# Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Fuzzy Approach for Handling Uncertainty Parameters

## 3. Mathematical Modeling

#### 3.1. Assignment Model

#### 3.1.1. Parameters

#### 3.1.2. Variables

#### 3.1.3. Objectives

#### 3.1.4. Constraints

#### 3.2. Assignment Model with Fuzzy Travel Delay

## 4. Numerical Simulation

#### 4.1. Case Study

#### 4.2. Numerical Simulation Results

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sun, S.; Ertz, M. Environmental impact of mutualized mobility: Evidence from a life cycle perspective. Sci. Total Environ.
**2021**, 772, 145014. [Google Scholar] [CrossRef] [PubMed] - Scott, V.; Geden, O. The challenge of carbon dioxide removal for EU policy-making. Nat. Energy
**2018**, 3, 350–352. [Google Scholar] [CrossRef] - Alfasi, B.; Khan, A. Enhancing sustainability in highway infrastructure: Risk analysis modles. In Proceedings of the Annual Conference—Canadian Society for Civil Engineering, Montreal, QC, Canada, 12–15 June 2019. [Google Scholar]
- Jabareen, Y.R. Sustainable urban forms: Their typologies, models, and concepts. J. Plan. Educ. Res.
**2006**, 26, 38–52. [Google Scholar] [CrossRef] - Magdolen, M.; von Behren, S.; Burger, L.; Chlond, B. Mobility Styles and Car Ownership—Potentials for a Sustainable Urban Transport. Sustainability
**2021**, 13, 2968. [Google Scholar] [CrossRef] - Chapman, L. Transport and climate change: A review. J. Transp. Geogr.
**2007**, 15, 354–367. [Google Scholar] [CrossRef] - Yan, C.; Zhu, H.; Korolko, N.; Woodard, D. Dynamic pricing and matching in ride-hailing platforms. Nav. Res. Logist.
**2019**, 67, 705–724. [Google Scholar] [CrossRef] - Yang, R.; Lai, M. Multi-level analyses on the nearest-first matching policy of on-demand chauffeured ride-hailing service. Int. J. Sustain. Transp.
**2020**, 15, 749–767. [Google Scholar] [CrossRef] - Yu, H.; Shu, J.; Jia, X.; Zhang, H.; Yu, X. LpRide: Lightweight and Privacy-Preserving Ride Matching over Road Networks in Online Ride Hailing Systems. IEEE Trans. Veh. Technol.
**2019**, 68, 10418–10428. [Google Scholar] [CrossRef] - Cramer, J.; Krueger, A.B. Disruptive change in the taxi business: The case of uber. Am. Econ. Rev.
**2016**, 106, 177–182. [Google Scholar] [CrossRef] - Yu, H.; Jia, X.; Zhang, H.; Shu, J. Efficient and Privacy-Preserving Ride Matching Using Exact Road Distance in Online Ride Hailing Services. IEEE Trans. Serv. Comput.
**2020**, 15, 1841–1854. [Google Scholar] [CrossRef] - Yang, H.; Qin, X.; Ke, J.; Ye, J. Optimizing matching time interval and matching radius in on-demand ride-sourcing markets. Transp. Res. Part B Methodol.
**2020**, 131, 84–105. [Google Scholar] [CrossRef] - Qin, X.; Yang, H.; Wu, Y.; Zhu, H. Multi-party ride-matching problem in the ride-hailing market with bundled option services. Transp. Res. Part C Emerg. Technol.
**2021**, 131, 103287. [Google Scholar] [CrossRef] - Henao, A.; Marshall, W.E. The impact of ride-hailing on vehicle miles traveled. Transportation
**2019**, 46, 2173–2194. [Google Scholar] [CrossRef] - Luo, Y.; Jia, X.; Fu, S.; Xu, M. PRide: Privacy-Preserving Ride Matching over Road Networks for Online Ride-Hailing Service. IEEE Trans. Inf. Forensics Secur.
**2019**, 14, 1791–1802. [Google Scholar] [CrossRef] - Do, M.; Byun, W.; Shin, D.K.; Jin, H. Factors Influencing Matching of Ride-Hailing Service Using Machine Learning Method. Sustainability
**2019**, 11, 5615. [Google Scholar] [CrossRef] - Xu, Y.; Wang, W.; Xiong, G.; Liu, X.; Wu, W.; Liu, K. Network-Flow-Based Efficient Vehicle Dispatch for City-Scale Ride-Hailing Systems. IEEE Trans. Intell. Transp. Syst.
**2021**, 23, 5526–5538. [Google Scholar] [CrossRef] - Sunitiyoso, Y.; Rahayu, W.A.; Nuraeni, S.; Nurdayat, I.F.; Pambudi, N.F.; Hadiansyah, F. Role of ride-hailing in multimodal commuting. Case Stud. Transp. Policy
**2022**, 10, 1283–1298. [Google Scholar] [CrossRef] - Sui, Y.; Zhang, H.; Song, X.; Shao, F.; Yu, X.; Shibasaki, R.; Sun, R.; Yuan, M.; Wang, C.; Li, S.; et al. GPS data in urban online ride-hailing: A comparative analysis on fuel consumption and emissions. J. Clean. Prod.
**2019**, 227, 495–505. [Google Scholar] [CrossRef] - Wenzel, T.; Rames, C.; Kontou, E.; Henao, A. Travel and energy implications of ridesourcing service in Austin, Texas. Transp. Res. Part D Transp. Environ.
**2019**, 70, 18–34. [Google Scholar] [CrossRef] - Jin, J.; Zhou, M.; Zhang, W.; Li, M.; Guo, Z.; Qin, Z.; Jiao, Y.; Tang, X.; Wang, C.; Wang, J.; et al. CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019. [Google Scholar]
- Housni, O.E.; Goyal, V.; Hanguir, O.; Stein, C. Matching drivers to riders: A two-stage robust approach. Leibniz Int. Proc. Inform. LIPIcs
**2021**, 207, 12:1–12:22. [Google Scholar] [CrossRef] - Qin, G.; Luo, Q.; Yin, Y.; Sun, J.; Ye, J. Optimizing matching time intervals for ride-hailing services using reinforcement learning. Transp. Res. Part C Emerg. Technol.
**2011**, 129, 103239. [Google Scholar] [CrossRef] - Guo, X.; Caros, N.S.; Zhao, J. Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand. Transp. Res. Part B Methodol.
**2021**, 150, 161–189. [Google Scholar] [CrossRef] - Castillo, J.C.; Knoepfle, D.; Weyl, G. Surge Pricing Solves the Wild Goose Chase. In Proceedings of the 2017 ACM Conference on Economics and Computation, Cambridge, MA, USA, 26–30 June 2017; pp. 241–242. [Google Scholar] [CrossRef]
- Zha, L.; Yin, Y.; Xu, Z. Geometric matching and spatial pricing in ride-sourcing markets. Transp. Res. Part C Emerg. Technol.
**2018**, 92, 58–75. [Google Scholar] [CrossRef] - Uber. Uber Marketplace Matching. 2020. Available online: https://www.uber.com/us/en/marketplace/matching/ (accessed on 31 May 2021).
- Feng, Y.; Niazadeh, R.; Saberi, A. Two-stage Matching and Pricing with Applications to Ride Hailing. SSRN Electron. J.
**2020**, 20–28. [Google Scholar] [CrossRef] - Brown, T. Matchmaking in Lyft Line—Part 1. In Lyft Engineering. 2016. Available online: https://eng.lyft.com/matchmaking-in-lyft-line-9c2635fe62c4 (accessed on 31 May 2021).
- Tafreshian, A.; Masoud, N.; Yin, Y. Frontiers in service science: Ride matching for peer-to-peer ride sharing: A review and future directions. Serv. Sci.
**2020**, 12, 40–60. [Google Scholar] [CrossRef] - Li, Y.; Liu, Y. Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users. Transp. Res. Part E Logist. Transp. Rev.
**2021**, 150, 102329. [Google Scholar] [CrossRef] - Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.; Rus, D. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci. USA
**2017**, 114, 462–467. [Google Scholar] [CrossRef] [PubMed] - Lv, J.; Zhou, N.; Yao, S. Big Data-Driven Stable Task Allocation in Ride-Hailing Services; Springer: Berlin/Heidelberg, Germany, 2022; Volume 13248. [Google Scholar]
- Jiao, Y.; Tang, X.; Qin, Z.; Li, S.; Zhang, F.; Zhu, H.; Ye, J. Real-world ride-hailing vehicle repositioning using deep reinforcement learning. Transp. Res. Part C Emerg. Technol.
**2021**, 130, 103289. [Google Scholar] [CrossRef] - Agatz, N.A.H.; Erera, A.L.; Savelsbergh, M.W.P.; Wang, X. Dynamic ride-sharing: A simulation study in metro Atlanta. Transp. Res. Part B Methodol.
**2011**, 45, 1450–1464. [Google Scholar] [CrossRef] - Chen, X.M.; Zheng, H.; Ke, J.; Yang, H. Dynamic optimization strategies for on-demand ride services platform: Surge pricing, commission rate, and incentives. Transp. Res. Part B Methodol.
**2020**, 138, 23–45. [Google Scholar] [CrossRef] - Bertsimas, D.; Jaillet, P.; Martin, S. Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications. Oper. Res.
**2019**, 67, 143–162. [Google Scholar] [CrossRef] - Dickerson, J.P.; Srinivasan, A.; Sankararaman, K.A.; Xu, P. Allocation problems in ride-sharing platforms: Online matching with offline reusable resources. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, LA, USA, 2–7 February 2018; pp. 1007–1014. [Google Scholar]
- Chanas, S.; Kuchta, D. Fuzzy integer transportation problem. Fuzzy Sets Syst.
**1998**, 98, 291–298. [Google Scholar] [CrossRef] - Heilpern, S. The expected value of a fuzzy number. Fuzzy Sets Syst.
**1992**, 47, 81–86. [Google Scholar] [CrossRef] - Jiménez, M.; Arenas, M.; Bilbao, A.; Rodríguez, M.V. Linear programming with fuzzy parameters: An interactive method resolution. Eur. J. Oper. Res.
**2007**, 177, 1599–1609. [Google Scholar] [CrossRef] - Jiménez, M. Ranking fuzzy numbers through the comparison of its expected intervals. Int. J. Uncertain. Fuzziness Knowlege-Based Syst.
**1996**, 4, 379–388. [Google Scholar] [CrossRef] - Zimmermann, H.-J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst.
**1978**, 1, 45–55. [Google Scholar] [CrossRef] - Bojadziev, G.; Bojadziev, M.; Zadeh, L.A. Decision-Making in a Fuzzy Environment. Manag. Sci.
**1970**, 17, B141–B164. [Google Scholar] [CrossRef] - Ghanbari, R.; Ghorbani-Moghadam, K.; Mahdavi-Amiri, N.; de Baets, B. Fuzzy linear programming problems: Models and solutions. Soft Comput.
**2020**, 24, 10043–10073. [Google Scholar] [CrossRef] - Chanas, S.; Kołodziejczyk, W.; Machaj, A. A fuzzy approach to the transportation problem. Fuzzy Sets Syst.
**1984**, 13, 211–221. [Google Scholar] [CrossRef] - Donovan, B.; Work, D. New York City Taxi Trip Data (2010–2013); University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2016. [Google Scholar] [CrossRef]
- Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst.
**2017**, 65, 126–139. [Google Scholar] [CrossRef] - Wang, H.; Yang, H. Ridesourcing systems: A framework and review. Transp. Res. Part B Methodol.
**2019**, 129, 122–155. [Google Scholar] [CrossRef] - Wallar, A.; Van Der Zee, M.; Alonso-Mora, J.; Rus, D. Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4539–4546. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Illustration assignment strategy: (

**a**) allowing passengers to walk; (

**b**) not allowing passengers to walk. The dotted line represents an alternative decision, while a straight line represents the optimal decision. Symbol “*” to indicate that the part after the symbol is a description.

**Figure 4.**Travel delays for each maximum walking distance: (

**a**) 0 m, i.e., no users willing to walk; (

**b**) 100 m; (

**c**) 200 m; (

**d**) 300 m.

Descriptions | Crisp Parameter | General Fuzzy Parameter | Trapezoidal Fuzzy Parameter |
---|---|---|---|

Objectives | (25), (26) | (25), (39) | (25), (39) |

Constraints | (27), (28), (29), (30), (31), (32) | (27), (28), (29), (31), (32), (34), (37) | (27), (28), (29), (31), (32), (44), (45) |

Decision Variables | (24) | (24), (38) | (24), (38) |

Walk Readiness | Serviced Requests (%) | Average of The Pessimistic Travel Delay (min) | Average of The Most Possible Travel Delay (min) | Average of The Optimistic Travel Delay (min) |
---|---|---|---|---|

Not at all | 94.36% | 1.723712 | 1.101740 | 0.564525 |

100 m | 94.46% | 1.751536 | 1.165116 | 0.658548 |

200 m | 93.86% | 1.973035 | 1.394026 | 0.893963 |

300 m | 92.04% | 2.397733 | 1.838633 | 1.355686 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Megantara, T.R.; Supian, S.; Chaerani, D.
Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty. *Sustainability* **2022**, *14*, 10648.
https://doi.org/10.3390/su141710648

**AMA Style**

Megantara TR, Supian S, Chaerani D.
Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty. *Sustainability*. 2022; 14(17):10648.
https://doi.org/10.3390/su141710648

**Chicago/Turabian Style**

Megantara, Tubagus Robbi, Sudradjat Supian, and Diah Chaerani.
2022. "Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty" *Sustainability* 14, no. 17: 10648.
https://doi.org/10.3390/su141710648