Chronological Progress of Blockchain in Science, Technology, Engineering and Math (STEM): A Systematic Analysis for Emerging Future Directions
Abstract
:1. Introduction
- Q1.
- What is the maturity level of blockchain applications in the STEM discipline?
- Q2.
- How could blockchain fog computing, machine learning, IoT and, IoV aid in Web 3.0?
- Q3.
- How many publications related to blockchain application in STEM disciplines can be found in the literature?
- Q4.
- Who are the key players in blockchain applications?
- Q5.
- What are the benefits of the adoption of blockchain technology in STEM applications?
- Q6.
- What are the limitations or challenges that exist in the adoption phase of blockchain in STEM disciplines?
2. Methods
- The revolution of web technology from the beginning of the late 19th century until today.
- The “hotspot” of blockchain application and the key academic players in STEM via bibliometric analysis.
- The chronological progress of blockchain in the disciplines of STEM, not limited to economic, finance, energy, and chemical research areas.
3. Literature Review
3.1. Evaluation of the Evolutionary Progress of Web Technology
3.2. Evaluation of the Chronological Progress of Blockchain
4. Discussion
4.1. Bibliometric—Hotspot Analysis
4.2. Subject Categorical Analysis
4.2.1. Urban Development with IoT
4.2.2. Finance
4.2.3. Healthcare Applications
4.2.4. Advanced Manufacturing
4.2.5. Data Storage and Security Management
4.2.6. Other STEM Applications
4.3. Countries and Institutions Analysis
5. Conclusions
- (a)
- Integrated Economy, Environmental, and Energy (3Es) analyses should be carried out to evaluate the sustainable metric of blockchain adoption in various disciplines.
- (b)
- Strength, Weakness, Opportunity, and Threat (SWOT) analysis should be carried out to evaluate the possible challenges and opportunities across the field.
- (c)
- Policy-tree decision study should be carried out to provide a preliminary overview of blockchain, enabling the decisionmakers to analyze and plan the roadmap of Industrial 4.0.
- (d)
- Integrating renewable energy with blockchain technology is a new breakthrough that should be looked into.
- (e)
- Combining blockchain technology with engineering research will be highly beneficial in terms of optimization, cost-effectiveness, and time-saving, specifically in the field of nanotechnology and biology.
- A1.
- The maturity level of blockchain applications in STEM is still in the infant stage, and still has room for improvement in the near future.
- A2.
- The adaption of fog computing, machine learning, IoT, and IoV are found to be highly beneficial in Web 3.0, speeding up the global digitalization and industrial 4.0 realization.
- A3.
- The publications related to blockchain application in STEM disciplines are in the range of 10,000–50,000 pieces.
- A4.
- Most academia key players that work in this field are from Canada, Australia, and the USA.
- A5.
- The adoption of blockchain technology in STEM applications could further aid a blueprint for “peace and prosperity for people and the planet”, aligned with the SDGs.
- A6.
- The main challenges in the adoption phase of blockchain in STEM disciplines are found to be scalability, regulations, and cost of implementation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loy, A.C.M.; Lim, J.Y.; How, B.S.; Yoo, C.K. Blockchain as a frontier in biotechnology and bioenergy applications. Trends Biotechnol. 2021, 40, 255–258. [Google Scholar] [CrossRef]
- Tang, C.S.; Veelenturf, L.P. The strategic role of logistics in the industry 4.0 era. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 1–11. [Google Scholar] [CrossRef]
- Mehta, D.; Tanwar, S.; Bodkhe, U.; Shukla, A.; Kumar, N. Blockchain-based royalty contract transactions scheme for Industry 4.0 supply-chain management. Inf. Process. Manag. 2021, 58, 102586. [Google Scholar] [CrossRef]
- Kayikci, Y.; Subramanian, N.; Dora, M.; Bhatia, M.S. Food supply chain in the era of Industry 4.0: Blockchain technology implementation opportunities and impediments from the perspective of people, process, performance, and technology. Prod. Plan. Control 2022, 33, 301–321. [Google Scholar] [CrossRef]
- Mukherjee, P.; Singh, D. The Opportunities of Blockchain in Health 4.0. In Blockchain Technology for Industry 4.0; da Rosa Righi, R., Alberti, A.M., Singh, M., Eds.; Springer: Singapore, 2020; pp. 149–164. [Google Scholar] [CrossRef]
- Gupta, R.; Tanwar, S.; Tyagi, S.; Kumar, N.; Obaidat, M.S.; Sadoun, B. HaBiTs: Blockchain-based Telesurgery Framework for Healthcare 4.0. In Proceedings of the International Conference on Computer 2019, Information and Telecommunication Systems (CITS), Beijing, China, 28–31 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- da Silva, T.B.; de Morais, E.S.; de Almeida, L.F.F.; da Rosa Righi, R.; Alberti, A.M. Blockchain and Industry 4.0: Overview, Convergence, and Analysis. In Blockchain Technology for Industry 4.0; da Rosa Righi, R., Alberti, A.M., Singh, M., Eds.; Springer: Singapore, 2020; pp. 27–58. [Google Scholar] [CrossRef]
- Stănescu, G. The Evolution of E-Learning Based on Web3.0 and Semantic Technologies. In Proceedings of the 12th International Scientific Conference eLearning and Software for Education, Bucharest, Romania, 21–22 April 2016; Volume 1. [Google Scholar]
- Keizer, N.V.; Yang, F.; Psaras, I.; Pavlou, G. The Case for AI Based Web3 Reputation Systems. In Proceedings of the 2021 IFIP Networking Conference (IFIP Networking), Espoo and Helsinki, Finland, 21–24 June 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Voshmgir, S. Token Economy: How the Web3 Reinvents the Internet, 2nd ed.; BlockchainHub: Toronto, ON, Canada, 2020. [Google Scholar]
- Potts, J.; Rennie, E. Web3 and the Creative Industries: How Blockchains Are Reshaping Business Models. In A Research Agenda for Creative Industries; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar] [CrossRef]
- Fanning, K.; Centers, D.P. Blockchain and Its Coming Impact on Financial Services. J. Corp. Account. Financ. 2016, 27, 53–57. [Google Scholar] [CrossRef]
- Arnold, L.; Brennecke, M.; Camus, P.; Fridgen, G.; Guggenberger, T.; Radszuwill, S.; Rieger, A.; Schweizer, A.; Urbach, N. Blockchain and Initial Coin Offerings: Blockchain’s Implications for Crowdfunding. In Business Transformation through Blockchain; Treiblmaier, H., Beck, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 233–272. [Google Scholar] [CrossRef]
- Li, J.; Mann, W. Initial Coin Offering and Platform Building. SSRN Electron. J. 2018, 1–56. [Google Scholar] [CrossRef]
- Feng, T. An agri-food supply chain traceability system for China based on RFID & blockchain technology. In Proceedings of the 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Hepp, T.; Wortner, P.; Schönhals, A.; Gipp, B. Securing Physical Assets on the Blockchain: Linking a novel Object Identification Concept with Distributed Ledgers. In Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, Munich, Germany, 15 June 2018; pp. 60–65. [Google Scholar] [CrossRef]
- Jafar, U.; Aziz, M.J.A.; Shukur, Z. Blockchain for Electronic Voting System—Review and Open Research Challenges. Sensors 2021, 21, 5874. [Google Scholar] [CrossRef]
- Esposito, C.; De Santis, A.; Tortora, G.; Chang, H.; Choo, K.-K.R. Blockchain: A Panacea for Healthcare Cloud-Based Data Security and Privacy? IEEE Cloud Comput. 2018, 5, 31–37. [Google Scholar] [CrossRef]
- Cruz, J.P.; Kaji, Y.; Yanai, N. RBAC-SC: Role-Based Access Control Using Smart Contract. IEEE Access 2018, 6, 12240–12251. [Google Scholar] [CrossRef]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Chang, Y.; Iakovou, E.; Shi, W. Blockchain in global supply chains and cross border trade: A critical synthesis of the state-of-the-art, challenges and opportunities. Int. J. Prod. Res. 2020, 58, 2082. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, J.-H. Analysis of the main consensus protocols of blockchain. ICT Express 2020, 6, 93–97. [Google Scholar] [CrossRef]
- Jeong, J.W.; Kim, B.Y.; Jang, J.W. Security and Device Control Method for Fog Computer using Blockchain. In Proceedings of the 2018 International Conference on Information Science and System, Jeju, Korea, 27–29 April 2018; pp. 234–238. [Google Scholar] [CrossRef]
- Kravchenko, P. Ok, I Need A Blockchain, But Which One? 2016. Available online: https://medium.com/@pavelkravchenko/ok-i-need-a-blockchain-but-which-one-ca75c1e2100 (accessed on 3 August 2022).
- Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Clust. Comput. 2021, 24, 205–223. [Google Scholar] [CrossRef]
- Arash, H.; Nima, J.N.; Mehmet, U. Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089. [Google Scholar] [CrossRef]
- Wang, M.-T.; Degol, J. Motivational pathways to STEM career choices: Using expectancy–value perspective to understand individual and gender differences in STEM fields. Dev. Rev. 2013, 33, 304. [Google Scholar] [CrossRef] [PubMed]
- Hiğde, E.; Aktamış, H. The effects of STEM activities on students’ STEM career interests, motivation, science process skills, science achievement and views. Think. Ski. Creat. 2022, 43, 101000. [Google Scholar] [CrossRef]
- Sibicky, S.; Carlson, A. Enhancing advanced pharmacy practice experiences through the use of Web 2.0 technologies. Curr. Pharm. Teach. Learn. 2021, 13, 1690. [Google Scholar] [CrossRef]
- Garon, J.M. Legal Implications of a Ubiquitous Metaverse and a Web3 Future. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Chohan, U. Cryptocurrencies: A Brief Thematic Review. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Liu, Z.; Xiang, Y.; Shi, J.; Gao, P.; Wang, H.; Xiao, X.; Wen, B.; Li, Q.; Hu, Y.-C. Make Web3.0 Connected. In IEEE Transactions on Dependable and Secure Computing; IEEE: Piscataway, NJ, USA, 2021; pp. 2965–2981. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Bus. Rev. 2008, 9, 21260. [Google Scholar]
- Crosby, M. BlockChain Technology: Beyond Bitcoin. Appl. Innov. 2016, 2, 16. [Google Scholar]
- Buterin, V. A Next Generation Smart Contract & Decentralized Application Platform. Ethereum White Pap. 2014, 3, 1–36. [Google Scholar]
- Dannen, C. Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain Programming for Beginners; Apress: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Huang, B.; Peng, L.; Zhao, W.; Chen, N. Workload-based randomization byzantine fault tolerance consensus protocol. High-Confid. Comput. 2022, 2, 100070. [Google Scholar] [CrossRef]
- Jones, N. How scientists are embracing NFTs. Nature 2021, 594, 481–482. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, D.; Fisch, C.; Matthews, R.; Quinn, W.; Recker, J. Beyond the bubble: Will NFTs and digital proof of ownership empower creative industry entrepreneurs? J. Bus. Ventur. Insights 2022, 17, e00309. [Google Scholar] [CrossRef]
- Larva Labs. CryptoPunks. 2021. Available online: https://www.larvalabs.com/cryptopunks (accessed on 3 August 2022).
- CryptoKitties. CryptoKitties|Collect and Breed Digital Cats! CryptoKitties. 2021. Available online: https://www.cryptokitties.co (accessed on 3 August 2022).
- Vidal-Tomás, D. The new crypto niche: NFTs, play-to-earn, and metaverse tokens. Financ. Res. Lett. 2022, 47, 102742. [Google Scholar] [CrossRef]
- Batchu, S.; Henry, O.S.; Patel, K.; Hakim, A.; Atabek, U.; Spitz, F.R.; Hong, Y.K. Blockchain and non-fungible tokens (NFTs) in surgery: Hype or hope? Surg. Pract. Sci. 2022, 9, 100065. [Google Scholar] [CrossRef]
- Nadini, M.; Alessandretti, L.; Di Giacinto, F.; Martino, M.; Aiello, L.M.; Baronchelli, A. Mapping the NFT revolution: Market trends, trade networks, and visual features. Sci. Rep. 2021, 11, 20902. [Google Scholar] [CrossRef]
- Tech Educator Harsh Bharwani launches India’s First NFT in Education. Commonwealth Chamber of Commerce. 2022. Available online: https://commonwealthchamber.com/tech-educator-harsh-bharwani-launches-indias-first-nft-in-education (accessed on 3 August 2022).
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Kefalis, C.; Drigas, A. Web Based and Online Applications in STEM Education. Int. J. Eng. Pedagog. (IJEP) 2019, 9, 76. [Google Scholar] [CrossRef]
- Mediachain. 2016. Available online: http://www.mediachain.io/ (accessed on 3 August 2022).
- Gupta, M.; Kumar, R.; Shekhar, S.; Sharma, B.; Patel, R.B.; Jain, S.; Dhaou, I.B.; Iwendi, C. Game Theory-Based Authentication Framework to Secure Internet of Vehicles with Blockchain. Sensors 2022, 22, 5119. [Google Scholar] [CrossRef] [PubMed]
- Abd Elaziz, M.; Abualigah, L.; Attiya, I. Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments. Future Gener. Comput. Syst. 2021, 124, 142–154. [Google Scholar] [CrossRef]
- Novo, O. Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195. [Google Scholar] [CrossRef]
- Samaniego, M.; Jamsrandorj, U.; Deters, R. Blockchain as a Service for IoT. In Proceedings of the 2016 IEEE International Conference on Internet of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016; pp. 433–436. [Google Scholar] [CrossRef]
- Kumar, N.M.; Mallick, P.K. Blockchain technology for security issues and challenges in IoT. Procedia Comput. Sci. 2018, 132, 1815–1823. [Google Scholar] [CrossRef]
- Ouaddah, A.; Elkalam, A.A.; Ouahman, A.A. Towards a Novel Privacy-Preserving Access Control Model Based on Blockchain Technology in IoT. In Europe and MENA Cooperation Advances in Information and Communication Technologies; Rocha, Á., Serrhini, M., Felgueiras, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 520, pp. 523–533. [Google Scholar] [CrossRef]
- Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J. The IoT electric business model: Using blockchain technology for the internet of things. Peer-Peer Netw. Appl. 2017, 10, 983–994. [Google Scholar] [CrossRef]
- Sharma, P.K.; Chen, M.-Y.; Park, J.H. A Software Defined Fog Node Based Distributed Blockchain Cloud Architecture for IoT. IEEE Access 2018, 6, 115–124. [Google Scholar] [CrossRef]
- Benet, J. Filecoin: A Cryptocurrency Operated File Storage Network. 2014. Available online: https://www.semanticscholar.org/paper/Filecoin%3A-A-Cryptocurrency-Operated-File-Storage/e309551cf6522dfccc54a29e949c72ecb7871f11 (accessed on 3 August 2022).
- EtherAPIs. EtherAPIs: Decentralized, Anonymous, Trustless APIs. API-Request. 2016. Available online: https://api-request.sh/etherapis/ (accessed on 3 August 2022).
- Boudguiga, A.; Bouzerna, N.; Granboulan, L.; Olivereau, A.; Quesnel, F.; Roger, A.; Sirdey, R. Towards Better Availability and Accountability for IoT Updates by Means of a Blockchain. In Proceedings of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Paris, France, 26–28 April 2017; pp. 50–58. [Google Scholar] [CrossRef]
- Pazaitis, A.; De Filippi, P.; Kostakis, V. Blockchain and value systems in the sharing economy: The illustrative case of Backfeed. Technol. Forecast. Soc. Chang. 2017, 125, 105–115. [Google Scholar] [CrossRef]
- Sun, J.; Yan, J.; Zhang, K.Z.K. Blockchain-based sharing services: What blockchain technology can contribute to smart cities. Financ. Innov. 2016, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Boulton, A.; Brunn, S.D.; Devriendt, L. 18 cyberinfrastructures and ‘smart’ world cities: Physical, human and soft infrastructures. In International Handbook of Globalization and World Cities; Edward Elgar Publishing: Cheltenham, UK, 2011; p. 198. [Google Scholar]
- Gad, A.G.; Mosa, D.T.; Abualigah, L.; Abohany, A.A. Emerging Trends in Blockchain Technology and Applications: A Review and Outlook. J. King Saud Univ.-Comput. Inf. Sci. 2022; in press. [Google Scholar] [CrossRef]
- ThomasNet. 2022. Available online: https://www.thomasnet.com/insights/the-truth-about-blockchain-s-impact-on-the-environment/ (accessed on 3 August 2022).
- Varma, P.; Nijjer, S.; Sood, K.; Grima, S.; Rupeika-Apoga, R. Thematic Analysis of Financial Technology (Fintech) Influence on the Banking Industry. Risks 2022, 10, 186. [Google Scholar] [CrossRef]
- Do, H.G.; Ng, W.K. Blockchain-Based System for Secure Data Storage with Private Keyword Search. In Proceedings of the 2017 IEEE World Congress on Services (SERVICES), Honolulu, HI, USA, 25–30 June 2017; pp. 90–93. [Google Scholar] [CrossRef]
- Peterson, K.J.; Deeduvanu, R.; Kanjamala, P.; Mayo, K. A Blockchain-Based Approach to Health Information Exchange Networks. Undefined 2016. Available online: https://www.semanticscholar.org/paper/A-Blockchain-Based-Approach-to-Health-Information-Peterson-Deeduvanu/c1b189c81b6fda71a471adec11cfe72f6067c1ad (accessed on 3 August 2022).
- Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-Less Medical Data Sharing Among Cloud Service Providers via Blockchain. IEEE Access 2017, 5, 14757–14767. [Google Scholar] [CrossRef]
- Xia, Q.; Sifah, E.; Smahi, A.; Amofa, S.; Zhang, X. BBDS: Blockchain-Based Data Sharing for Electronic Medical Records in Cloud Environments. Information 2017, 8, 44. [Google Scholar] [CrossRef]
- Hoy, M.B. An Introduction to the Blockchain and Its Implications for Libraries and Medicine. Med. Ref. Serv. Q. 2017, 36, 273–279. [Google Scholar] [CrossRef]
- Baxendale, G. Can Blockchain Revolutionise EPRs? ITNOW 2016, 58, 38–39. [Google Scholar] [CrossRef]
- Dubovitskaya, A.; Xu, Z.; Ryu, S.; Schumacher, M.; Wang, F. How Blockchain Could Empower eHealth: An Application for Radiation Oncology. In Data Management and Analytics for Medicine and Healthcare; Begoli, E., Wang, F., Luo, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10494, pp. 3–6. [Google Scholar] [CrossRef]
- Pauwels, E.; Grevatt, N. The Social Benefits of Blockchain for Health Data. 2017. Available online: https://www.wilsoncenter.org/publication/the-social-benefits-blockchain-for-health-data-securing-patient-privacy-and-control#:~:text=STIP%20%26%20Global%20Health-,The%20Social%20Benefits%20of%20Blockchain%20for%20Health,Securing%20Patient%20Privacy%20and%20Control&text=A%20blockchain%20system%20for%20electronic,control%20of%20their%20own%20data (accessed on 3 August 2022).
- Honda, S.; Minagawa, Y.; Noji, H.; Tabata, K.V. Multidimensional Digital Bioassay Platform Based on an Air-Sealed Femtoliter Reactor Array Device. Anal. Chem. 2021, 93, 5494–5502. [Google Scholar] [CrossRef] [PubMed]
- Clomburg, J.M.; Crumbley, A.M.; Gonzalez, R. Industrial biomanufacturing: The future of chemical production. Science 2017, 355, aag0804. [Google Scholar] [CrossRef]
- Park, S.-Y.; Park, C.-H.; Choi, D.-H.; Hong, J.K.; Lee, D.-Y. Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing. Curr. Opin. Chem. Eng. 2021, 33, 100702. [Google Scholar] [CrossRef]
- Immonen, A.; Kiljander, J.; Aro, M. Consumer viewpoint on a new kind of energy market. Electr. Power Syst. Res. 2020, 180, 106153. [Google Scholar] [CrossRef]
- Xiong, H.; Dalhaus, T.; Wang, P.; Huang, J. Blockchain Technology for Agriculture: Applications and Rationale. Front. Blockchain 2020, 3, 7. [Google Scholar] [CrossRef]
- Hatcher, W.G.; Yu, W. A Survey of Deep Learning: Platforms, Applications, and Emerging Research Trends. IEEE Access 2018, 6, 24411–24432. [Google Scholar] [CrossRef]
- Asharaf, S.; Adarsh, S. Decentralized Computing Using Blockchain Technologies and Smart Contracts: Emerging Research and Opportunities; IGI Global: Hershey, PA, USA, 2017. [Google Scholar] [CrossRef]
- Karafiloski, E.; Mishev, A. Blockchain solutions for big data challenges: A literature review. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 763–768. [Google Scholar] [CrossRef]
- Yang, C.; Chen, X.; Xiang, Y. Blockchain-based publicly verifiable data deletion scheme for cloud storage. J. Netw. Comput. Appl. 2018, 103, 185–193. [Google Scholar] [CrossRef]
- Gupta, M.; Patel, R.B.; Jain, S.; Garg, H.; Sharma, B. Lightweight branched blockchain security framework for Internet of Vehicles. Trans. Emerg. Telecommun. Technol. 2022, e4520. [Google Scholar] [CrossRef]
- Atlam, H.F.; Walters, R.J.; Wills, G.B. Internet of Nano Things: Security Issues and Applications. In Proceedings of the 2018 2nd International Conference on Cloud and Big Data Computing-ICCBDC, Barcelona, Spain, 3–5 August 2018; Volume 18, pp. 71–77. [Google Scholar] [CrossRef]
- Covid Passport. 2020. Available online: https://www.ledgerinsights.com/hyland-blockchain-education-credential-solution/ (accessed on 3 August 2022).
- Heidari, A.; Jafari Navimipour, N.; Unal, M.; Toumaj, S. Machine learning applications for COVID-19 outbreak management. Neural Comput. Applic. 2022, 34, 15313–15348. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziatkovskii, A.; Hryneuski, U.; Krylova, A.; Loy, A.C.M. Chronological Progress of Blockchain in Science, Technology, Engineering and Math (STEM): A Systematic Analysis for Emerging Future Directions. Sustainability 2022, 14, 12074. https://doi.org/10.3390/su141912074
Dziatkovskii A, Hryneuski U, Krylova A, Loy ACM. Chronological Progress of Blockchain in Science, Technology, Engineering and Math (STEM): A Systematic Analysis for Emerging Future Directions. Sustainability. 2022; 14(19):12074. https://doi.org/10.3390/su141912074
Chicago/Turabian StyleDziatkovskii, Anton, Uladzimir Hryneuski, Alexandra Krylova, and Adrian Chun Minh Loy. 2022. "Chronological Progress of Blockchain in Science, Technology, Engineering and Math (STEM): A Systematic Analysis for Emerging Future Directions" Sustainability 14, no. 19: 12074. https://doi.org/10.3390/su141912074
APA StyleDziatkovskii, A., Hryneuski, U., Krylova, A., & Loy, A. C. M. (2022). Chronological Progress of Blockchain in Science, Technology, Engineering and Math (STEM): A Systematic Analysis for Emerging Future Directions. Sustainability, 14(19), 12074. https://doi.org/10.3390/su141912074