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Abstract: Uber, Gojek, and Grab are companies providing new massive job opportunities for driver
partners. Ride-hailing provides convenient services because passengers can determine the position
of the vehicle picking the, up in real time. Ride-hailing also provides security because passengers
can quickly determine the driver’s identity. However, the rapid development of ride-hailing has
led to increased congestion and emissions. This study proposes pick-up strategies to reduce fuel
consumption and emissions, formulated as an assignment model. The assignment problem is
abstracted into a linear programming model by considering the uncertainty of the parameters
represented by fuzzy numbers. The proposed assignment model can handle the uncertainty of travel
delays caused by unpredictable traffic conditions. The assignment aims to minimize fuel consumption,
travel delays, and unserviced requests. The assignment model is designed to work for platforms
that allow passengers to walk according to their readiness and the maximum walking distance. The
numerical simulation results show that allowing passengers to walk to the vehicle can maintain
optimality and significantly reduce fuel consumption. The proposed model’s implementation is
expected to enable sustainable transport and significantly mitigate emissions caused by vehicle
mobility in picking up passengers.

Keywords: walking; assignment model; reduced fuel consumption; reduced emissions; fuzzy
parameters; linear programming; ride-hailing

1. Introduction

Transportation is a means that allows people to access what they need to support
survival. However, transportation has adverse effects on the environment; hence, the
concept of sustainable transport was initiated to reduce this. Sustainable transport requires
balancing the current economic, social, and environmental needs with those of the future;
thus, these factors need to be considered in transportation planning [1]. In order to achieve
environmental protection, the way in which transportation systems evolve and adapt is
essential because the transportation sector is a significant contributor to greenhouse gas
emissions and climate change. Increasing transportation’s energy efficiency and decreasing
the associated carbon emissions are needed to reduce climate change effects to achieve
ecological integrity [2,3]. In addition, sustainable transport can realize the main objectives
of sustainable cities: using less energy, producing less waste and pollution, using fewer cars,
preserving open spaces and delicate ecosystems, and creating a livable and community-
focused human environment [4].

There are several styles of mobility in urban areas, such as low-mobility car users, car
addicts, car-oriented everyday performers, car-averted low-mobility individuals, public
transit enthusiasts, multimodal travelers, environmentally oriented multimodal travelers,
and travel addicts [5]. The car-averted low-mobility and multimodal travelers already
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use public transportation or other environmentally friendly modes of transportation (such
as walking and cycling). Low-mobility car users drive more frequently and have fewer
symbolic-affective motives to do so. Car Addicts and car-oriented everyday performers
mainly use a car because of their symbolic-affective solid motive. Due to their reasons
for driving and low ecological standards, these three mobility styles have a low ability
to adapt to sustainable mobility solutions. Public transportation enthusiasts are already
very sustainable in mobility because they mostly use public transportation and have a
low share of car use. Environmentally oriented multimodal travelers are environmentally
oriented people, but their mobility is not yet sustainable. They have the most significant
potential to accept and utilize sustainable transportation options. Travel addicts do not
show a high environmental norm in their mobility. However, it is possible to manage them
with sustainable transportation methods as an alternative to car ownership, such as electric
shared mobility networks. In addition, individual transport performance and activity space
are both highly correlated with mode choice.

Technology and changes in people’s behavior can reduce the use of fossil fuels and
greenhouse gas emissions in the transportation sector, where people’s behavior has a more
significant influence than technology [6]. The transportation technology known as ride-
hailing can substitute traditional taxis, public transport, private cars, and other modes [7].
Vehicles used by ride-hailing will stay in the parking area if there is no ride, in contrast to
public transportation, which may continue to drive along the route without passengers.
Ride-hailing has the potential to decrease car ownership [7]. Therefore, ride-hailing is a
more environmentally friendly mode of transportation.

Ride-hailing platforms such as Uber, Gojek, Grab, and Lyft provide innovation in
transportation by combining traditional public transport and internet networks. Ride-
hailing has become one of the most active and exciting research topics in the transportation
sector [7,8]. Ride-hailing platforms established a technology and market structure that is
more effective than traditional taxi services, enabling passengers to request a vehicle on
short notice [9–13]. The ability for passengers and drivers to connect via mobile smart-
phone applications is made possible by many factors, including social networks, real-time
information, and mobile technology [14]. The services are provided to the passengers
via mobile smartphones, which are incredibly convenient for supporting people’s daily
life [15–17].

Ride-hailing has a good impact on human survival, especially in urban areas. Ride-
hailing is crucial in influencing people to switch from private vehicles to mass public
transportation, reducing emissions [18]. However, ride-hailing platforms have lower fuel
consumption than traditional taxis [19,20]. This happens because ride-hailing drivers
usually park their vehicles after dropping off passengers and then stay until they receive
a new request. However, ride-hailing will still contribute to greenhouse gas emissions
because the majority of vehicles today rely on fossil fuels.

Greenhouse gas emissions caused by ride-hailing lie in passenger pick-up and drop-off
activities. Deploying vehicles to pick up and drop off passengers is a fundamental problem
in ride-hailing, called an assignment, also called matching and dispatch [7,21–23]. Request
trips are matched with vehicles to reduce generalized costs in the ride-hailing assignment
problem [24]. Assignment can work using a simple algorithm called the first dispatch
protocol, where every request is immediately served by the nearest available vehicle [7].

Available vehicles in other areas are immediately deployed to pick up far away
requests when there are not enough available vehicles for servicing the requests in the area.
This results in long pick-up distances, wasted driver time, increased fuel consumption,
increased emissions, and reduced income, yielding an inefficient supply state [25,26].
Batching is an approach that collects requests in a group for as long as a predetermined
time window (for example, 30 s), which can handle the imbalance [7]. Rejected requests
will join the next group and undergo a re-assignment process. Batch assignment is a better
strategy because it reduces everyone’s wait time [27]. Batch assignment is more efficient
than first dispatch protocol because the decision making considers collected requests rather
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than individual requests [28]. However, collecting requests over a long window can impact
longer waiting times [29]. Therefore, choosing the time window must be considered to
make the system more efficient [30].

Recent research on the ride-hailing pick-up system considered the uncertainty of future
demand [24] using the robust optimization method and integrated the assignment with the
rebalancing process. A neighborhood search technique was developed by [31] to find places
near a driver. A pick-up system that can be used flexibly for ride-hailing or ride-sharing
was developed by [32]. Large pick-up distances in matching systems must be handled, and
the authors of [33] proposed a chain method that can reduce the global pick-up distance.
The ride-hailing pick-up system has two essential components (assignment and pricing),
whereby the authors of [7] developed both of these, particularly for a dynamic pricing
regime that considers supply and demand. In order to safeguard both the passengers’ and
vehicles’ location privacy from the ride-hailing server, the authors of [9,15] proposed a
privacy-preserving assignment strategy for ride-hailing systems. In order to assess the
effects of assignment time intervals and assignment radius, the authors of [12] provided
a model that defines the assignment process in ride-sourcing markets. An assignment
model with several service alternatives, such as a bundled option, was proposed by [13].
A discrete-time geometric assignment and the effects of spatial pricing were described
by [26]. A system built on deep reinforcement learning and decision-time planning for
vehicle repositioning on ride-hailing services was described by [34].

The success of assignments, while minimizing denied requests, is affected by drivers,
distance, socioeconomic features, and land use [16]. In general, the assignment considers
the pick-up travel distance and pick-up travel time [9,12,13,15,24,26,34–36]. Some studies
considered minimizing the number of unsatisfied requests [24,32]. Some studies consid-
ered maximizing the profit [26,37]. Some studies also established an assignment model to
maximize rewards earned [7,38]. Each request must wait a certain time before receiving
service; hence, the waiting time must be considered in the assignment model, as proposed
by [12,24,26,32]. It can be assumed that the driver and passenger will not cancel a transac-
tion after being assigned [26]. As discussed by [24], the assignment model needs to consider
uncertain travel times. However, research on travel time uncertainty and fuel consumption
has not been found.

As a novelty, this study proposes a ride-hailing pick-up system that considers the
travel time uncertainty and fuel consumption. The pick-up system is designed such that
passengers can walk to the vehicle’s location; hence, the vehicle does not need to pick
up passengers. This model pick-up system can reduce gas emissions because walking is
the best zero-carbon and eco-friendly solution [6]. In addition, this research contributes
to developing a pick-up system that considers the uncertainty of travel times caused by
unpredictable traffic conditions.

The pick-up system problem represented by the assignment problem can be solved
using a linear programming approach. Linear programming problems with unknown
variables or decision parameters play a significant role in several applications in areas
such as transportation management [39]. Fuzzy approaches can handle uncertainties in the
parameters of linear programming problems. The fuzzy approach handles the uncertainty
as a function of the possibility of the parameter values. We use a fuzzy approach in the
hope of achieving an optimal assignment, taking into account an unexpected travel time.

This research aims to determine the impact of allowing walking to reduce fuel con-
sumption and emissions. The model also can reduce congestion because the vehicles can
stay in the parking area while passengers walk to their location. Moreover, the model can
be extended to systems enabling private mobility on demand, such as ride-hailing with
autonomous vehicles.

The main objective of this research was to develop a linear programming model that
can form uncertainty parameters in a ride-hailing pick-up system that allows passengers
to walk to the vehicle location. To achieve the main objective, we undertook several
activities: (i) to formulate mathematical modeling of the ride-hailing pick-up system with
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a flexible choice of whether or not the passenger desires to walk to the vehicle location;
(ii) to reformulate the model using a fuzzy approach to handle the uncertainty parameters;
(iii) to compare several conditions on the basis of numerical simulations using real-world
request data.

The contributions of this research are as follows: (i) the proposed model has the
potential to reduce fuel consumption as the model can flexibly give passengers the choice
to walk to the vehicle location before the assignment is made; (ii) the proposed model
can handle the delay time’s uncertainty using a fuzzy approach, which considers traffic
conditions that can vary randomly; (iii) the numerical simulation results demonstrate the
reliability of the proposed model.

The paper is organized into several sections: Section 1 presents the introduction and
related studies; Section 2 describes the methods used to handle uncertainty parameters;
Section 3 describes the mathematical modeling; Section 4 describes the case studies and
findings regarding the readiness of passengers to walk so as to reduce fuel consumption
according to maximum walking distances. These findings are shown via numerical sim-
ulations with real-time requests in the real world; Section 5 discusses the findings; The
conclusions obtained in this study are presented in Section 6.

2. Fuzzy Approach for Handling Uncertainty Parameters

Real-world problems often have uncertainty. In mathematical modeling, uncertainty
often exists in parameters. The uncertainty parameters can be expressed by fuzzy numbers
based on possible values. Generally, the membership function of the fuzzy number ã =
(a1, a2, a3, a4) can be written as follows [40]:

r = µã(x) =


0 for x〈a1, x〉a4,

f ã(x) for a1 ≤ x ≤ a2,
1 for a2 < x ≤ a3,

gã(x) for a3 < x ≤ a4,

(1)

where the functions f ã and gã are the left and right sides of ã. Note that f ã is an ascending
function, and gã is a descending function. The expected interval of a fuzzy number ã is
given as follows [40]:

EI(ã) =
[
Ea

1, Ea
2
]

=
[

a2 −
∫ a2

a1
f ã(x)dx, a3 +

∫ a4
a3

gã(x)dx
]

=
[∫ 1

0 f−1
ã (r)dr,

∫ 1
0 g−1

ã (r)dr
]
.

(2)

The expected value of a fuzzy number ã is given as follows [40]:

EV(ã) =
Ea

1 + Ea
2

2
. (3)

Furthermore, if ã, b̃ are fuzzy numbers and λ, γ are non-negative real numbers, then
the following equations apply [41]:

EI(λã + γb̃) = λEI(ã) + γEI(b̃), (4)

EV(λã + γb̃) = λEV(ã) + γEV(b̃). (5)

A fuzzy number ã is called trapezoidal if its membership function is expressed by

µã(x) =


0 for x〈a1, x〉a4,

x−a1
a2−a1

for a1 ≤ x ≤ a2,
1 for a2 < x ≤ a3,

a4−x
a4−a3

for a3 < x ≤ a4.

(6)
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Trapezoidal fuzzy number (TrFN) ã is denoted as quadruplet ã = (a1, a2, a3, a4) and
has a trapezoid shape. If a2 = a3, then we obtain the triangular fuzzy number (TFN) [41].
Note that, for the trapezoidal fuzzy number, we have

Ea
1 = a2 −

∫ a2

a1

(
x− a1

a2 − a1

)
dx =

a1 + a2

2
, (7)

Ea
2 = a3 +

∫ a4

a3

(
a4 − x
a4 − a3

)
dx =

a3 + a4

2
. (8)

Then, the expected interval and expected value for TrFN α̃ are as follows:

EI(ã) =
[

a1 + a2

2
,

a3 + a4

2

]
, (9)

EV(ã) =
a1 + a2 + a3 + a4

4
. (10)

In mathematical modeling, necessary to know which fuzzy number is bigger than
another. The degree to which ã is bigger than b̃ for any pair of fuzzy numbers ã and b̃ is
given as follows [42]:

µM

(
ã, b̃
)
=


0 if Ea

2 − Eb
1 < 0,

Ea
2−Eb

1
(Ea

2−Eb
1)−(Ea

1−Eb
2)

if 0 ∈
[

Ea
1 − Eb

2, Ea
2 − Eb

1

]
,

1 if Ea
1 − Eb

2 > 0,

(11)

where
[
Ea

1, Ea
2
]

and
[

Eb
1, Eb

2

]
are the expected intervals of ã and b̃. We denote that ã is bigger

than or equal to b̃ at least in a degree α, i.e., µM(ã, b̃) ≥ α as ã ≥α b̃. Before comparing the
fuzzy number ã and crisp number b, the crisp number b must transform into fuzzy number
form as b̃ = (b1, b2, b3, b4) with b1 = b2 = b3 = b4.

Fuzzy linear programming is a method that can handle uncertain data in a linear
programming model, discussed by [43], which was developed using the concept of fuzzy
sets introduced by [44]. Fuzzy linear programming can be divided into three categories
on the basis of the uncertainty in the model [45] precisely: (i) linear programming with
fuzzy variables; (ii) linear programming with fuzzy parameters; (iii) linear programming
with fuzzy variables and parameters. Linear programming with fuzzy parameters contains
uncertainty parameters on the objectives and the constraints, as expressed below [41].

min
x

{
c̃Tx : Ãx ≥ b̃, x ≥ 0

}
, (12)

where c̃ represents an n-dimensional vector of fuzzy parameters in the objective function,
A =

[
ãij
]

m×n represents fuzzy parameters in constraints, b̃ represents an m-dimensional
vector of fuzzy parameters in right-hand side constraints, and x is an n-dimensional vector
of the crisp decision variable. Fuzzy numbers are used to characterize the distribution of
possible values. The approach for solving the linear programming problem with fuzzy
parameters was described in [41].

Without loss of generality, we introduce several assumptions for simplicity: (A1) the
parameters in objective function are crisp; (A2) the parameters on the right-hand side are
crisp. Let us introduce an additional non-negative crisp decision variable, t. Set t as the
supremum of objective function which implies that c̃Tx ≤ t; hence, Equation (12) can be
rewritten as follows:

min
x,t

{
t : c̃Tx ≤ t, Ãx ≥ b̃, x ≥ 0, t ≥ 0

}
. (13)
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Thus, the assumption (A1) is satisfied. Let us introduce an additional m-dimensional
vector of the crisp decision variable, y, with values equal to one; hence, Equation (13) can
be rewritten as follows:

min
x,t,y

{
t : c̃Tx ≤ t, Ãx ≥ b̃y, x ≥ 0, t ≥ 0, y = 1

}
= min

x,t,y

{
t : c̃Tx− t ≤ 0, Ãx− b̃y ≥ 0, x ≥ 0, t ≥ 0, y = 1

}
.

(14)

thus, the assumption (A2) is satisfied.
Crisp linear programming is obtained by reformulation linear programming with

fuzzy parameters into parametric linear programming. The decision vector of linear pro-
gramming with the fuzzy parameters in Equation (3) is feasible in degree α (or α-feasible) if

− c̃Tx + t ≥α 0, (15)

and
Ãix− b̃iyi ≥α 0, ∀i ∈ I. (16)

Keeping in mind Equation (11), Equation (15) is equivalent to

E−cT x+t
2 − E0

1(
E−cT x+t

2 − E0
1

)
−
(

E−cT x+t
1 − E0

2

) ≥ α. (17)

Keeping in mind Equation (5), Equation (17) equivalent to

E−c
2 x + E1

2t− E0
1(

E−c
2 x + E1

2t− E0
1
)
−
(
E−c

1 x + E1
1t− E0

2
) ≥ α. (18)

Because the −1 and 0 vectors are crisp, Equation (18) is equivalent to

−Ec
2x + t

−Ec
2x + Ec

1x
≥ α, (19)

which is equivalent to:
[(1− α)Ec

2 + αEc
1]

Tx− t ≤ 0, (20)

where 1− α is a measure of a decision vector’s infeasibility likelihood. In the same manner,
keeping in mind that y = 1, Equation (16) is equivalent to[

(1− α)EAi
2 + αEAi

1

]T
x ≥ (1− α)Ebi

2 + αEbi
1 , ∀i ∈ I. (21)

Crisp linear programming that handles the fuzzy parameters is given by

min
x,t

t

subject to
[
(1− α)Ec

2 + αEc
1
]Tx− t ≤ 0[

(1− α)EAi
2 + αEAi

1

]T
x ≥ (1− α)Ebi

2 + αEbi
1 , ∀i ∈ I

x ≥ 0, t ≥ 0.

(22)
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Assuming that fuzzy parameters can represent by a fuzzy trapezoidal number and
keeping in mind Equation (10), Equation (22) becomes

min
x,t

t

subject to
[
(1− α) c3+c4

2 + α c1+c2
2

]T
x− t ≤ 0[

(1− α) Ai3+Ai4
2 + α Ai1+Ai2

2

]T
x ≥ (1− α) bi3+bi4

2 + α bi1+bi2
2 , ∀i ∈ I

x ≥ 0, t ≥ 0.

(23)

3. Mathematical Modeling
3.1. Assignment Model

The decision taken by the ride-hailing system to send available vehicles to pick-up
requests or waiting for the passengers to walk to each vehicle’s location is determined
by the optimum assignment of each possible assignment. Travel delay is the difference
between pick-up time and request time, which refers to the waiting time taken by a request
before sitting in a vehicle.

The main components used in the assignment model are decision variables, constraints,
and objective functions. The assignment has travel delays which are uncertain due to
unpredictable traffic conditions. Figure 1a illustrates the condition of the ride-hailing
system that allows passengers to walk to the vehicle location. The ride-hailing system can
guide passengers to walk to the vehicle location. Before that, passengers must inform the
ride-hailing system about their walking readiness. This condition is intended to minimize
vehicles turning on a road when the traffic is one-way, allowing passengers to cross the
road to reach the vehicle by walking quickly. The vehicle does not need to take a detour
to pick up the passenger on the other side of the road, instead waiting for the passenger
to arrive at the vehicle location by walking. This assignment model can also reduce fuel
consumption, gas emissions, and traffic congestion because the vehicles only stay until
passengers arrive at the vehicle location.
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Figure 1. Illustration assignment strategy: (a) allowing passengers to walk; (b) not allowing passen-
gers to walk. The dotted line represents an alternative decision, while a straight line represents the
optimal decision. Symbol “*” to indicate that the part after the symbol is a description.

Figure 1b illustrates the condition of the ride-hailing assignment that does not allow
passengers to walk to the vehicle location. Each passenger must wait to be picked up by
the assigned vehicle. This condition is intended to minimize passengers’ movement so that
passengers do not need to spend extra energy by walking to the vehicle location.

3.1.1. Parameters

The set used in this model is I, which represents requests, and J, which represents the
available vehicles. The parameters used in this study are tij, which represents the travel
delay (seconds) when request i walks to vehicle j location, τij, which represents the travel
delay (seconds) when request i waits to be picked up by vehicle j in request location, dij,
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which represents the distance (kilometers) when all passengers in request i walk to vehicle j,
tmax, which represents the allowed longest travel delay, dmax, which represents the allowed
longest distance (kilometers) for passengers in requests to walk to the vehicle, ri, which
represents the readiness of all passengers in request i to walk, and M, which represents the
penalty given for rejecting a request.

3.1.2. Variables

The decision variables used in this study are xij, which decides that all passengers
in request i will walk to vehicle j, which is 1 if the request i got a ride from vehicle j and
must walk to the vehicle location, and 0 otherwise, χij, which decides that the request i
will pick-up by vehicle j, which is 1 if the vehicle is j assigned to pick up all passengers in
request i, and 0 otherwise, and yi, which decides on providing service to request i, which is
1 if request i does not get a vehicle ride, and 0 otherwise. The decision variables are given
by Equation (24).

xij, χij, yi ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J. (24)

3.1.3. Objectives

The main objective of the proposed model is to minimize reduce fuel consumption
and gas emission. To achieve this objective, maximizing the number of walking passengers
is an option because walking does not consume fuel or emit carbon. The objective function,
which maximizes the number of walking passengers, is given by Equation (25).

max ∑
i∈I

∑
j∈J

xij. (25)

The objective in Equation (25) only considers the fuel consumption, but not the passen-
ger satisfaction. To maximize passenger satisfaction, the model should minimize the total
travel delay. If a request is rejected, a large constant is added to the objective as a penalty
for rejecting the request. The penalty is given to minimize the number of rejected requests.
The objective function, which minimizes the total travel time and the total rejected requests,
is given by Equation (26).

min

{
∑
i∈I

∑
j∈J

(
tijxij + τijχij

)
+ ∑

i∈I
Myi

}
. (26)

3.1.4. Constraints

The constraint, which ensures that each vehicle can only receive at most one request,
is given by Equation (27).

∑
i∈I

(
xij + χij

)
≤ 1, ∀j ∈ J. (27)

The constraint, which ensures that each passenger cannot walk to the vehicle location
and wait to be picked up by a vehicle at the same time, is given by Equation (28).

∑
j∈J

(
xij + χij

)
≤ 1, ∀i ∈ I. (28)

The constraint, which ensures that each request can only be served by one vehicle and
not by all vehicles, is given by Equation (29).

yi + ∑
j∈J

(
xij + χij

)
= 1, ∀i ∈ I. (29)

The constraint, which ensures the travel delay does not exceed the limit, is given by
Equation (30).

∑
j∈J

(
tijxij + τijχij

)
≤ tmax, ∀i ∈ I. (30)
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The constraint, which ensures that each passenger walking to the vehicle location will
not exceed the limit, is given by Equation (31).

∑
j∈J

dijxij ≤ dmax, ∀i ∈ I. (31)

The constraint, which indicates whether the passenger is ready to walk or not, is given
by Equation (32).

∑
j∈J

xij ≤ ri, ∀i ∈ I. (32)

The assignment model with fuzzy parameters is given by decision variables in
Equation (24), constraints in Equations (27)–(32), and objectives in Equations (25) and (26).

3.2. Assignment Model with Fuzzy Travel Delay

The fuzzy linear programming technique allows us to more naturally and directly
consider tolerances with respect to the value of the decision model parameters [46]. Fuzzy
linear programming is essential in situations where it is necessary to consider tolerances
for parameter values due to the impossibility of determining them precisely. Moreover,
it is used when the decision maker consciously assumes some tolerance with respect to
a parameter.

This study assumes that the travel delay parameter τ̃ij is fuzzy. The fuzziness of the
travel delay is caused by the pick-up travel time depending on unpredictable traffic condi-
tions. Linear programming with fuzzy parameters is handled by reformulating the model
into crisp parametric linear programming, as discussed in Section 2. The fuzzy parameters
in the assignment model with fuzzy travel delay are described in Equations (26) and (30).
By substituting τ̃ij into the objective function in Equation (26), we obtain a new objec-
tive function,

min

{
∑
i∈I

∑
j∈J

(
tijxij + τ̃ijχij

)
+ ∑

i∈I
Myi

}
, (33)

and by substituting τ̃ij into the constraint in Equation (30), we obtain a new constraint,

∑
j∈J

(
tijxij + τ̃ijχij

)
≤ tmax, ∀i ∈ I. (34)

The objective function in Equation (26) is replaced with Equation (33), and the con-
straint in Equation (30) is replaced with Equation (34); hence, we have an assignment model
with a fuzzy travel delay parameter. The assignment model with a fuzzy travel delay
parameter has no fuzzy parameters on the right-hand side (the right-hand side is crisp);
therefore, the assumption (A2) is satisfied. The objective function in Equation (33) can be
rewritten as Equation (35).

min

{
∑
i∈I

∑
j∈J

tijxij + ∑
i∈I

∑
j∈J

τ̃ijχij + ∑
i∈I

Myi

}
. (35)

The fuzzy parameter in the objective function in Equation (35) can be removed by
focus reformulation on its fuzzy part as follows:

∑
i∈I

∑
j∈J

τ̃ijχij. (36)

Let u be an additional non-negative decision variable, where u is the supremum of
Equation (36), which can be written as follows:

∑
i∈I

∑
j∈J

τ̃ijχij − u ≤ 0, (37)
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u ≥ 0. (38)

Furthermore, the objective function in Equation (35) can be rewritten as

min

{
∑
i∈I

∑
j∈J

tijxij + u + ∑
i∈I

Myi

}
, (39)

thus satisfying Equations (37) and (38). The objective function in Equation (33) is replaced
with Equation (38), and the expression in Equation (37) is an additional constraint; therefore,
assumptions (A1) and (A2) are satisfied. The assignment model with fuzzy parameters is
given by the decision variables in Equations (24) and (38), constraints in Equations (27)–(29),
(31), (32), (34), and (37), and objective in Equation (39).

The crisp assignment model is obtained by reformulating the assignment model with
fuzzy parameters into parametric linear programming. Note that the model has fuzzy
parameters in the constraints in Equations (34) and (37); thus, the decision vector is feasible
in degree α if

∑
j∈J

(
tijxij + τ̃ijχij

)
≤α tmax, ∀i ∈ I, (40)

and
∑
i∈I

∑
j∈J

τ̃ijχij − u ≤α 0. (41)

By repeating the same steps of Equations (15)–(21), Equation (40) is equivalent to

∑
j∈J

(
tijxij +

[
(1− α)E

τij
2 + αE

τij
1

]
χij

)
≤ tmax, ∀i ∈ I, (42)

and Equation (41) is equivalent to

∑
i∈I

∑
j∈J

[
(1− α)E

τij
2 + αE

τij
1

]
χij − u ≤ 0. (43)

The crisp assignment model that handles the fuzzy travel delay is given by the de-
cision variables in Equations (24) and (38), constraints in Equations (27)–(29), (31), (32),
(42), and (43), and objective in Equation (39). Assuming that that fuzzy travel delay
can be represented by a fuzzy trapezoidal number and keeping in mind Equation (10),
Equation (42) becomes

∑
j∈J

(
tijxij +

[
(1− α)

τij3 + τij4
2

+ α
τij1 + τij2

2

]
χij

)
≤ tmax, ∀i ∈ I, (44)

and Equation (43) becomes

∑
i∈I

∑
j∈J

[
(1− α)

τij3 + τij4
2

+ α
τij1 + τij2

2

]
χij − u ≤ 0. (45)

The assignment model with a fuzzy travel delay represented by a trapezoidal mem-
bership function is given by the decision variables in Equations (24) and (38), constraints in
Equations (27)–(29), (31), (32), (44), and (45), and objective in Equation (39). The assignment
model for each uncertainty is presented in Table 1. The assignment model in Table 1 is
characterized by uncertainty and the representation of the uncertainty parameter.



Sustainability 2022, 14, 10648 11 of 18

Table 1. Assignment model based on uncertainty parameter assumption.

Descriptions Crisp Parameter General Fuzzy
Parameter

Trapezoidal Fuzzy
Parameter

Objectives (25), (26) (25), (39) (25), (39)

Constraints (27), (28), (29), (30),
(31), (32)

(27), (28), (29), (31),
(32), (34), (37)

(27), (28), (29), (31), (32),
(44), (45)

Decision Variables (24) (24), (38) (24), (38)

The assignment models have a multi-objective linear programming form that can be
handled using a lexicographic approach; hence, the model can be easily solved using a
solver in python.

4. Numerical Simulation
4.1. Case Study

The case study used Manhattan New York City taxi trip data in 2013, which are
commonly used to simulate taxi demand [47]. These data are usually used in research
on ride-hailing and ride-sharing to show the model’s performance. These taxi trip data
contain the exact location of origin and destination of taxis, along with the pick-up and
drop-off times. The taxi travel criteria used are as follows: (i) the origin and destination of
the taxi are within the Manhattan area; (ii) the vehicle has a minimum capacity of zero and
a maximum capacity of four. Vehicle capacity reflects the number of passengers in the taxi
plus the driver.

We simulated the proposed model using real-world data from Manhattan taxi trip data
on 1 January 2013 from 12:00 p.m. to 12:59 p.m., as shown in Figure 2, with 13,425 requests.
On the basis of historical sample data, we deployed 2000 vehicles at 11:59 p.m. We assumed
no further vehicle additions or deletions during the simulation. Vehicles continuously pick
up and drop off passengers based on real-world request data. Requests are collected in 30 s
time windows and assigned with available vehicles in batch. We assume that requests only
tolerated a maximum delay time of 5 min. We set the maximum walking distances to 100,
200, and 300 m. All requests not serviced within the maximum delay times were removed
from the queue.
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The shortest path for each location was pre-computed using OSMnx and stored as
pivot data. OSMnx is a Python package for downloading OpenStreetMap geospatial data
and modeling, projecting, visualizing, and analyzing real-world road networks [48]. OSMnx
is capable of providing complex road network mapping specifically for the Manhattan,
New York City location. Origin and destination coordinates are needed to find the shortest
path, as well as the corresponding travel time and distance.

Moreover, the shortest path can be calculated using a weight, such as the travel time
and distance. We can obtain the shortest travel time and the shortest distance between
each location from the shortest path along with the travel time weight and distance weight.
Travel times obtained from the shortest path with travel time weight depend on the built-
in speed of OSMnx. Furthermore, travel times are calculated on the basis of walking
and driving. Walking times are calculated according to the shortest distance path with a
constant walk speed of 5 km/h. Even though the passengers can walk faster, we assume
that they are walking at a constant speed because the driver it is unaffected.

Driving times are calculated as a function of the shortest time path and shortest
distance path (with constant speeds of 20, 30, and 40 km/h). The shortest time path is
calculated on the basis offree-flow travel. Keeping in mind that the congestion cannot be
predicted and can impact the travel time, we generated travel by multiplying free-flow
travel time with some level of flow travel (50%, 60%, 70%, 80%, and 90%). Driving times
also feature many possible values; thus, they are uncertain.

The readiness to walk is measured when a passenger wishes to request a ride-hailing
service via a smartphone. Passengers are given two choices on smartphones: walking to
the vehicle or waiting for the vehicle to pick up. When the passengers walk to the vehicle,
the required fuel is reduced since the vehicle does not need to pick up passengers. As a
reward, ride-hailing fares are decreased for passengers willing to walk. This reward is
aimed at increasing the willingness for passengers to walk.

4.2. Numerical Simulation Results

This subsection shows the numerical simulation results for the assignment model with
fuzzy travel delay with 0.5 degrees of feasibility. As mentioned earlier, walking times are
certain; therefore, the travel delay when the passengers walk to the vehicle’s location is
also certain. On the other hand, pick-up travel times are uncertain; thus, the travel delay
when the passengers wait to be picked up by any vehicle also uncertain. The uncertainty
is represented by the trapezoidal fuzzy number, which is represented by the minimum,
average of the minimum and mean, average of the maximum and mean, and maximum,
respectively. We compared the impact of allowing passengers to walk using two cases. In
the first case, we assume that the ride-hailing platform allows passengers to walk and that
all passengers are willing to walk to the vehicle location (ri = 1, ∀i). In the second case,
we assume that the ride-hailing provider does not allow passengers to walk to the vehicle
location (ri = 0, ∀i). The algorithm for the numerical simulation can be seen in Figure 3.

The optimal results for assignment with fuzzy travel delay based on the readiness of
all passengers to walk are presented in Table 2. In general, the readiness of passengers to
walk maintained the quality of the assignment results. However, supposing that passengers
are willing to walk, the walking strategy also had an optimum result nearly equal to the
no-walk strategy regarding service requests and travel delays. The travel delays were not
even close to the maximum set limit.
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Figure 3. Numerical simulation algorithm.

Table 2. Optimal results based on passengers’ walk readiness.

Walk
Readiness

Serviced
Requests

(%)

Average of The
Pessimistic

Travel Delay
(min)

Average of The
Most Possible
Travel Delay

(min)

Average of The
Optimistic

Travel Delay (min)

Not at all 94.36% 1.723712 1.101740 0.564525
100 m 94.46% 1.751536 1.165116 0.658548
200 m 93.86% 1.973035 1.394026 0.893963
300 m 92.04% 2.397733 1.838633 1.355686

Travel delays for each maximum distance can be seen in Figure 4. As can be seen, the
travel delays were within 3 min. It can be seen that, for a time window of 30 s, the batching
process did not have a travel delay, which was always within the threshold of 5 min. The
proposed model could meet customer satisfaction for all maximum walking distances.
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The relationship of maximum walking distances with the percentage of fuel consump-
tion savings can be seen in Figure 5. It can be seen that greater maximum walking distances
result in greater fuel consumption savings. This case study obtained fuel consumption
savings for maximum distances of 100, 200, and 300 m, saving the fuel needed to travel
363.881, 483.632, and 800.362 km.
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The percentage of ride-hailing passengers walking to the vehicle location is as high
as 20%, as can be seen in Figure 6. The proportion of ride-hailing passengers who walk
and do not walk is sensitive to the maximum walking distance. A small value of walking
distance can give significant results with respect to the number of passengers walking near
to the vehicle. This shows that, in practice, vehicles may be assigned to pick up passengers
who are very close, allowing them to effortlessly reach the location within a few minutes
of walking.
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5. Discussion

The assignment model that allows passengers to walk significantly reduces fuel con-
sumption. It can reduce the fuel consumption needed to pick up passengers. In addition,
allowing vehicles to stay until passengers arrive at the vehicle’s location can reduce the
possibility of traffic congestion. Maximum travel distance also has a significant impact
on reducing fuel consumption. Furthermore, this strategy must be applied to ride-hailing
platforms to realize sustainable transport. However, this strategy requires the passengers’
approval because not everyone is in a condition that allows them to walk (e.g., when sick).
Cost reductions for passengers who walk to the vehicle location must be given as a reward
since they have reduced fuel use. The cost reductions also can increase the willingness of
passengers to choose walking.

From a technological point of view, it is possible to rebalance the number of vehicles
from areas with low demand to move to areas with high demand. Rebalancing can
also work by dividing an area into several smaller areas, which are called subregions.
The vehicle rebalancing problem is an assignment problem whose role is to assign empty
vehicles to other areas on the basis of estimated future demand [24]. The vehicle rebalancing
may consume fuel; therefore, strategies should consider the fuel consumption. However,
rebalancing can work better when information about future demand density is known. The
ride-hailing assignment system models assignment and vehicle rebalancing separately [49].
Integrating assignment and vehicle rebalancing strategies into a single model can increase
the ride-hailing assignment system’s performance [50]. The optimization model that
integrates assignment and vehicle rebalancing has not been widely researched [24].

Our findings show that allowing passengers to walk to the vehicle does not reduce ride-
hailing performance, which can be used to substitute pick-up systems. This study builds on
several innovations proposed by many researchers in international papers, particularly [32].
We also show that considering the uncertainty of delay time is reliable for use in ride-hailing
pick-up systems, which was not considered by other studies. Although the authors of [24]
considered and handled the demand uncertainty using the robust optimization method,
they did not consider the uncertainty of the delay time caused by uncertain travel times.

6. Conclusions

This study proposed a pick-up system that considers the fuel consumption and un-
certainty of travel time. The model is reactive to real-time requests while assigning these
requests to available vehicles in two ways: walking and waiting to be picked up. Our
proposed model also considers the uncertainty of travel delays caused by uncertain travel
times when the vehicle picks up the passenger. The pick-up time may be uncertain depend-
ing on traffic conditions. We performed numerical simulations to demonstrate the impact
of considering passengers’ willingness to walk on assignment quality in terms of waiting
time and serviced requests.
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We showed that up to 92% of requests can be served for several maximum walking
distances when passengers walk or not. Our analysis showed that allowing passengers
to walk to vehicle locations based on passenger ability could significantly reduce fuel
consumption significantly. We presented that the sensitivity of the maximum walking
distance parameter could affect fuel consumption but not the percentage of serviced
requests. Our model is flexible for passengers to choose to walk to the vehicle location or
wait to be picked up, thus not forcing passengers to walk in uncomfortable conditions (e.g.,
in bad weather or when sick). Furthermore, our model can reduce the mobility of vehicles
and minimize the possibility of traffic congestion.

The proposed assignment model can be applied as a pick-up system on a ride-hailing
platform. This pick-up system can be used when the ride-hailing platform wants to
give passengers the freedom to walk to the vehicle to reduce fares. In addition, the
assignment model with fuzzy parameters can be used as a pick-up system that can handle
the uncertainty of the delay time. The delay time may vary depending on the traffic
conditions. If the delay time uncertainty is not considered, the delay time may be greater
than expected. As a result, the vehicle is used by passengers longer (vehicle supply is
inefficient), and the passenger will eventually reach their destination.

There are several limitations to this study. Firstly, the model used has more than one
objective function; hence, it has a computational cost that is more expensive compared
to a model with a single objective function. In future research, formulating the model
using single-objective and non-constrained optimization can reduce computational costs.
Secondly, the proposed model does not consider future demand. In future research, fore-
casting the future demand can be achieved using spatiotemporal methods. The uncertainty
demand can also be solved using a fuzzy approach. Lastly, the proposed model does not
efficiently utilize the vehicle supply. In further research, the supply of vehicles can be
utilized more efficiently by considering the time required for vehicles to serve passengers.

Future research may look into ways to use rebalancing to reduce the supply–demand
imbalance. Rebalancing can be an alternative technology to reduce the supply and demand
imbalance and the percentage of rejected requests. Rebalancing can be achieved by di-
viding the region into several sub-regions. Forecasting supply and demand per region is
needed for a better rebalancing technology, especially when using spatiotemporal methods.
The forecast results are not 100% accurate, causing the supply and demand forecast to
be uncertain; hence, rebalancing needs to be modeled using a method that can handle
parameter uncertainty.
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