Analysis of Ride-Hailing Passenger Satisfaction and Life Satisfaction Based on a MIMIC Model
Abstract
:1. Introduction
2. Questionnaire Survey and Data Analysis
2.1. Design and Implementation of Questionnaire
2.2. Descriptive Analysis of Data
2.3. Reliability and Validity Test of Data
3. Model
3.1. Multiple Indicators Multiple Causes Model
3.2. Research Hypothesis
4. Model Results
4.1. Model Fitting Test
4.2. Structural Model Analysis
4.3. Measurement Model Analysis
5. Discussion
5.1. Theoretical Implications
5.2. Practice Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen-phuoc, D.Q.; Su, D.N.; Tran, P.T.K.; Le, D.T.T.; Johnson, L.W. Factors influencing customer’s loyalty towards ride-hailing taxi services—A case study of Vietnam. Transp. Res. Part A Policy Pract. 2020, 134, 96–112. [Google Scholar] [CrossRef]
- Guo, Y.; Xin, F.; Barnes, S.J.; Li, X. A 2020 perspective on “Opportunities or threats: The rise of online collaborative consumption (OCC) and its impact on new car sales”. Electron. Commer. Res. Appl. 2020, 40, 100932. [Google Scholar] [CrossRef]
- Wang, S.; Noland, R.B. Variation in ride-hailing trips in Chengdu, China. Transp. Res. Part D Transp. Environ. 2021, 90, 102596. [Google Scholar] [CrossRef]
- China Internet Network Information Center. The 49th China Statistical Report on Internet Development; China Internet Network Information Center: Beijing, China, 2022; Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/ (accessed on 15 July 2022).
- Young, M.; Farber, S. The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey. Transp. Res. Part A Policy Pract. 2019, 119, 383–392. [Google Scholar] [CrossRef]
- Tirachini, A.; Del Río, M. Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behavior. Transp. Policy 2019, 82, 46–57. [Google Scholar] [CrossRef]
- Li, T.; Jing, P.; Li, L.; Sun, D.; Yan, W. Revealing the varying impact of urban built environment on online car-hailing travel in spatio-temporal dimension: An exploratory analysis in Chengdu, China. Sustainability 2019, 11, 1336. [Google Scholar] [CrossRef]
- Jin, G.; Cui, Y.; Zeng, L.; Tang, H.; Feng, Y.; Huang, J. Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network. Transp. Res. Part C Emerg. Technol. 2020, 117, 102665. [Google Scholar] [CrossRef]
- Du, J.; Rakha, H.A.; Breuer, H. An in-depth spatiotemporal analysis of ride-hailing travel: The Chicago case study. Case Stud. Transp. Policy 2022, 10, 118–129. [Google Scholar] [CrossRef]
- Habib, K.N. Mode choice modelling for hailable rides: An investigation of the competition of Uber with other modes by using an integrated non-compensatory choice model with probabilistic choice set formation. Transp. Res. Part A Policy Pract. 2019, 129, 205–216. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Siiba, A.; Okyere, D.K.; Tuffour, J.P. Mobility-on-demand: An empirical study of internet-based ride-hailing adoption factors, travel characteristics and mode substitution effects. Transp. Res. Part C Emerg. Technol. 2020, 115, 102638. [Google Scholar] [CrossRef]
- Shi, K.; Shao, R.; De Vos, J.; Cheng, L.; Witlox, F. The influence of ride-hailing on travel frequency and mode choice. Transp. Res. Part D Transp. Environ. 2021, 101, 103125. [Google Scholar] [CrossRef]
- De Sá, A.L.S.; Pitombo, C.S. Methodological proposal for stated preference scenarios regarding an exploratory evaluation of ride-hailing implications on transit: A Brazilian context analysis. Case Stud. Transp. Policy 2021, 9, 1727–1736. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Chen, X.M. Ridesplitting is shaping young people’s travel behavior: Evidence from comparative survey via ride-sourcing platform. Transp. Res. Part D Transp. Environ. 2019, 75, 57–71. [Google Scholar] [CrossRef]
- Nguyen-phuoc, D.Q.; Tran, P.T.K.; Su, D.N.; Oviedo-Trespalacios, O.; Johnson, L.W. The formation of passenger loyalty: Differences between ride-hailing and traditional taxi services. Travel Behav. Soc. 2021, 24, 218–230. [Google Scholar] [CrossRef]
- Shah, S.A.H.; Hisashi, K. Analyzing travelers’ attitude towards ride-hailing services in developing countries: Case of Lahore, Pakistan. IATSS Res. 2022, 46, 223–235. [Google Scholar] [CrossRef]
- Nguyen-phuoc, D.Q.; Vo, N.S.; Su, D.N.; Nguyen, V.H.; Oviedo-Trespalacios, O. What makes passengers continue using and talking positively about ride-hailing services? The role of the booking app and post-booking service quality. Transp. Res. Part A Policy Pract. 2021, 150, 367–384. [Google Scholar] [CrossRef]
- Zuo, W.; Zhu, W.; Chen, S.; He, X. Service quality management of online car-hailing based on PCN in the sharing economy. Electron. Commer. Res. Appl. 2019, 34, 100827. [Google Scholar] [CrossRef]
- Rizki, M.; Joewono, T.B.; Dharmowijoyo, D.B.; Prasetyanto, D. The effects of on-and before-journey advantages using ride-sourcing in Indonesia. Sustainability 2021, 13, 11117. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, N. Re-recognition of ride-sourcing service: From the perspective of operational efficiency and social welfare. Sustainability 2021, 13, 8198. [Google Scholar] [CrossRef]
- Sun, D.J.; Ding, X. Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai. Transp. Res. Part A Policy Pract. 2019, 130, 227–239. [Google Scholar] [CrossRef]
- Cheng, X.; Fu, S.; De Vreede, G.J. A mixed method investigation of sharing economy driven car-hailing services: Online and offline perspectives. Int. J. Inf. Manag. 2018, 41, 57–64. [Google Scholar] [CrossRef]
- Nguyen-phuoc, D.Q.; Oviedo-trespalacios, O.; Vo, N.S.; Le, P.T.; Van Nguyen, T. How does perceived risk affect passenger satisfaction and loyalty towards ride-sourcing services? Transp. Res. Part D Transp. Environ. 2021, 97, 102921. [Google Scholar] [CrossRef]
- Ingvardson, J.B.; Nielsen, O.A. The relationship between norms, satisfaction and public transport use: A comparison across six European cities using structural equation modelling. Transp. Res. Part A Policy Pract. 2019, 126, 37–57. [Google Scholar] [CrossRef]
- De Oña, J. The role of involvement with public transport in the relationship between service quality, satisfaction and behavioral intentions. Transp. Res. Part A Policy Pract. 2020, 142, 296–318. [Google Scholar] [CrossRef]
- Li, S.A.; Guan, X.; Wang, D. How do constrained car ownership and car use influence travel and life satisfaction? Transp. Res. Part A Policy Pract. 2022, 155, 202–218. [Google Scholar] [CrossRef]
- Ye, R. Impact of Individuals’ Commuting Trips on Subjective Well-Being: Evidence from Xi’an. Ph.D. Thesis, University College London, London, UK, 2017. Available online: https://discovery.ucl.ac.uk/id/eprint/1560143 (accessed on 15 July 2022).
- De Vos, J.; Witlox, F. Travel satisfaction revisited. On the pivotal role of travel satisfaction in conceptualising a travel behaviour process. Transp. Res. Part A Policy Pract. 2017, 106, 364–373. [Google Scholar] [CrossRef]
- Ettema, D.; Gärling, T.; Olsson, L.E.; Friman, M. Out-of-home activities, daily travel, and subjective well-being. Transp. Res. Part A Policy Pract. 2010, 44, 723–732. [Google Scholar] [CrossRef]
- Diener, E.; Diener, M.; Diener, C. Factors predicting the subjective well-being of nations. In Culture and Well-Being, 1st ed.; Diener, E., Ed.; Springer: Dordrecht, The Netherlands, 2009; Volume 38, pp. 43–70. [Google Scholar] [CrossRef]
- Mouratidis, K. Commute satisfaction, neighborhood satisfaction, and housing satisfaction as predictors of subjective well-being and indicators of urban livability. Travel Behav. Soc. 2020, 21, 265–278. [Google Scholar] [CrossRef]
- De Vos, J.; Schwanen, T.; Van Acker, V.; Witlox, F. Travel and subjective well-being: A focus on findings, methods and future research needs. Transp. Rev. 2013, 33, 421–442. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Cao, X.J.; Huang, X. Association between subway and life satisfaction: Evidence from Xi’an, China. Transp. Res. Part D Transp. Environ. 2021, 96, 102869. [Google Scholar] [CrossRef]
- Moeinaddini, M.; Asadi-shekari, Z.; Aghaabbasi, M.; Saadi, I.; Shah, M.Z.; Cools, M. Applying non-parametric models to explore urban life satisfaction in European cities. Cities 2020, 105, 102851. [Google Scholar] [CrossRef]
- Gärling, T.; Fors Connolly, F. Satisfaction with travel and the relationship to well-being. Int. Encycl. Transp. 2021, 177–181. [Google Scholar] [CrossRef]
- Ma, L.; Ye, R.; Wang, H. Exploring the causal effects of bicycling for transportation on mental health. Transp. Res. Part D Transp. Environ. 2021, 93, 102773. [Google Scholar] [CrossRef]
- Lai, K.H.; Edwin Cheng, T.C.; Yeung, A.C. An empirical taxonomy for logistics service providers. Marit. Econ. Logist. 2004, 6, 199–219. [Google Scholar] [CrossRef]
- Sun, S.; Duan, Z. Modeling passengers’ loyalty to public transit in a two-dimensional framework: A case study in Xiamen, China. Transp. Res. Part A Policy Pract. 2019, 124, 295–309. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Plotnikoff, R.C.; Spence, J.C. Creating parsimony at the expense of precision? Conceptual and applied issues of aggregating belief-based constructs in physical activity research. Health Educ. Res. 2004, 19, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Shevlin, M.; Miles, J.N.V.; Davies, M.N.O.; Walker, S. Coefficient alpha: A useful indicator of reliability? Personal. Individ. Differ. 2000, 28, 229–237. [Google Scholar] [CrossRef]
- Allen, J.; Muñoz, J.C.; De Dios Ortúzar, J. Modelling service-specific and global transit satisfaction under travel and user heterogeneity. Transp. Res. Part A Policy Pract. 2018, 113, 509–528. [Google Scholar] [CrossRef]
- De Vos, J. Analysing the effect of trip satisfaction on satisfaction with the leisure activity at the destination of the trip, in relationship with life satisfaction. Transportation 2019, 46, 623–645. [Google Scholar] [CrossRef]
- Bergstad, C.J.; Gamble, A.; Gärling, T.; Hagman, O.; Polk, M.; Ettema, D.; Olsson, L.E. Subjective well-being related to satisfaction with daily travel. Transportation 2011, 38, 1–15. [Google Scholar] [CrossRef]
- Abou-Zeid, M.; Witter, R.; Bierlaire, M.; Kaufmann, V.; Ben-Akiva, M. Happiness and travel mode switching: Findings from a Swiss public transportation experiment. Transp. Policy 2012, 19, 93–104. [Google Scholar] [CrossRef]
- Diener, E. Subjective well-being: The science of happiness and a proposal for a national index. Am. Psychol. 2000, 55, 34. [Google Scholar] [CrossRef] [PubMed]
- Abou-Zeid, M.; Ben-Akiva, M. Well-being and activity-based models. Transportation 2012, 39, 1189–1207. [Google Scholar] [CrossRef]
- Heller, D.; Watson, D.; Ilies, R. The role of person versus situation in life satisfaction: A critical examination. Psychol. Bull. 2004, 130, 574. [Google Scholar] [CrossRef]
- Allen, J.; Muñoz, J.C.; De Dios Ortúzar, J. On evasion behaviour in public transport: Dissatisfaction or contagion? Transp. Res. Part A Policy Pract. 2019, 130, 626–651. [Google Scholar] [CrossRef]
- Bollen, K.A.; Stine, R.A. Bootstrapping goodness-of-fit measures in structural equation models. Sociol. Methods Res. 1992, 21, 205–229. [Google Scholar] [CrossRef]
- Cao, X.; Mokhtarian, P.L.; Handy, S.L. Do changes in neighborhood characteristics lead to changes in travel behavior? A structural equations modeling approach. Transportation 2007, 34, 535–556. [Google Scholar] [CrossRef]
- Young, M.; Farber, S.; Palm, M. The true cost of sharing: A detour penalty analysis between UberPool and UberX trips in Toronto. Transp. Res. Part D Transp. Environ. 2020, 87, 102540. [Google Scholar] [CrossRef]
- The Ministry of Public Security of the People’s Republic of China. Available online: https://www.mps.gov.cn/n2254314/n6409334/c8451247/content.html (accessed on 15 July 2022).
- General Office of the State Council. Available online: http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm (accessed on 15 July 2022).
Socio-Economic Characteristics (%) | Express n = 1362 | Hitch n = 1031 |
---|---|---|
Gender | ||
Male | 52.4 | 52.5 |
Female | 47.6 | 47.5 |
Age | ||
18–25 | 46.4 | 45.9 |
26–30 | 23.8 | 23.0 |
31–40 | 20.6 | 21.4 |
41–50 | 7.4 | 7.6 |
51 or above | 1.8 | 2.1 |
Education | ||
High school or below | 9.3 | 9.5 |
College | 17.5 | 17.3 |
Undergraduate university degree | 64.2 | 64.8 |
Postgraduate university degree or above | 9.0 | 8.4 |
Occupation | ||
Worker | 4.6 | 5.2 |
Farmer | 0.3 | 0.6 |
Government officer | 8.8 | 7.1 |
Student | 38.1 | 38.8 |
Service industry personnel | 12.8 | 15.3 |
Educational researchers | 5.0 | 4.4 |
Medical staff | 3.1 | 2.3 |
Management technician | 10.0 | 9.9 |
Self-employed | 8.7 | 7.4 |
Other | 8.7 | 9.0 |
Family monthly income (RMB) | ||
<5000 | 9.9 | 12.3 |
5000–7000 | 20.5 | 23.2 |
7000–9000 | 17.2 | 17.8 |
9000–11,000 | 14.6 | 13.7 |
11,000–13,000 | 15.9 | 14.7 |
>13,000 | 22.0 | 18.3 |
Couple with children | ||
Yes | 23.8 | 24.0 |
No | 76.2 | 76.0 |
Car ownership | ||
Yes | 62.4 | 58.4 |
No | 37.6 | 41.6 |
Latent Variables | Indicator Variables | Cronbach’sAlpha | KMO | Bartlett’s Spherical Test | Factor Loadings | |
---|---|---|---|---|---|---|
Express | Service perception | Punctuality | 0.80 | 0.693 | 0.000 | 0.84 |
Convenience | 0.88 | |||||
Comfort | 0.82 | |||||
Operation service | Operation time range | 0.76 | 0.651 | 0.000 | 0.80 | |
Travel time | 0.77 | |||||
Travel cost | 0.72 | |||||
Operation area coverage | 0.76 | |||||
External influence | Traffic congestion | 0.88 | 0.743 | 0.000 | 0.89 | |
Noise pollution | 0.91 | |||||
Air pollution | 0.90 | |||||
Safety perception | Information safety | 0.84 | 0.717 | 0.000 | 0.86 | |
Personal safety | 0.89 | |||||
Traffic safety | 0.85 | |||||
Passenger satisfaction | Pleasant degree of taking ride-hailing | 0.48 | 0.500 | 0.000 | 0.81 | |
Overall service evaluation | 0.81 | |||||
Life satisfaction | Health | 0.84 | 0.833 | 0.000 | 0.78 | |
Work/study | 0.82 | |||||
Free time | 0.74 | |||||
Family life | 0.77 | |||||
Social life | 0.83 | |||||
Hitch | Service perception | Punctuality | 0.80 | 0.705 | 0.000 | 0.84 |
Convenience | 0.86 | |||||
Comfort | 0.82 | |||||
Operation service | Operation time range | 0.75 | 0.668 | 0.000 | 0.78 | |
Travel time | 0.75 | |||||
Travel cost | 0.72 | |||||
Operation area coverage | 0.78 | |||||
External influence | Traffic congestion | 0.87 | 0.739 | 0.000 | 0.89 | |
Noise pollution | 0.89 | |||||
Air pollution | 0.89 | |||||
Safety perception | Information | 0.85 | 0.727 | 0.000 | 0.87 | |
Personal safety | 0.89 | |||||
Traffic safety | 0.87 | |||||
Passenger satisfaction | Pleasant degree of taking ride-hailing | 0.50 | 0.500 | 0.000 | 0.82 | |
Overall service evaluation | 0.82 | |||||
Life satisfaction | Health | 0.85 | 0.835 | 0.000 | 0.80 | |
Work/study | 0.82 | |||||
Free time | 0.75 | |||||
Family life | 0.78 | |||||
Social life | 0.83 |
RMSEA | GFI | AGFI | CFI | TLI | ||||
---|---|---|---|---|---|---|---|---|
Express | 363.12 | 293 | 1.24 | 0.01 | 0.98 | 0.97 | 1.00 | 0.99 |
Hitch | 339.22 | 269 | 1.26 | 0.02 | 0.97 | 0.97 | 0.99 | 0.99 |
Path | Estimate | p Value | |
---|---|---|---|
Express | Passenger satisfaction←Service perception | 0.363 | *** |
Passenger satisfaction←Operation service | 0.535 | *** | |
Passenger satisfaction←External influence | 0.397 | *** | |
Passenger satisfaction←Safety perception | 0.374 | *** | |
Life satisfaction←Passenger satisfaction | 0.283 | *** | |
Hitch | Passenger satisfaction←Service perception | 0.508 | *** |
Passenger satisfaction←Operation service | 0.437 | *** | |
Passenger satisfaction←External influence | 0.438 | *** | |
Passenger satisfaction←Safety perception | 0.281 | *** | |
Life satisfaction←Passenger satisfaction | 0.246 | *** |
Dependent Variable/Mediating Variable | Independent Variable | Direct Effect | Indirect Effect | Total Effect | |
---|---|---|---|---|---|
Express | Life satisfaction | Service perception | 0.103 | 0.103 | |
Life satisfaction | Safety perception | 0.106 | 0.106 | ||
Life satisfaction | External influence | 0.112 | 0.112 | ||
Life satisfaction | Operation service | 0.152 | 0.152 | ||
Life satisfaction | Passenger satisfaction | 0.283 | 0.283 | ||
Passenger satisfaction | Service perception | 0.363 | 0.363 | ||
Passenger satisfaction | Safety perception | 0.374 | 0.374 | ||
Passenger satisfaction | External influence | 0.397 | 0.397 | ||
Passenger satisfaction | Operation service | 0.535 | 0.535 | ||
Hitch | Life satisfaction | Service perception | 0.125 | 0.125 | |
Life satisfaction | Safety perception | 0.069 | 0.069 | ||
Life satisfaction | External influence | 0.108 | 0.108 | ||
Life satisfaction | Operation service | 0.107 | 0.107 | ||
Life satisfaction | Passenger satisfaction | 0.246 | 0.246 | ||
Passenger satisfaction | Service perception | 0.508 | 0.508 | ||
Passenger satisfaction | Safety perception | 0.281 | 0.281 | ||
Passenger satisfaction | External influence | 0.438 | 0.438 | ||
Passenger satisfaction | Operation service | 0.437 | 0.437 |
Gender | Young | Middle | Mincome | Hincome | Car | |
---|---|---|---|---|---|---|
Service perception | - | 0.097 ** | 0.116 *** | - | - | |
Safety perception | 0.090 ** | - | - | - | - | |
External influence | 0.057 ** | |||||
Life satisfaction | 0.076 ** | 0.130 *** | 0.085 ** | |||
Operation service | - | - | - | - | - | |
Passenger satisfaction | - | - | - | - | - | - |
Young | Middle | Bachelor | Mincome | Children | |
---|---|---|---|---|---|
Safety perception | - | - | −0.082 ** | - | - |
Passenger satisfaction | - | - | 0.082 ** | 0.085 ** | 0.108 ** |
Life satisfaction | 0.106 ** | 0.109 *** | - | - | - |
Service perception | - | - | - | - | - |
External influence | - | - | - | - | - |
Operation service | - | - | - | - | - |
Latent Variables | Indicator Variables | Estimates | |
---|---|---|---|
Express | Hitch | ||
Service perception | Punctuality | 0.739 *** | 0.754 *** |
Convenience | 0.858 *** | 0.794 *** | |
Comfort | 0.693 *** | 0.710 *** | |
Safety perception | Information safety | 0.771 *** | 0.789 *** |
Personal safety | 0.858 *** | 0.849 *** | |
Traffic safety | 0.755 *** | 0.786 *** | |
Operation service | Operation time range | 0.799 *** | 0.770 *** |
Travel time | 0.563 *** | 0.544 *** | |
Travel cost | 0.513 *** | 0.507 *** | |
Operation area coverage | 0.752 *** | 0.772 *** | |
External influence | Traffic congestion | 0.825 *** | 0.825 *** |
Noise pollution | 0.877 *** | 0.826 *** | |
Air pollution | 0.835 *** | 0.827 *** | |
Passenger satisfaction | Pleasant degree of ride-hailing | 0.324 *** | 0.319 *** |
Overall service evaluation | 0.654 *** | 0.682 *** | |
Life satisfaction | Health | 0.688 *** | 0.739 *** |
Work/study | 0.744 *** | 0.769 *** | |
Free time | 0.649 *** | 0.663 *** | |
Family life | 0.698 *** | 0.702 *** | |
Social life | 0.787 *** | 0.777 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zhang, R.; Guo, S.; Zhang, J. Analysis of Ride-Hailing Passenger Satisfaction and Life Satisfaction Based on a MIMIC Model. Sustainability 2022, 14, 10954. https://doi.org/10.3390/su141710954
Li G, Zhang R, Guo S, Zhang J. Analysis of Ride-Hailing Passenger Satisfaction and Life Satisfaction Based on a MIMIC Model. Sustainability. 2022; 14(17):10954. https://doi.org/10.3390/su141710954
Chicago/Turabian StyleLi, Gang, Ruining Zhang, Shujuan Guo, and Junyi Zhang. 2022. "Analysis of Ride-Hailing Passenger Satisfaction and Life Satisfaction Based on a MIMIC Model" Sustainability 14, no. 17: 10954. https://doi.org/10.3390/su141710954
APA StyleLi, G., Zhang, R., Guo, S., & Zhang, J. (2022). Analysis of Ride-Hailing Passenger Satisfaction and Life Satisfaction Based on a MIMIC Model. Sustainability, 14(17), 10954. https://doi.org/10.3390/su141710954