Colorimetric Detection of 1-Naphthol and Glyphosate Using Modified Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Modification of AuNPs
2.3. Detection of 1-Naphthol and Glyphosate
2.3.1. Colorimetric Detection of 1-Naphthol
2.3.2. Colorimetric Detection of Glyphosate
2.4. Application to Real Water Samples
3. Results and Discussion
3.1. Characterization of Modified AuNPs
3.2. Optimization of Assay Conditions
3.3. Sensitivity of Modified AuNPs
3.4. Selectivity and Anti-Interference of Modified AuNPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Zhou, K.; Zhao, G. Gold nanoparticles: From synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends Food Sci. Technol. 2018, 78, 83–94. [Google Scholar] [CrossRef]
- Bala, R.; Sharma, R.K.; Wangoo, N. Highly sensitive colorimetric detection of ethyl parathion using gold nanoprobes. Sens. Actuator B Chem. 2015, 210, 425–430. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; Wang, L.; Zhang, H.; Hu, J. A simple colorimetric probe based on anti-aggregation of AuNPs for rapid and sensitive detection of malathion in environmental samples. Anal. Bioanal. Chem. 2019, 411, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Chen, Y.; Xiu, F.R.; Hou, J. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicablility. Sens. Actuator B Chem. 2020, 304, 127359–127366. [Google Scholar] [CrossRef]
- Brito, N.M.; Navickiene, S.; Polese, L.; Jardim, E.F.G.; Abakerli, R.B.; Ribeiro, M.L. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatograph with ultraviolet detection. J. Chromatogr. A 2002, 957, 201–209. [Google Scholar] [CrossRef]
- Berijani, S.; Assadi, Y.; Anbia, M.; Hosseini, M.R.M.; Aghaee, E. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection: Very simple rapid and sensitive method for the determination of organophosphorus pesticides in water. J. Chromatogr. A 2006, 1123, 1–9. [Google Scholar] [CrossRef]
- Motaharian, A.; Motaharian, F.; Abnous, K.; Hosseini, M.R.; Hassanzadeh-Khayyat, M. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Anal. Bioanal. Chem. 2016, 408, 6769–6779. [Google Scholar] [CrossRef]
- Chang, J.F.; Li, H.Y.; Hou, T.; Li, F. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity. Biosens. Bioelectron. 2016, 86, 971–977. [Google Scholar] [CrossRef]
- Qian, G.; Wang, L.; Wu, Y.; Zhang, Q.; Sun, Q.; Liu, Y.; Liu, F. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chem. 2009, 117, 364–370. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, B.; Liu, A.; Liang, G.; Yin, L.; Pu, Y.; Wei, W.; Gou, S.; Liu, S. Multicolor sensor for organophosphorus pesticides determination based on the bi-enzyme catalytic etching of gold nanorods. Sens. Actuator B Chem. 2018, 265, 675–681. [Google Scholar] [CrossRef]
- Nurani, S.J.; Saha, C.K.; Khan, A.R. Silver nanoparticles synthesis properties applications and future perspectives: A short review. IOSR J. Electr. Electron. Eng. 2015, 10, 117–126. [Google Scholar]
- Assah, E.; Goh, W.; Zheng, X.T.; Lim, T.X.; Li, J.; Lane, D.; Ghadessy, F.; Tan, Y.N. Rapid colorimetric detection of p53 protein function using DNA-gold nanoconjugates with applications for drug discovery and cancer diagnostics. Colloids Surf. B Biointerfaces 2018, 169, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures bioassays and biosensing-A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Sahu, S.; Sahu, B.; Kurrey, R.; Patle, T.K.; Kant, T.; Karbhal, I.; Satnami, M.L.; Deb, M.K.; Ghosh, K.K. Silver nanoparticles for selective detection of phosphorus pesticide containing π-conjugated pyrimidine nitrogen and sulfur moieties through non-covalent interactions. J. Mol. Liq. 2019, 275, 297–303. [Google Scholar] [CrossRef]
- Liu, D.B.; Chen, W.W.; Wei, J.H.; Li, X.B.; Wang, Z.; Jiang, X.Y. A highly sensitive dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 2012, 84, 4185–4191. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhao, G.; Liu, M.; Li, F.; Qiao, J.; Zhao, S. Highly sensitive electrochemical determination of 1-naphthol based on high-index facet SnO2 modified electrode. Electrochim. Acta 2012, 83, 478–484. [Google Scholar] [CrossRef]
- Gang, L.; Liu, X.; Li, X. Highly sensitive detection of α-naphthol based on G-DNA modified gold electrode by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2013, 45, 46–51. [Google Scholar]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.; Lanphear, B.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef]
- Xu, J.; Smith, S.; Smith, G.; Wang, W.; Li, Y. Glyphosate contamination in grains and goods: An overview. Food Control 2019, 106, 106710. [Google Scholar] [CrossRef]
- Noori, J.; Dimaki, M.; Mortensen, J.; Svendsen, W. Detection of glyphosate in drinking water: A fast and direct detection method without sample pretreatment. Sensors 2018, 18, 2961. [Google Scholar] [CrossRef]
- Solomon, K.R. Estimated exposure to glyphosate in humans via environmental, occupational and dietary pathways: An updated review of the scientific literature. Pest Manag. Sci. 2020, 76, 2878–2885. [Google Scholar] [CrossRef] [PubMed]
- Torretta, V.; Katsoyiannis, I.A.; Viotti, P.; Rada, E.C. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability 2018, 10, 950. [Google Scholar] [CrossRef] [Green Version]
- Nomura, H.; Hamada, R.; Wada, K.; Saito, I.; Nishihara, N.; Kitahara, Y.; Watanabe, S.; Nakane, K.; Nagata, C.; Kondo, T.; et al. Temporal trend and cross-sectional characterization of urinary concentrations of glyphosate in Japanese children from 2006 to 2015. Int. J. Hyg. Environ. Health 2022, 242, 113963. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.B.; Wang, J.F.; Chuang, K.J.; Cheng, H.Y.; Chang, K.C.; Ma, C.M. Preparing Copper Nanoparticles and Flexible Copper Conductive Sheets. Nanomaterials 2022, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Li, H.; Guo, J.; Ping, H.; Liu, L.; Zhang, M.; Guan, F.; Sun, C.; Zhang, Q. Visual detection of organohosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. Talanta 2011, 87, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Colorimetric sensor based on 4-mercaptophenylboronic modified gold nanoparticles for rapid and selective detection of fluoride anion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 214, 393–398. [Google Scholar] [CrossRef]
- Hanna, D.H.; Saad, G.R. Encapsulation of ciprofloxacin within modified xanthan gum-chitosan based hydrogel for drug delivery. Bioorg. Chem. 2019, 84, 115–124. [Google Scholar] [CrossRef]
- Sun, J.; Guo, L.; Bao, Y.; Xie, J. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosens. Bioelectron. 2011, 28, 152–157. [Google Scholar] [CrossRef]
- Sun, Z.; Cui, Z.; Li, H. p-Amino benzenesulfonic acid functionalized gold nanoparticles: Synthesis, colorimetric detection of carbaryl and mechanism study by zeta potential assays. Sens. Actuator B Chem. 2013, 183, 297–302. [Google Scholar] [CrossRef]
- Chen, N.; Liu, H.; Zhang, Y.; Zhou, Z.; Fan, W.; Yu, G.; Shen, Z.; Wu, A. A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sens. Actuator B Chem. 2018, 255, 3093–3101. [Google Scholar] [CrossRef]
- Melikishvili, S.; Piovarci, I.; Hianik, T. Advances in colorimetric assay based on AuNPs modified by proteins and nucleic acid aptamers. Chemosensors 2021, 9, 281. [Google Scholar] [CrossRef]
- Preuss, R.; Angerer, J. Simultaneous determination of 1- and 2-naphthol in human urine using on-line clean-up column-switching liquid chromatography-fluorescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 801, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Li, L.; Qiu, J.; Wang, X.; Zhu, W.; Sun, Y.; Zhou, Z. Determination of carbaryl and its metabolite 1-naphthol in water samples by fluorescence spectrophotometer after anionic surfactant micelle-mediated extraction with sodium dodecylsulfate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Tan, S.N.; Ge, L.; Wang, W.; Chen, J. Determination of bisphenol A and naphthols in river water samples by capillary zone electrophoresis after cloud point extraction. Talanta 2011, 85, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, G.; Xie, G. Preconcentration and determination of bisphenol A, naphthol and dinitrophenol from environmental water samples by dispersive liquid-phase microextraction and HPLC. Anal. Methods 2014, 6, 187–193. [Google Scholar] [CrossRef]
- Chauhan, A.; Bhatia, T.; Singh, A.; Saxena, P.N.; Kesavchandran, C.; Mudiam, M.K. Application of nano-sized multi-template imprinted polymer for simultaneous extraction of polycyclic aromatic hydrocarbon metabolites in urine samples followed by ultra-high performance liquid chromatographic analysis. J. Chromatogr. B Biomed. Appl. 2015, 985, 110–118. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, G.L.; Ning, Y.F.; Zhou, T.; Mei, Y.; Guo, Z.Z.; Feng, Y.Q. Rapid magnetic solid-phase extraction based on magnetic graphitized carbon black for the determination of 1-naphthol and 2-naphthol in urine. Microchem. J. 2019, 147, 67–74. [Google Scholar] [CrossRef]
- Coutinho, C.F.; Coutinho, L.F.; Mazo, L.H.; Nixdorf, S.L.; Camara, C.A.; Lancas, F.M. Direct determination of glyphosate using hydrophilic interaction chromatography with coulometric detection at copper microelectrode. Anal. Chim. Acta 2007, 592, 30–35. [Google Scholar] [CrossRef]
- Khenifi, A.; Derriche, Z.; Forano, C.; Prevot, V.; Mousty, C.; Scavetta, E.; Ballarin, B.; Guadagnini, L.; Tonelli, D. Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Anal. Chim. Acta 2009, 654, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Cetin, E.; Sahan, S.; Ulgen, A.; Sahin, U. DLLME-spectrophotometric determination of glyphosate residue in legumes. Food Chem. 2017, 230, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Demonte, L.D.; Michlig, N.; Gaggiotti, M.; Adam, C.G.; Beldomenico, H.R.; Repetti, M.R. Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method. Sci. Total Environ. 2018, 645, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Minami, E.; Fujita, Y.; Kubota, E.; Kobayashi, H.; Hanazawa, T.; Yoshizawa, T.; Kamijo, Y.; Funayama, M. Application of probe electrospray ionization-tandem mass spectrometry to ultra-rapid determination of glufosinate and glyphosate in human serum. J. Pharm. Biomed. Anal. 2019, 174, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, J.; Llorent-Martinez, E.J.; Ortega-Barrales, P.; Ruiz-Medina, A. Graphene quantum dots-silver nanoparticles as a novel sensitive and selective luminescence probe for the detection of glyphosate in food samples. Talanta 2020, 207, 120344. [Google Scholar] [CrossRef] [PubMed]
Analyte | Methods | Linear Range (ppm) | LOD (ppm) | Ref. |
---|---|---|---|---|
1-Naphthol | HPLC-FLD | 0.003–0.36 | 1.50 × 10−3 | [34] |
FLD | 0.007–1.0 | 0.89 × 10−3 | [35] | |
CZE | 0.1–0.5 | 0.24 × 10−3 | [36] | |
HPLC-UV | 0.75 × 10−3–0.15 | 0.61 × 10−3 | [37] | |
UHPLC | 0.002–10.0 | 0.33 × 10−3 | [38] | |
HPLC-UV | 0.01–5.0 | 0.9 × 10−3 | [39] | |
Colorimetry | 0.75–9.0 | 150 × 10−3 | This study | |
Glyphosate | Coulometry | 0.1–34.0 | 0.1 | [40] |
ECD | 1.7–152.2 | 0.17 | [41] | |
Spectrophotometry | 0.5–10.0 | 0.21 | [42] | |
UHPLC-MS/MS | 6 × 10−4–0.01 | 2.0 × 10−4 | [43] | |
PESI-MS/MS | 1.56–400.0 | 0.2 | [44] | |
FLD | 0.03–2.0 | 0.01 | [45] | |
Colorimetry | 1.0–23.0 | 0.27 | This study |
Samples | Analyte | Added (ppm) | Found (ppm) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
Tap water | 1-Naphthol | 1.5 | 1.48 ± 0.08 | 98.50 | 0.97 |
6 | 6.14 ± 0.25 | 102.26 | 4.21 | ||
Mineral water | 1.5 | 1.53 ± 0.05 | 102.17 | 2.96 | |
6 | 5.93 ± 0.14 | 98.83 | 2.34 | ||
Tap water | Glyphosate | 6 | 6.07 ± 0.07 | 101.11 | 1.20 |
12 | 12.04 ± 0.21 | 100.37 | 1.76 | ||
Mineral water | 6 | 6.03 ± 0.10 | 100.53 | 1.71 | |
12 | 12.00 ± 0.08 | 100.03 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, G.-B.; Hsu, J.-P.; Chuang, K.-J.; Ma, C.-M. Colorimetric Detection of 1-Naphthol and Glyphosate Using Modified Gold Nanoparticles. Sustainability 2022, 14, 10793. https://doi.org/10.3390/su141710793
Hong G-B, Hsu J-P, Chuang K-J, Ma C-M. Colorimetric Detection of 1-Naphthol and Glyphosate Using Modified Gold Nanoparticles. Sustainability. 2022; 14(17):10793. https://doi.org/10.3390/su141710793
Chicago/Turabian StyleHong, Gui-Bing, Jia-Pei Hsu, Kai-Jen Chuang, and Chih-Ming Ma. 2022. "Colorimetric Detection of 1-Naphthol and Glyphosate Using Modified Gold Nanoparticles" Sustainability 14, no. 17: 10793. https://doi.org/10.3390/su141710793