Evaluation of Soil Quality in a Composite Pecan Orchard Agroforestry System Based on the Smallest Data Set
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Laboratory Analysis
2.4. Data Analysis
3. Results
3.1. Soil Physicochemical Properties of Agroforestry Composite Systems
3.2. Establishment of MDS
3.3. Determination of the Weights of Comprehensive Evaluation Indicators for Soil Quality
3.4. Evaluation of Soil Quality for Different Agroforestry Patterns Based on MDS
3.5. SQI Construction and Evaluation
4. Discussion
4.1. Effects of Agroforestry System on Physicochemical Soil Properties
4.2. MDS Index Screening and Evaluation of Soil Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ponge, J.F. The soil as an ecosystem. Biol. Fertil. Soils 2015, 51, 645–648. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Ranjbar, A.; Emami, H.; Khorassani, R.; Karouyeh, A.R.K. Soil Quality Assessments in Some Iranian Saffron Fields. J. Agric. Sci. Technol. 2016, 18, 865–878. [Google Scholar]
- McBratney, A.; Field, D.J.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Li, Z.; Xu, C.; Luo, W. Improvements in soil quality with vegetation succession in subtropical China karst. Sci. Total Environ. 2021, 775, 145876. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Han, X.; Li, H.; Wang, T.; Tong, X.; Ren, G.; Feng, Y.; Yang, G. Evaluation of soil quality along two revegetation chronosequences on the Loess Hilly Region of China. Sci. Total Environ. 2018, 633, 808–815. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S. Effect of long-term wastewater irrigation on the quality of alluvial soil for agricultural sustainability. Ann. Agric. Sci. 2019, 64, 151–160. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Zheng, F.L.; Li, Z.; Feng, Z.Z. A novel optimal data set approach for erosion-impacted soil quality assessments—A case-study of an agricultural catchment in the Chernozem region of Northeast China. Land Degrad. Dev. 2022, 33, 1062–1075. [Google Scholar] [CrossRef]
- Guo, J.; Wang, G.B.; Wu, Y.Q.; Geng, Q.Z.; Cao, F.L. Leaf litter and crop residue decomposition in ginkgo agroforestry systems in eastern China: Soil fauna diversity and abundance, microbial biomass and nutrient release. J. For. Res. 2019, 30, 1895–1902. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwari, G.; Sahoo, S.; Dash, B.; Jangir, A.; Sharma, R.P.; Naitam, R.; Tiwary, P.; Karthikeyan, K.; Chandran, P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. CATENA 2021, 198, 05042. [Google Scholar] [CrossRef]
- Carter, E.A.; Rummer, R.B.; Stokes, B.J. Evaluation of site impacts associated with three silvicultural prescriptions in an upland hardwood stand in northern Alabama, USA. Biomass Bioenergy 2006, 30, 1025–1034. [Google Scholar] [CrossRef]
- Han, X.; Li, Y.H.; Du, X.F.; Li, Y.B.; Wang, Z.W.; Jiang, S.W.; Li, Q. Effect of grassland degradation on soil quality and soil biotic community in a semi-arid temperate steppe. Ecol. Process 2020, 9, 63. [Google Scholar] [CrossRef]
- Swanepoel, P.A.; du Preez, C.C.; Botha, P.R.; Snyman, H.A.; Habig, J. Assessment of tillage effects on soil quality of pastures in South Africa with indexing methods. Soil Res. 2015, 53, 274–285. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhou, W.; Shen, J.B.; Li, S.T.; He, P.; Liang, G.Q. Soil quality assessment of Albic soils with different productivities for eastern China. Soil Tillage Res. 2014, 140, 74–81. [Google Scholar] [CrossRef]
- Bunemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mader, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Thakur, P.; Paliyal, S.S.; Dev, P.; Datt, N. Methods and Approaches-Soil Quality Indexing, Minimum Data Set Selection & Interpretation—A Critical Review. Commun. Soil Sci. Plant Anal. 2022, 53, 1849–1864. [Google Scholar] [CrossRef]
- Sanchez-Navarro, A.; Gil-Vazquez, J.M.; Delgado-Iniesta, M.J.; Marin-Sanleandro, P.; Blanco-Bernardeau, A.; Ortiz-Silla, R. Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems. CATENA 2015, 131, 35–45. [Google Scholar] [CrossRef]
- Tian, K.; Zhang, B.E.; Zhang, H.D.; Huang, B.; Darilek, J.L.; Zhao, Y.C.; Yang, J. Evaluation of soil quality in major grain-producing region of the North China Plain: Integrating minimum data set and established critical limits. Ecol. Indic. 2020, 117, 106613. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhou, M.Y.; Liu, H.; Huang, C.; Ma, Y.H.; Ge, H.X.; Ge, X.; Fu, S. Pecan agroforestry systems improve soil quality by stimulating enzyme activity. PeerJ. 2022, 9, 19. [Google Scholar] [CrossRef]
- Zhang, G.L.; Chu, X.B.; Zhu, H.Y.; Zou, D.S.; Li, L.C.; Du, L.S. The Response of Soil Nutrients and Microbial Community Structures in Long-Term Tea Plantations and Diverse Agroforestry Intercropping Systems. Sustainability 2021, 13, 7799. [Google Scholar] [CrossRef]
- Xuan, D.T.; Guong, V.T.; Rosling, A.; Alstrom, S.; Chai, B.L.; Hogberg, N. Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza sativa. Biol Fertil. Soils 2012, 48, 217–225. [Google Scholar] [CrossRef]
- Parkin, T.B.; Kaspar, T.C.; Singer, J.W. Cover crop effects on the fate of N following soil application of swine manure. Plant Soil 2006, 289, 141–152. [Google Scholar] [CrossRef]
- Ma, Y.H.; Fu, S.L.; Zhang, X.P.; Zhao, K.; Chen, H.Y.H. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Appl. Soil Ecol. 2017, 119, 171–178. [Google Scholar] [CrossRef]
- Wang, Q.K.; Wang, S.L.; Liu, Y. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: Microbial properties, enzyme activities and dissolved organic matter. Appl. Soil Ecol. 2008, 40, 484–490. [Google Scholar] [CrossRef]
- Pecan Production. 2021. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/pecnpr21.pdf (accessed on 19 August 2022).
- US Loses Top Pecan Production Spot to Mexico. 2019. Available online: https://www.proag.com/news/u-s-loses-top-pecan-production-spot-to-mexico/ (accessed on 20 August 2022).
- Pecan Nut Tree Plantings. 2021. Available online: https://www.sappa.za.org/industry-statistics/ (accessed on 20 August 2022).
- Zhang, R.; Peng, F.R.; Li, Y.R. Pecan production in China. Sci Hortic. 2015, 197, 719–727. [Google Scholar] [CrossRef]
- Manceur, A.M.; Boland, G.J.; Thevathasan, N.V.; Gordon, A.M. Dry matter partitions and specific leaf weight of soybean change with tree competition in an intercropping system. Agrofor. Syst. 2009, 76, 295–301. [Google Scholar] [CrossRef]
- Gao, P.X.; Zheng, X.F.; Wang, L.; Liu, B.; Zhang, S.X. Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems. Forests. 2019, 10, 299. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, J.C.; Zhao, S.W.; Mao, Y.P.; Zhang, J.M.; Pan, X.Y.; He, F.; van der Ploeg, M. Impact of long-term sub-soiling tillage on soil porosity and soil physical properties in the soil profile. Land Degrad. Dev. 2021, 32, 2892–2905. [Google Scholar] [CrossRef]
- Yang, S.; Feng, C.; Ma, Y.; Wang, W.; Huang, C.; Qi, C.; Fu, S.; Chen, H.Y.H. Transition from N to P limited soil nutrients over time since restoration in degraded subtropical broadleaved mixed forests. For. Ecol. Manag. 2021, 494, 119298. [Google Scholar] [CrossRef]
- Ma, Y.H.; Feng, C.; Wang, Z.C.; Huang, C.; Huang, X.Z.; Wang, W.J.; Yang, S.; Fu, S.; Chen, H.Y.H. Restoration in degraded subtropical broadleaved forests induces changes in soil bacterial communities. Glob Ecol Conserv. 2021, 30, e01775. [Google Scholar] [CrossRef]
- Wang, C.; Lu, X.K.; Mori, T.; Mao, Q.G.; Zhou, K.J.; Zhou, G.Y.; Nie, Y.; Mo, J. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 2018, 121, 103–112. [Google Scholar] [CrossRef]
- Mei, W.; Yu, G.; Lai, J.; Rao, Q.; Umezawa, Y. basicTrendline: Add trendline and confidence interval of basic regression models to plot. In R Package Version; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Huang, C.; Feng, C.; Ma, Y.H.; Liu, H.; Wang, Z.C.; Yang, S.B.; Wang, W.; Fu, S.; Chen, H.Y.H. Allometric models for aboveground biomass of six common subtropical shrubs and small trees. J. For. Res. 2021, 33, 1317–1328. [Google Scholar] [CrossRef]
- Klopp, H.W.; Arriaga, F.; Bleam, W. Influence of exchangeable sodium and clay mineralogy on soil water retention and hydraulic conductivity. J. Soil Water Conserv. 2020, 75, 755–764. [Google Scholar] [CrossRef]
- Shi, Y.C.; Hu, Z.Y.; Haneklaus, S.; Long, W.G.; Xia, X.; Zhao, Y.W.; Lin, T.; Schnug, E. Suitability of soil electrical conductivity as an indicator of soil nitrate status in relation to vegetable cultivation practices in the Yangtze River Delta of China. Landbauforsch Volk 2009, 59, 151–158. [Google Scholar]
- Zhang, M.; Wang, N.; Zhang, J.; Hu, Y.; Cai, D.; Guo, J.; Wu, D.; Sun, G. Soil Physicochemical Properties and the Rhizosphere Soil Fungal Community in a Mulberry (Morus alba L.)/Alfalfa (Medicago sativa L.) Intercropping System. Forests 2019, 10, 167. [Google Scholar] [CrossRef]
- Karagatzides, J.D.; Wilton, M.J.; Tsuji, L.J.S. Soil Nutrient Supply in Cultivated Bush Bean–Potato Intercropping Grown in Subarctic Soil Managed with Agroforestry. Sustainability 2021, 13, 8185. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Kremer, R.J.; Adamson, B.W.; Anderson, S.H. Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl. Soil Ecol. 2008, 39, 153–160. [Google Scholar] [CrossRef]
- Li, Y.X.; Yu, P.J.; Shen, L.C. Soil Quality Assessment of Crop Rotations and Management Practices Based on Minimum Data Set and Soil Quality Indices in the Northeast Plain, China. Fresenius Environ. Bull. 2021, 30, 8749–8757. [Google Scholar]
- Deng, P.; Fan, W.; Wang, H.; Ti, J.; Xu, X. Chinese Torreya agroforestry alters the rhizosphere soil bacterial communities and potential functions. Appl. Soil Ecol. 2022, 177, 104504. [Google Scholar] [CrossRef]
Indicators | TN (g/kg) | TP (g/kg) | TK (g/kg) | AP (mg/kg) | AK (mg/kg) | PH | BD (g/cm3) | MC (%) |
---|---|---|---|---|---|---|---|---|
Xinfeng Agricultural Park | 0.89 | 1.27 | 3.12 | 8.79 | 178.7 | 8.12 | 1.61 | 18.73 |
Indicator | Membership Function Type | Membership Function |
---|---|---|
MC | S-type membership function (Factor has a positive effect on soil quality) | |
SP | ||
AP | ||
TP | ||
NH4+-N | ||
NO3−-N | ||
T | ||
AK | ||
TN | ||
TC | ||
Ca | ||
Mg | ||
pH | Inverse S-type membership function (Factor has a negative effect on soil quality) | |
EC | ||
BD |
Indicators | Agroforestry Pattern | CV | |||
---|---|---|---|---|---|
PPH | PPS | PPL | CK | ||
EC (ds/m) | 1.34 ± 0.02 b | 1.28 ± 0.01 a | 1.50 ± 0.03 c | 1.23 ± 0.0.02 a | 8.84 |
MC (%) | 18.32 ± 0.22 a | 19.78 ± 0.22 c | 18.60 ± 0.27 ab | 19.42 ± 0.56 bc | 6.14 |
BD (g/cm3) | 1.37 ± 0.03 a | 1.56 ± 0.02 c | 1.43 ± 0.02 b | 1.56 ± 0.02 c | 7.09 |
SP (%) | 47.63 ± 0.91 c | 40.63 ± 0.79 a | 44.53 ± 1.25 b | 41.15 ± 0.65 a | 8.99 |
AP (mg/kg) | 10.10 ± 0.40 c | 9.70 ± 0.42 c | 8.89 ± 0.38 b | 7.18 ± 0.56 a | 19.07 |
TP (g/kg) | 1.69 ± 0.03 b | 1.45 ± 0.15 b | 1.50 ± 0.10 b | 1.08 ± 0.07 a | 20.02 |
NH4+-N (mg/kg) | 0.73 ± 0.03 b | 0.41 ± 0.15 a | 0.38 ± 0.10 a | 0.18 ± 0.07 a | 70.08 |
NO3−-N (mg/kg) | 2.21 ± 0.29 ab | 1.67 ± 0.14 a | 7.42 ± 0.57 c | 2.73 ± 0.20 b | 71.85 |
TK (g/kg) | 2.64 ± 0.19 a | 3.84 ± 0.37 b | 4.02 ± 0.23 b | 3.80 ± 0.20 b | 25.82 |
AK (mg/kg) | 217.44 ± 11.68 c | 220.65 ± 10.96 c | 79.15 ± 4.96 b | 54.55 ± 2.63 a | 14.49 |
TN (g/kg) | 0.81 ± 0.04 b | 0.92 ± 0.02 c | 0.86 ± 0.01 bc | 0.52 ± 0.05 a | 23.73 |
TC (g/kg) | 15.78 ± 0.34 c | 16.12 ± 0.19 c | 14.67 ± 0.14 b | 13.52 ± 0.20 a | 4.54 |
pH | 8.09 ± 0.11 a | 8.23 ± 0.02 a | 8.15 ± 0.02 a | 8.25 ± 0.02 a | 2.13 |
Ca (g/kg) | 13.31 ± 0.31 a | 15.16 ± 0.25 b | 12.82 ± 0.16 a | 15.25 ± 0.27 b | 9.33 |
Mg (g/kg) | 4.38 ± 0.10 a | 5.44 ± 0.07 b | 4.55 ± 0.05 a | 4.57 ± 0.09 a | 10.13 |
Indicators | Principal Component | Team | Norm | TDS | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
BD | −0.776 | 0.362 | 0.265 | −0.340 | 1 | 1.907 | Yes |
Ca | −0.769 | 0.419 | −0.256 | 0.041 | 1 | 1.897 | |
TP | 0.747 | 0.288 | 0.036 | −0.162 | 1 | 1.738 | |
SP | 0.717 | −0.322 | −0.351 | 0.294 | 1 | 1.783 | |
AP | 0.603 | 0.493 | 0.062 | 0.179 | 1 | 1.634 | |
NH4+-N | 0.597 | 0.158 | −0.260 | −0.403 | 1 | 1.458 | |
MC | −0.528 | 0.322 | 0.116 | 0.414 | 1 | 1.395 | |
AK | 0.464 | 0.813 | −0.178 | 0.082 | 2 | 1.862 | Yes |
Mg | −0.339 | 0.765 | 0.384 | 0.004 | 2 | 1.709 | Yes |
TC | 0.542 | 0.739 | 0.102 | 0.147 | 2 | 1.849 | |
NO3−-N | 0.224 | −0.653 | 0.601 | 0.106 | 2 | 1.565 | |
TK | −0.296 | −0.044 | 0.592 | −0.217 | 3 | 1.065 | |
TN | 0.526 | 0.544 | 0.549 | 0.035 | 3 | 1.717 | Yes |
EC | 0.526 | −0.434 | 0.544 | 0.257 | 3 | 1.623 | Yes |
pH | −0.486 | 0.093 | −0.074 | 0.676 | 4 | 1.315 | Yes |
Eigenvalue | 4.816 | 3.579 | 1.849 | 1.205 | |||
Contribution of variance (%) | 32.106 | 23.859 | 12.328 | 8.035 | |||
Cumulative rate of accumulated variance (%) | 32.106 | 55.965 | 68.293 | 76.328 |
Indicators | W (TDS) | W (MDS) |
---|---|---|
EC | 0.072 | 0.16 |
MC | 0.05 | |
BD | 0.08 | 0.188 |
AP | 0.056 | |
TP | 0.058 | |
NH4+-N | 0.053 | |
MC | 0.074 | |
TK | 0.043 | |
AK | 0.08 | 0.184 |
TN | 0.076 | 0.169 |
TC | 0.076 | |
pH | 0.062 | 0.13 |
Ca | 0.073 | |
Mg | 0.074 | 0.169 |
SP | 0.072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Wang, Z.; Ren, X.; Ma, X.; Zhou, M.; Ge, X.; Liu, H.; Fu, S. Evaluation of Soil Quality in a Composite Pecan Orchard Agroforestry System Based on the Smallest Data Set. Sustainability 2022, 14, 10665. https://doi.org/10.3390/su141710665
Huang C, Wang Z, Ren X, Ma X, Zhou M, Ge X, Liu H, Fu S. Evaluation of Soil Quality in a Composite Pecan Orchard Agroforestry System Based on the Smallest Data Set. Sustainability. 2022; 14(17):10665. https://doi.org/10.3390/su141710665
Chicago/Turabian StyleHuang, Cheng, Zhaocheng Wang, Xiaoliang Ren, Xiaomin Ma, Mengyu Zhou, Xiang Ge, Hua Liu, and Songling Fu. 2022. "Evaluation of Soil Quality in a Composite Pecan Orchard Agroforestry System Based on the Smallest Data Set" Sustainability 14, no. 17: 10665. https://doi.org/10.3390/su141710665