A Study on the Pore Structure and Fractal Characteristics of Briquettes with Different Compression Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Experimental Method
3. Results and Discussion
3.1. Pore Characteristics of Briquette with Different Compression Loads
3.2. Pore Volume and Distribution of Briquette with Different Compression Loads
3.3. Pore Area and Distribution of Briquette with Different Compression Loads
3.4. Fractal Characteristics of Pore Structure with Different Compression Loads of Briquette
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.; Chang, P.; Xu, G.; Ghosh, A.; Li, D.; Huang, J. Comparison of the Coal Dust Suppression Performance of Surfactants Using Static Test and Dynamic Test. J. Clean. Prod. 2021, 328, 129633. [Google Scholar] [CrossRef]
- Gao, D.; Hong, L.; Wang, J.; Zheng, D. Molecular Simulation of Gas Adsorption Characteristics and Diffusion in Micropores of Lignite. Fuel 2020, 269, 117443. [Google Scholar] [CrossRef]
- Xu, J.; Ye, G.; Li, B.; Cao, J.; Zhang, M. Experimental Study of Mechanical and Permeability Characteristics of Moulded Coals with Different Binder Ratios. Rock Soil Mech. 2015, 36, 104–110. [Google Scholar] [CrossRef]
- Cao, J.; Sun, H.; Wang, B.; Dai, L.; Zhao, B.; Wen, G.; Zhao, X. A Novel Large-Scale Three-Dimensional Apparatus to Study Mechanisms of Coal and Gas Outburst. Int. J. Rock Mech. Min. Sci. 2019, 118, 52–62. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Alosman, S.O. Influence of Rock Powder on the Behaviour of an Organic Soil. Bull. Eng. Geol. Environ. 2021, 80, 8665–8676. [Google Scholar] [CrossRef]
- Premkumar, S.; Piratheepan, J.; Rajeev, P.; Arulrajah, A. Stabilizing Dispersive Soil Using Brown Coal Fly Ash and Hydrated Lime. In Proceedings of the Geo-Chicago 2016, Chicago, IL, USA, 14–18 August 2016; American Society of Civil Engineers: Reston VA, USA, 2016; pp. 874–884. [Google Scholar]
- Minitskii, A.V.; Loboda, P.I. The Infiltration of Lubricants into a Porous Briquette, When Compacting. Powder Metall. Met. Ceram. 2017, 55, 640–643. [Google Scholar] [CrossRef]
- Sun, l.; Jia, N.; Yang, X. Relationship between Pore Structure and Gas Permeability of Raw Coal and Briquette Coal. Saf. Coal Mines 2022, 53, 24–30. [Google Scholar] [CrossRef]
- Jia, H.; Wang, K.; Wang, Y.; Sun, X. Permeability Characteristics of Gas-Bearing Coal Specimens under Cyclic Loading-Unloading of Confining Pressure. J. China Coal Soc. 2020, 45, 1710–1718. [Google Scholar] [CrossRef]
- Ma, J.; Hou, C.; Xin, C.; Li, J. Experimental Study on Permeability Characteristics of Briquette Coal after Peak. J. Saf. Sci. Technol. 2017, 13, 104–109. [Google Scholar]
- Li, X.; Wang, Z.; Qi, C.; Yue, G. Freezing Experiments on Moulded Coal with Methane Using Dry Ice as Cold Source. J. China Coal Soc. 2017, 42, 160–165. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Dong, J.; Wang, Q. Simulation on the Temperature Evolution Law of Coal Containing Gas in the Freezing Coring Process. J. China Coal Soc. 2021, 46, 199–210. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Ma, S.; Zhang, K. Study on Temperature Variation of Coal Sample in Process of Freezing Coring. China Saf. Sci. J. 2021, 31, 76–81. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Zhao, D.; Tang, C.; Ma, K.; Zhang, C. Comparative Study of Adsorption/Desorption and Deformation Characteristics of Raw and Briquette Coals under CO2. J. China Univ. Min. Technol. 2021, 50, 793–803. [Google Scholar] [CrossRef]
- Zhou, A.; Du, C.; Wang, K.; Hu, J.; Fan, X. Experimental Research on the Law of the Deformation and Damage Characteristics of Raw Coal/ Briquette Adsorption-Instantaneous Pressure Relief. Fuel 2022, 308, 122062. [Google Scholar] [CrossRef]
- Nie, B.; Hu, S.; Li, X.; Zhai, S.; Meng, J. Experimental Study of Deformation Rules during the Process of Gas Adsorption and Desorption in Briquette Coal. Int. J. Min. Reclam. Environ. 2014, 28, 277–286. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Yuan, L.; Li, S.; Xue, J.; Zhu, H.; Duan, R.; Wang, S. Similar Material Research and Property Analysis of Coal Briquette in Coal and Gas Outburst Simulation Test. J. Min. Saf. Eng. 2018, 35, 1277–1283. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Jiang, F.; Yu, Z. Study on Mechanical Mechanism and Danger Evaluation Technology of Coal and Gas Outburst Induced by Rockburst. J. Min. Saf. Eng. 2018, 35, 801–809. [Google Scholar] [CrossRef]
- Gan, Q.; Xu, J.; Peng, S.; Yan, F.; Wang, R.; Cai, G. Effects of Heating Temperature on Pore Structure Evolution of Briquette Coals. Fuel 2021, 296, 120651. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Zhang, H.; Wang, Q.; Guo, Y. Structural Characterization of Carbonized Briquette Obtained from Anthracite Powder. J. Anal. Appl. Pyrolysis 2015, 112, 290–297. [Google Scholar] [CrossRef]
- Skoczylas, N.; Dutka, B.; Sobczyk, J. Mechanical and Gaseous Properties of Coal Briquettes in Terms of Outburst Risk. Fuel 2014, 134, 45–52. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Yan, M.; Bai, Y. Effect of Coal Particle Size on Pore Structure Characteristic and Gas Adsorption Characteristic. Min. Saf. Environ. Prot. 2019, 46, 8–12. [Google Scholar]
- Xu, J.; Lu, Q.; Wu, X.; Liu, D. The Fractal Characteristics of the Pore and Development of Briquettes with Different Coal Particle Sizes. J. Chongqing Univ. 2011, 34, 81–89. [Google Scholar]
- Zhang, H. Evaluation and Prevention of Mining Subsidence in Coal Mines. Coal Min. Technol. 2015, 20, 1–2. [Google Scholar] [CrossRef]
- Gao, D.; Hong, L.; Wang, J.; Zheng, D. Adsorption Simulation of Methane on Coals with Different Metamorphic Grades. AIP Adv. 2019, 9, 095108. [Google Scholar] [CrossRef]
- Wang, K.; Zang, J.; Feng, Y.; Wu, Y. Effects of Moisture on Diffusion Kinetics in Chinese Coals during Methane Desorption. J. Nat. Gas Sci. Eng. 2014, 21, 1005–1014. [Google Scholar] [CrossRef]
- Mou, P.; Pan, J.; Niu, Q.; Wang, Z.; Li, Y.; Song, D. Coal Pores: Methods, Types, and Characteristics. Energy Fuels 2021, 35, 7467–7484. [Google Scholar] [CrossRef]
- Chang, P.; Xu, G.; Chen, Y.; Ghosh, A.; Moridi, M.A. Improving Coal Powder Wettability Using Electrolyte Assisted Surfactant Solution. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126042. [Google Scholar] [CrossRef]
- He, Q.; Zhu, L.; Li, Y.; Li, D.; Zhang, B. Simulating Hydraulic Fracture Re-Orientation in Heterogeneous Rocks with an Improved Discrete Element Method. Rock Mech. Rock Eng. 2021, 54, 2859–2879. [Google Scholar] [CrossRef]
- Hao, Q. On Morphological Character and Origin of Micropores in Coal. J. China Coal Soc. 1987, 4, 51–56. [Google Scholar] [CrossRef]
- Wu, J.; Jin, K.; Tong, Y.; Qian, R. Theory of Coal Pores and its Application in Evaluation of Gas Outburst Proneness. J. China Coal Soc. 1991, 16, 86–95. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Shao, T.; Hou, C.; Jiang, Y.; Zhao, Y.; Wang, J.; Li, J. Pore Size Distributions and Multi-Fractal Characteristics of the Intact and Pulverized Coal in High Gas Mine. Geotech. Geol. Eng. 2022, 40, 4943–4959. [Google Scholar] [CrossRef]
- Liu, J.; Ma, J.; Jiang, X.; Jiang, X. The Multi-Scale Pore Structure of Superfine Pulverized Coal. Part 1. Macropore Morphology. Fuel 2021, 304, 120728. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Jiao, J.; Liu, J.; Chen, F.; Song, Z. Comparative Study of Pore Structure Characteristics between Mudstone and Coal under Different Particle Size Conditions. Energies 2021, 14, 8435. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, X.; Peng, X.; Wang, Z.; Dai, J. Study on pore structure of coking coal based on low-temperature nitrogen adsorption and mercury intrusion method. Saf. Coal Mines 2022, 53, 1–6. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, C.; Li, G.; Fu, X.; Zhong, Q.; Liu, H.; Dong, Z. Determinations of the Multifractal Characteristics of the Pore Structures of Low-, Middle-, and High-Rank Coal Using High-Pressure Mercury Injection. J. Pet. Sci. Eng. 2021, 203, 108656. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, F.; Zhang, C.; Song, Z.; Mo, W. Study on the Pore Structure and Fractal Dimension of Tight Sandstone in Coal Measures. Energy Fuels 2021, 35, 3887–3898. [Google Scholar] [CrossRef]
- Zhao, Z.; Ni, X.; Cao, Y.; Shi, Y. Application of Fractal Theory to Predict the Coal Permeability of Multi-Scale Pores and Fractures. Energy Rep. 2021, 7, 10–18. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Li, X.; Qi, L.; Zhang, G. Experimental Analysis of the Effect of Temperature on Coal Pore Structure Transformation. Fuel 2021, 305, 121613. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Zhao, W.; Chen, P. Effect of Water Intrusion on the Characteristics of Surface Morphology and Pore Fracture Spaces in Argillaceous Meagre Coal. J. Nat. Gas Sci. Eng. 2020, 81, 103404. [Google Scholar] [CrossRef]
- Lu, G.; Wang, J.; Wei, C.; Song, Y.; Yan, G.; Zhang, J.; Chen, G. Pore Fractal Model Applicability and Fractal Characteristics of Seepage and Adsorption Pores in Middle Rank Tectonic Deformed Coals from the Huaibei Coal Field. J. Pet. Sci. Eng. 2018, 171, 808–817. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, H.; Zhong, J.; Xue, D.; Wang, C.; Liu, Z. A Multi-Scale Fractal Approach for Coal Permeability Estimation via MIP and NMR Methods. Energies 2022, 15, 2807. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, T.; Li, G.; Yang, Y.; Chen, Z.; Lan, T.; Wang, J.; Zhao, Y.; Liu, S. Multiscale Pore Structure Characteristics and Crack Propagation Behavior of Coal Samples from High Gas Seam. Materials 2022, 15, 4500. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, Z.; Li, B.; Chen, F.; Liu, J.; Liu, G.; Song, Z. Fractal-Time-Dependent Fick Diffusion Model of Coal Particles Based on Desorption–Diffusion Experiments. Energy Fuels 2022, 36, 6198–6215. [Google Scholar] [CrossRef]
- Li, C.; Yao, H.; Xin, C.; Li, H.; Guan, J.; Liu, Y. Changes in Pore Structure and Permeability of Middle–High Rank Coal Subjected to Liquid Nitrogen Freeze–Thaw. Energy Fuels 2021, 35, 226–236. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, Y.; Wang, L.; Dong, J.; Hao, C.; Jiang, J. Pore Morphology Characterization and Its Effect on Methane Desorption in Water-Containing Coal: An Exploratory Study on the Mechanism of Gas Migration in Water-Injected Coal Seam. J. Nat. Gas Sci. Eng. 2020, 75, 103152. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, Y.; Shangguan, J.; Zhang, J.; Song, Y. Fractal Characteristics and Model Applicability for Pores in Tight Gas Sandstone Reservoirs: A Case Study of the Upper Paleozoic in Ordos Basin. Energy Fuels 2020, 34, 16059–16072. [Google Scholar] [CrossRef]
- Ye, Z.; Hou, E.; Duan, Z. Micrometer-Scale Pores and Fractures in Coals and the Effects of Tectonic Deformation on Permeability Based on Fractal Theory. AIP Adv. 2020, 10, 025118. [Google Scholar] [CrossRef] [Green Version]
Coal Sample | Pore Volume Distribution of Briquettes under Different Compression Loads (cm3·g–1) | ||||
---|---|---|---|---|---|
<10 nm | 10–102 nm | 102–103 nm | 103–105 nm | >105 nm | |
Raw coal | 0.0052 | 0.0132 | 0.0022 | 0.0048 | 0.0299 |
50 MPa | −0.003 | 0.0176 | 0.045 | 0.1285 | 0.0118 |
70 MPa | −0.0009 | 0.0145 | 0.043 | 0.1187 | 0.0124 |
90 MPa | −0.0015 | 0.0196 | 0.0453 | 0.1183 | 0.0114 |
110 MPa | −0.0018 | 0.0157 | 0.042 | 0.1246 | 0.0118 |
Coal Sample | Pore area Distribution of Briquette with Different Compression Loads (m2·g–1) | ||||
---|---|---|---|---|---|
<10 nm | 10–102 nm | 102–103 nm | 103–105 nm | >105 nm | |
Raw coal | 2.813 | 2.21 | 0.042 | 0.003 | 0.001 |
50 MPa | −0.208 | 2.11 | 0.505 | 0.148 | 0 |
70 MPa | −0.769 | 1.38 | 0.497 | 0.151 | 0 |
90 MPa | −1.116 | 2.041 | 0.568 | 0.158 | 0 |
110 MPa | −1.073 | 1.718 | 0.478 | 0.167 | 0 |
Low pressure section 1 | Coal Sample | Pore width (nm) | Slope K | D1 | R2 |
Raw coal | >95.4 nm | −1.76334 | 2.23666 | 0.82245 | |
50 MPa | >45519.7 nm | −1.53907 | 2.46093 | 0.99468 | |
70 MPa | >33050.5 nm | −1.62678 | 2.37322 | 0.97787 | |
90 MPa | >33066.1 nm | −1.64048 | 2.35952 | 0.99289 | |
110 MPa | >45506.7 nm | −1.47104 | 2.52896 | 0.99325 | |
Low pressure section 2 | Coal sample | Pore width (nm) | Slope K | D2 | R2 |
50 MPa | 26.3–45,519.7 nm | −1.07665 | 2.92335 | 0.88793 | |
70 MPa | 32.4–33,050.5 nm | −1.03421 | 2.96579 | 0.8559 | |
90 MPa | 40.3–33,066.1 nm | −1.02626 | 2.97374 | 0.8803 | |
110 MPa | 32.4–45,506.7 nm | −1.04059 | 2.95941 | 0.87566 | |
High pressure section 3 | Coal sample | Pore width (nm) | Slope K | D3 | R2 |
Row coal | 5.5–95.4 nm | −0.4298 | 3.5702 | 0.6267 | |
50 MPa | <26.3 nm | −0.57138 | 3.42862 | 0.17879 | |
70 MPa | <32.4 nm | −0.83682 | 3.16318 | 0.22259 | |
90 MPa | <40.3 nm | −0.9823 | 3.0177 | 0.24119 | |
110 MPa | <32.4 nm | −0.80605 | 3.19395 | 0.46808 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Zhou, X.; Peng, X.; Chen, X.; Wang, Z.; Dai, J. A Study on the Pore Structure and Fractal Characteristics of Briquettes with Different Compression Loads. Sustainability 2022, 14, 12148. https://doi.org/10.3390/su141912148
Qi L, Zhou X, Peng X, Chen X, Wang Z, Dai J. A Study on the Pore Structure and Fractal Characteristics of Briquettes with Different Compression Loads. Sustainability. 2022; 14(19):12148. https://doi.org/10.3390/su141912148
Chicago/Turabian StyleQi, Lingling, Xiaoqing Zhou, Xinshan Peng, Xiangjun Chen, Zhaofeng Wang, and Juhua Dai. 2022. "A Study on the Pore Structure and Fractal Characteristics of Briquettes with Different Compression Loads" Sustainability 14, no. 19: 12148. https://doi.org/10.3390/su141912148