K.; Azbar, N.; Yanik, J. Sustainable hydrogen production options from food wastes. Int. J. Hydrog. Energy 2018, 43, 10595–10604. [Google Scholar] [CrossRef]
- Hu, X.; Dai, L.; Ma, Q.; Xu, J.; Ma, J.; Liu, X. One-pot synthesis of iron oxides decorated bamboo hydrochar for lead and copper flash removal. Ind. Crop. Prod. 2022, 187, 115396. [Google Scholar] [CrossRef]
- Tran, T.H.; Le, A.H.; Pham, T.H.; Duong, L.D.; Nguyen, X.C.; Nadda, A.K.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. A sustainable, low-cost carbonaceous hydrochar adsorbent for methylene blue adsorption derived from corncobs. Environ. Res. 2022, 212, 113178. [Google Scholar] [CrossRef]
- Shi, J.; Cui, H.; Xu, J.; Yan, N. Carbon spheres synthesized from KHCO3 activation of glucose derived hydrochar with excellent CO2 capture capabilities at both low and high pressures. Sep. Purif. Technol. 2022, 294, 121193. [Google Scholar] [CrossRef]
- Chen, G.; Wang, J.; Yu, F.; Wang, X.; Xiao, H.; Yan, B.; Cui, X. A review on the production of P-enriched hydro/bio-char from solid waste: Transformation of P and applications of hydro/bio-char. Chemosphere 2022, 301, 134646. [Google Scholar] [CrossRef]
- Cavali, M.; Junior, N.L.; Mohedano, R.D.A.; Filho, P.B.; da Costa, R.H.R.; Junior, A.B.D.C. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. Sci. Total Environ. 2022, 822, 153614. [Google Scholar] [CrossRef]
- Babeker, T.M.A.; Chen, Q. Heavy Metal Removal from Wastewater by Adsorption with Hydrochar Derived from Biomass: Current Applications and Research Trends. Curr. Pollut. Rep. 2021, 7, 54–71. [Google Scholar] [CrossRef]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Srivastava, S.; Sharma, N.R.; Singh, J.; Kanwar, R.; Kumar, A. A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. Chem. Afr. 2020, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Liu, J.; Zhang, Q.; Wang, C.; Zhan, H.; Ma, L. A review on the utilization of industrial biowaste via hydrothermal carbonization. Renew. Sustain. Energy Rev. 2021, 154, 111877. [Google Scholar] [CrossRef]
- Ischia, G.; Cutillo, M.; Guella, G.; Bazzanella, N.; Cazzanelli, M.; Orlandi, M.; Miotello, A.; Fiori, L. Hydrothermal carbonization of glucose: Secondary char properties, reaction pathways, and kinetics. Chem. Eng. J. 2022, 449, 137827. [Google Scholar] [CrossRef]
- Wang, R.; Lin, Z.; Meng, S.; Liu, S.; Zhao, Z.; Wang, C.; Yin, Q. Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein. Energy 2022, 259, 125063. [Google Scholar] [CrossRef]
- Wang, R.; Lin, Z.; Peng, P.; Tan, S.; Zhao, Z.; Yin, Q.; Wang, C. Influence mechanism of aqueous organic components on the hydrochar formation reaction during the biomass hydrothermal carbonization wastewater recycling. Fuel 2022, 326, 125033. [Google Scholar] [CrossRef]
- Wang, R.; Lin, K.; Peng, P.; Lin, Z.; Zhao, Z.; Yin, Q.; Ge, L. Energy yield optimization of co-hydrothermal carbonization of sewage sludge and pinewood sawdust coupled with anaerobic digestion of the wastewater byproduct. Fuel 2022, 326, 125025. [Google Scholar] [CrossRef]
- Sarrion, A.; de la Rubia, A.; Coronella, C.; Mohedano, A.F.; Diaz, E. Acid-mediated hydrothermal treatment of sewage sludge for nutrient recovery. Sci. Total Environ. 2022, 838, 156494. [Google Scholar] [CrossRef]
- Ma, L.; Goldfarb, J.L.; Song, J.; Chang, C.; Ma, Q. Enhancing cleaner biomass-coal co-combustion by pretreatment of wheat straw via washing versus hydrothermal carbonization. J. Clean. Prod. 2022, 366, 132991. [Google Scholar] [CrossRef]
- Raheem, A.; Ding, L.; He, Q.; Mangi, F.H.; Khand, Z.H.; Sajid, M.; Ryzhkov, A.; Yu, G. Effective pretreatment of corn straw biomass using hydrothermal carbonization for co-gasification with coal: Response surface Methodology–Box Behnken design. Fuel 2022, 324, 124544. [Google Scholar] [CrossRef]
- Li, C.-S.; Cai, R.-R. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion. Sci. Total Environ. 2022, 838, 155867. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, C.; Qin, S.; Wang, B.; Zhao, P.; Cui, X. Effects of process water recirculation on yields and quality of hydrochar from hydrothermal carbonization process of rice husk. J. Anal. Appl. Pyrolysis 2022, 166, 1505618. [Google Scholar] [CrossRef]
- Li, B.; Guo, J.Z.; Liu, J.L.; Fang, L.; Lv, J.Q.; Lv, K. Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar. Sci. Total Environ. 2020, 714, 136897. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Yang, G.; Liu, H.; Li, Y.; Zhou, Q.; Jin, M.; Xiao, H.; Yao, H. Kinetics of hydrothermal carbonization of kitchen waste based on multi-component reaction mechanism. Fuel 2022, 324, 124693. [Google Scholar] [CrossRef]
- Peng, C.; Zhai, Y.; Zhu, Y.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 2016, 176, 110–118. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, T.; Zhu, Y.; Peng, C.; Wang, B.; Li, X.; Li, C.; Zeng, G. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. Waste Manag. 2018, 77, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.B.; Dubey, B.K. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. Waste Manag. 2020, 118, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Guo, Y.; Wang, G.; El-Kassaby, Y.A.; Sokhansanj, S. Hydrothermal carbonization of waste ginkgo leaf residues for solid biofuel production: Hydrochar characterization and its pelletization. Fuel 2022, 324, 124341. [Google Scholar] [CrossRef]
- Murillo, H.A.; Díaz-Robles, L.A.; Santander, R.E.; Cubillos, F.A. Conversion of residual oat husk and pine sawdust by co-hydrothermal carbonization towards biofuel production for pellet stoves. Ind. Crop. Prod. 2021, 174, 114219. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Jayaraman, K.; Szymańska-Chargot, M.; Gökalp, I. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass-Bioenergy 2018, 120, 166–175. [Google Scholar] [CrossRef]
- Kabakcı, S.B.; Baran, S.S. Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Manag. 2019, 100, 259–268. [Google Scholar] [CrossRef]
- Jones, J.; Saddawi, A.; Dooley, B.; Mitchell, E.; Werner, J.; Waldron, D.; Weatherstone, S.; Williams, A. Low temperature ignition of biomass. Fuel Process. Technol. 2015, 134, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wu, S.; Cui, D.; Zhou, H.; Wu, D.; Pan, S.; Xu, F.; Wang, Z. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Sci. Total Environ. 2022, 850, 158034. [Google Scholar] [CrossRef] [PubMed]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 2019, 119, 109546. [Google Scholar] [CrossRef]
- Wiedner, K.; Naisse, C.; Rumpel, C.; Pozzi, A.; Wieczorek, P.; Glaser, B. Chemical modification of biomass residues during hydrothermal carbonization—What makes the difference, temperature or feedstock? Org. Geochem. 2013, 54, 91–100. [Google Scholar] [CrossRef]
- Saba, A.; Saha, P.; Reza, M.T. Co-Hydrothermal Carbonization of coal-biomass blend: Influence of temperature on solid fuel properties. Fuel Process. Technol. 2017, 167, 711–720. [Google Scholar] [CrossRef]
- Reza, M.T.; Uddin, M.H.; Lynam, J.G.; Hoekman, S.K.; Coronella, C.J. Hydrothermal carbonization of loblolly pine: Reaction chemistry and water balance. Biomass-Convers. Biorefinery 2014, 4, 311–321. [Google Scholar] [CrossRef]
- Nakason, K.; Panyapinyopol, B.; Kanokkantapong, V.; Viriya-Empikul, N.; Kraithong, W.; Pavasant, P. Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction. J. Energy Inst. 2018, 91, 786–796. [Google Scholar] [CrossRef]
- Czerwińska, K.; Śliz, M.; Wilk, M. Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renew. Sustain. Energy Rev. 2021, 154, 111873. [Google Scholar] [CrossRef]
- Khoo, C.G.; Lam, M.K.; Mohamed, A.R.; Lee, K.T. Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization. Environ. Res. 2020, 188, 109828. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Lee, J.-Y.; Mao, X.; Ye, L.; Xu, W.; Ning, X.; Zhang, N.; Teng, H.; Wang, C. Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace. Appl. Energy 2020, 266, 114818. [Google Scholar] [CrossRef]
- Shrestha, A.; Acharya, B.; Farooque, A.A. Study of hydrochar and process water from hydrothermal carbonization of sea lettuce. Renew. Energy 2020, 163, 589–598. [Google Scholar] [CrossRef]
- Basso, D.; Weiss-Hortala, E.; Patuzzi, F.; Castello, D.; Baratieri, M.; Fiori, L. Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresour. Technol. 2015, 182, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Long, Y.; Wang, H.; Liu, D.; Shen, D.; Chen, T. Hydrochar derived from green waste by microwave hydrothermal carbonization. Renew. Energy 2018, 135, 1327–1334. [Google Scholar] [CrossRef]
- Ibbett, R.; Gaddipati, S.; Davies, S.; Hill, S.; Tucker, G. The mechanisms of hydrothermal deconstruction of lignocellulose: New insights from thermal–analytical and complementary studies. Bioresour. Technol. 2011, 102, 9272–9278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekman, S.K.; Broch, A.; Felix, L.; Farthing, W. Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin-screw extruder. Energy Convers. Manag. 2017, 134, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Heidari, M.; Salaudeen, S.; Dutta, A.; Acharya, B. Effects of Process Water Recycling and Particle Sizes on Hydrothermal Carbonization of Biomass. Energy Fuels 2018, 32, 11576–11586. [Google Scholar] [CrossRef]
- Jeder, A.; Sanchez-Sanchez, A.; Gadonneix, P.; Masson, E.; Ouederni, A.; Celzard, A.; Fierro, V. The severity factor as a useful tool for producing hydrochars and derived carbon materials. Environ. Sci. Pollut. Res. 2017, 25, 1497–1507. [Google Scholar] [CrossRef]
- Murillo, H.A.; Díaz-Robles, L.A.; Santander, R.E.; Cubillos, F.A. Conversion of residual biomass into valuable biofuels by co-hydrothermal carbonization for utilization in household pellet stoves. Biomass-Bioenergy 2021, 151, 106153. [Google Scholar] [CrossRef]
- Sharma, H.B.; Dubey, B.K. Binderless fuel pellets from hydrothermal carbonization of municipal yard waste: Effect of severity factor on the hydrochar pellets properties. J. Clean. Prod. 2020, 277, 124295. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Mubarak, N.; Tripathi, M.; Jayakumar, N.; Sahu, J.N.; Ganesan, P. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 2016, 163, 88–97. [Google Scholar] [CrossRef]
- Evcil, T.; Simsir, H.; Ucar, S.; Tekin, K.; Karagoz, S. Hydrothermal carbonization of lignocellulosic biomass and effects of combined Lewis and Brønsted acid catalysts. Fuel 2020, 279, 118458. [Google Scholar] [CrossRef]
- Wikberg, H.; Ohra-Aho, T.; Pileidis, F.; Titirici, M.-M. Structural and Morphological Changes in Kraft Lignin during Hydrothermal Carbonization. ACS Sustain. Chem. Eng. 2015, 3, 2737–2745. [Google Scholar] [CrossRef]
- Zhu, Y.; Si, Y.; Wang, X.; Zhang, W.; Shao, J.; Yang, H.; Chen, H. Characterization of Hydrochar Pellets from Hydrothermal Carbonization of Agricultural Residues. Energy Fuels 2018, 32, 11538–11546. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Wang, M.; Han, L.; Liu, X. Effects of Hydrothermal Carbonization Conditions on the Combustion and Kinetics of Wheat Straw Hydrochar Pellets and Efficiency Improvement Analyses. Energy Fuels 2019, 34, 587–598. [Google Scholar] [CrossRef]
- Liang, M.; Lu, W.; Lei, P.; Wang, L.; Wang, B.; Li, B.; Shen, Y.; Zhang, K. Physical and Combustion Properties of Binder-Assisted Hydrochar Pellets from Hydrothermal Carbonization of Tobacco Stem. Waste Biomass-Valorization 2019, 11, 6369–6382. [Google Scholar] [CrossRef]
- Fakkaew, K.; Koottatep, T.; Jairuang, S.; Polprasert, C. Hydrochar pellet produced from hydrothermal carbonization of fecal sludge. Biomass-Convers. Biorefinery 2021, 4, 1–8. [Google Scholar] [CrossRef]
- Mittapalli, S.; Sharma, H.B.; Dubey, B.K. Hydrothermal carbonization of anaerobic granular sludge and co-pelletization of hydrochar with yard waste. Bioresour. Technol. Rep. 2021, 14, 100691. [Google Scholar] [CrossRef]
- Saqib, N.U.; Sarmah, A.K.; Baroutian, S. Effect of temperature on the fuel properties of food waste and coal blend treated under co-hydrothermal carbonization. Waste Manag. 2019, 89, 236–246. [Google Scholar] [CrossRef]
- Yan, W.; Hoekman, S.K.; Broch, A.; Coronella, C.J. Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ. Prog. Sustain. Energy 2014, 33, 676–680. [Google Scholar] [CrossRef]
- Nielsen, S.K.; Mandø, M.; Rosenørn, A.B. Review of die design and process parameters in the biomass pelleting process. Powder Technol. 2019, 364, 971–985. [Google Scholar] [CrossRef]
- Natural Resources Canada Graded Wood Pellets. Available online: https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/files/NRCAN_BB_no4_e.pdf (accessed on 2 July 2022).
- Natural Resourecs Canada Solid Biomass Fuels. Available online: https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/files/NRCAN_BB_no1_e_acc.pdf (accessed on 15 July 2022).
- Zaini, I.N.; Novianti, S.; Nurdiawati, A.; Irhamna, A.R.; Aziz, M.; Yoshikawa, K. Investigation of the physical characteristics of washed hydrochar pellets made from empty fruit bunch. Fuel Process. Technol. 2017, 160, 109–120. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Li, H.; Zhu, Y.; Li, S.; Peng, C.; Wang, B.; Wang, Z.; Xi, Y.; Wang, S.; et al. Co-hydrothermal carbonization of food waste-woody biomass blend towards biofuel pellets production. Bioresour. Technol. 2018, 267, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Akash, B. Thermochemical Depolymerization of Biomass. Procedia Comput. Sci. 2015, 52, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Syed-Hassan, S.S.A.; Deng, Z.; Hu, X.; Xu, J.; Jiang, L.; Su, S.; Hu, S.; Wang, Y.; Xiang, J. Effects of aspect ratio on char structure during the pyrolysis of sawdust pellet. Fuel 2022, 325, 124850. [Google Scholar] [CrossRef]
- Santana, D.A.R.; Scatolino, M.V.; Lima, M.D.R.; Junior, U.D.O.B.; Garcia, D.P.; Andrade, C.R.; Carneiro, A.D.C.O.; Trugilho, P.F.; Protásio, T.D.P. Pelletizing of lignocellulosic wastes as an environmentally friendly solution for the energy supply: Insights on the properties of pellets from Brazilian biomasses. Environ. Sci. Pollut. Res. 2020, 28, 11598–11617. [Google Scholar] [CrossRef] [PubMed]
Feedstock | Reactor Configuration | Temp (°C) | Initial Pressure (MPa) | Residence Time (h) | Solid Loading (wt.%) | Main Conclusions | References |
---|---|---|---|---|---|---|---|
Glucose | Batch | 180–270 | / | 0–8 | 25 |
| [21] |
Cellulose; xylan, dealkaline lignin, soybean protein isolate | Batch | 220 | 1 ± 0.1 MPa | 2 | 9.1 |
| [22] |
Corn straw | Batch | 220 | 1.2 MPa | 0.5–2 | 16.7 |
| [23] |
Mixture of sewage sludge (S) and pinewood sawdust (L) | Batch | 160–280 | / | 0–4 | 5.88–20 |
| [24] |
Waste-activated sludge | Batch | 170–230 | / | 5–60 min | / |
| [25] |
Wheat straw | Batch | 160–240 | / | 1 | 9.09 |
| [26] |
Corn straw | Batch | 180–240 | / | 30–90 | 13.04 |
| [27] |
Corncobs and peanut residue | Batch | 180–260 | 0.3 | 1–4 | 9.09 |
| [28] |
Rice husk | Batch | 220 | 0.5 | 1 | 20 |
| [29] |
Bamboo | Batch | 200 | / | 24 | 16.7 |
| [30] |
Biomass Type | Lignin | Cellulose | Hemicellulose | Extractives | Reference |
---|---|---|---|---|---|
Empty fruit bunches | 23.87% | N/A | N/A | 4.29% | [33] |
Food waste | 5.78% | N/A | N/A | N/A | [34] |
Food waste | 28.80% | 45.30% | 3.30% | N/A | [35] |
Yard waste | 19.10% | 38.80% | 25.20% | N/A | [35] |
Yard + food waste | 23.95% | 42.05 | 14.25% | N/A | [35] |
Ginko leaf residues (GLR) | 17.90% | 29.10% | 45.20% | N/A | [36] |
Oat husk | 22.60% | 19.36% | 50.51% | 7.53% | [37] |
Pine sawdust | 30.00% | 42.21% | 25.00% | 2.79% | [37] |
Feedstock | Before HTC | After HTC | Reference | ||||
---|---|---|---|---|---|---|---|
VM (%) | FC (%) | Ash (%) | VM (%) | FC (%) | Ash (%) | ||
Sewage sludge | 44.01 | 1.17 | 54.82 | 51.72 | 27.84 | 20.44 | [24] * |
Pinewood sawdust | 82.07 | 16.65 | 1.28 | ||||
Corncobs | 79.69 | 16.26 | 4.05 | 97.5–99.74 | / | 0.26–2.5 | [28] |
Peanut residue | 80.65 | 12.56 | 6.84 | 88.47–96.01 | / | 3.99–11.53 | [28] |
Rice husk | 51.04 | 30.61 | 18.35 | 39.48–42.70 | 36.36–39.19 | 20.94–21.55 | [29] |
Food waste | 72.55 | 15.98 | 11.47 | 49.62–59.96 | 28.85–40.15 | 8.45–11.35 | [34] |
Feedstock | T(°C) | F:W Weight Ratio | t(h) | Proximate Analysis (%) | Ultimate Analysis (%) | HHV (MJ/kg) | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FC | Ash | VM | C | H | O | N | ||||||
Food waste | 200–260 | 1:8 | 1–4 | 28.85–40.15 | 8.61–11.35 | 49.62–59.8 | 66.11–72.97 | 6.83–7.11 | 5.53–12.98 | 2.41–3.87 | 28.88–32.36 | [34] |
Food waste/molasses | 200–260 | 1:8 | 1–4 | 24.78–31.85 | 10.57–13.47 | 54.68–62.83 | 62.1–68.26 | 6.92–7.34 | 7.51–15.87 | 1.8–3.84 | 27.31–30.46 | [34] |
Food waste/lime + molasses | 200–260 | 1:8 | 1–4 | 19.79–31.02 | 17.55–19.66 | 51.56–60.89 | 57.6–63.49 | 6.11–6.72 | 7.98–13.58 | 2.56–3.35 | 25.22–27.68 | [34] |
Food waste | 220 | 1:20 | 1 | 32.68 | 41.4 | 62.87 | 59 | 5.43 | 32.68 | 1.56 | 21.64 | [35] |
Yard waste | 220 | 1:20 | 1 | 40.64 | 43.4 | 55.54 | 65.2 | 5.83 | 28.05 | 0.88 | 24.37 | [35] |
Yard and food waste | 220 | 1:20 | 1 | 37.56 | 4.32 | 57.4 | 68.26 | 6.02 | 24.4 | 0.01 | 27.64 | [35] |
Ginko leaf residues | 100–220 | 1:10 | 0.5 | 24–29 | 7.1–10.0 | 61.0–68.6 | 45.8–50.1 | 5.7–5.9 | 42.8–46.3 | 1.2–2.0 | 19.1–22.1 | [36] |
Oat husk/pine sawdust | 175–235.4 | 1:12 | 0.5 | 28.31 | 0.74 | 70.95 | 53.29 | 5.9 | 39.68 | 0.35 | 19.18–21.5 | [37] |
Rapeseed meal/pine sawdust | 175–235 | 1:8 | 0.5 | N/A | 1.35–1.53 | N/A | 51.88–53.13 | 6.21–6.22 | 37.05–38.93 | 1.83–2.25 | 20.87–22.07 | [58] |
Municipal yard waste | 160–200 | 1:20 | 2–24 | 12–28% | 6–7 | 58–80 | 48–60 | 8–9 | 32–49 | 1–2 | 18.23–25.54 | [59] |
Feedstock | Pellet Diameter (mm) | Pellet Length (mm) | T (°C) | Applied Pressure (MPa) | Holding Time (s) | Moisture (%) | Binder | Reference |
---|---|---|---|---|---|---|---|---|
Food waste | 9.5 | 28 | 115 | 10 | 30 | 1.96–5.14 | Molasses/CaO | [34] |
Mixture of food waste and yard waste | 10 | 90 | 90 | 250 | 30 | / | / | [35] |
Municipal yard waste | 10 | 90 | 100 | 250 | 30 | 60–70 | / | [58] |
Cornstalk | 8 | / | / | 13.6 | 120 | / | Lignin | [63] |
Wheat straw | / | / | / | 130 | 30 | 13 | / | [64] |
Tobacco stems | 5 | 39.5 | 80 | 20 | 30 | / | K2CO3/CaCO3 | [65] |
Fecal sludge | 10 | 30 | 105 | 12 | / | / | Lignin/starch/Ca(OH)2 | [66] |
Anaerobic granular sludge | 10 | 90 | / | 150 | 30 | / | / | [67] |
Mixture of food waste and coal | 13 | / | 105 | 16 | 30 | / | Molasses | [68] |
Key Specifications | Unit | Grade A1 | Grade A2 | Grade B |
---|---|---|---|---|
Diameter | mm | 6 ± 1 or 8 ± 1 | 6 ± 1 or 8 ± 1 | 6 ± 1 or 8 ± 1 |
Length | mm | 3.15–40 | 3.15–40 | 3.15–40 |
Moisture | % of weight | ≤10 | ≤10 | ≤10 |
Ash | % of weight | ≤0.7 | ≤1.2 | ≤2.0 |
Durability | % of weight | ≥97.5 | ≥97.5 | ≥96.5 |
Fines content | % of weight | ≤1 | ≤1 | ≤1 |
High calorific value | MJ/kg | ≥18.6 | ≥18.6 | ≥18.6 |
Bulk density | kg/m3 | 600–750 | 600–750 | 600–750 |
Feedstock | Density (kg/m3) | Moisture Uptake (%) | Durability (%) | Reference |
---|---|---|---|---|
Yard waste | 1621 | 2.5 | / | [35] |
Yard + food waste | 1678 | 7.5 | / | [35] |
Oat husk/pine sawdust | / | 7.45 | 99.20 | [37] |
Food waste | 872.1–936.8 | 2–5 | 98.6–99.0 | [34] |
Food waste/molasses | 912.9–1095.6 | 3.7–9 | 98.6–99.9 | [34] |
Food waste/lime + molasses | 920.1–1109.0 | 5.39–9.4 | 96.9–99.0 | [34] |
Food waste | 1444.86 | 11 | / | [35] |
Municipal ward waste | 1472.70–1661.59 | 1.67–55.18 | / | [58] |
Empty fruit bunches | 970–1110 | 3.70–5.86 | / | [73] |
Food waste/woody biomass | 1137–1365 | 1.99–6.52 | / | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallant, R.; Farooque, A.A.; He, S.; Kang, K.; Hu, Y. A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing. Sustainability 2022, 14, 12530. https://doi.org/10.3390/su141912530
Gallant R, Farooque AA, He S, Kang K, Hu Y. A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing. Sustainability. 2022; 14(19):12530. https://doi.org/10.3390/su141912530
Chicago/Turabian StyleGallant, Rhea, Aitazaz A. Farooque, Sophia He, Kang Kang, and Yulin Hu. 2022. "A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing" Sustainability 14, no. 19: 12530. https://doi.org/10.3390/su141912530