A Conceptual Framework of the Sustainability Challenges Experienced during the Life Cycle of Biobased Packaging Products
Abstract
:1. Introduction
- What are the main environmental, social, and economic challenges associated with biobased packaging products in their different life cycle stages?
- What are the missing parts and emerging themes in the current literature on the sustainability of biobased packaging products?
2. Background Literature
2.1. Defining Biobased Packaging
- Biobased/renewable and non-biodegradable plastic (such as polyethylene (PE), polypropylene (PP), or polyethylene terephthalate (PET)); and
- Biobased/renewable and biodegradable plastic (such as polylactic acid (PLA), polyhydroxyalkanoates (PHA), or polybutylene succinate (PBS)).
2.2. Sustainability and Life Cycle Management of Biobased Packaging
3. Methods and Descriptive Results
4. A Conceptual Framework for the Challenges Associated with Biobased Plastic Packaging
4.1. Economic Challenges
4.2. Environmental Challenges
4.3. Social Challenges
5. Discussion and Concluding Remarks
- What are the working conditions in the raw material extraction/ production stage?
- How is the social community affected by biomass growth?
- What can be done to increase consumers’ awareness of the correct EOL options?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gustavo, J.U., Jr.; Pereira, G.M.; Bond, A.J.; Viegas, C.V.; Borchardt, M. Drivers, opportunities and barriers for a retailer in the pursuit of more sustainable packaging redesign. J. Clean. Prod. 2018, 187, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Romero, M.; Kerry, J. Crop-based biodegradable packaging and its environmental implications. CAB Reviews: Perspectives in Agriculture, Veterinary Science. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–25. [Google Scholar]
- Smithers. The Future of Global Packaging to 2024; Smithers: Akron, OH, USA, 2019. [Google Scholar]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- Stark, N.M.; Matuana, L.M. Trends in Sustainable Biobased Packaging Materials: A Mini Review. Mater. Today Sustain. 2021, 14, 100084. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Martin, O.V.; Chapman, S.P.; Hahladakis, J.N.; Iacovidou, E. Development of an integrated sustainability matrix to depict challenges and trade-offs of introducing bio-based plastics in the food packaging value chain. J. Clean. Prod. 2021, 286, 125378. [Google Scholar] [CrossRef]
- Johansson, C.; Bras, J.; Mondragon, I.; Nechita, P.; Plackett, D.; Šimon, P.; Svetec, D.G.; Virtanen, S.; Baschetti, M.G.; Breen, C.; et al. Renewable Fibers and Bio-based Materials for Packaging Applications–A Review of Recent Developments. BioResources 2012, 7, 2506–2552. [Google Scholar] [CrossRef]
- Álvarez-Chávez, C.R.; Edwards, S.; Moure-Eraso, R.; Geisera, K. Sustainability of bio-based plastics: General comparative analysis and recommendations for improvement. J. Clean. Prod. 2012, 23, 47–56. [Google Scholar] [CrossRef]
- Oever, M.v.d.; Molenveld, K.; Zee, M.v.d.; Bos, H. Bio-Based and Biodegradable Plastics—Facts and Figures; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H.-J. Bio-based plastics—A review of environmental, social and economic impact assessments. J. Clean. Prod. 2018, 185, 476–491. [Google Scholar] [CrossRef]
- Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment. Earth Syst. Environ. 2021, 5, 231–251. [Google Scholar] [CrossRef]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macro Mol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef]
- Sousa, A.F.; Patrício, R.; Terzopoulou, Z.; Bikiaris, D.N.; Stern, T.; Wenger, J.; Loos, K.; Lotti, N.; Siracusa, V.; Szymczyk, A.; et al. Recommendations for replacing PET on packaging, fiber and film materials with biobased. Green Chem. 2021, 23, 8795–8820. [Google Scholar] [CrossRef]
- Kochańska, E.; Łukasik, R.M.; Dzikuć, M. New Circular Challenges in the Development of Take-Away Food Packaging in the COVID-19 Period. Energies 2021, 14, 4705. [Google Scholar] [CrossRef]
- Mendes, A.C.; Pedersen, G.A. Perspectives on sustainable food packaging: Is bio-based plastics a solution? Trends Food Sci. Technol. 2021, 112, 839–846. [Google Scholar] [CrossRef]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.-A.T. Environmental impact of bioplastic use: A review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef]
- de Castro, T.R.; de Macedo, D.C.; de Genaro Chiroli, D.M.; da Silva, R.C.; Tebcherani, S.M. The Potential of Cleaner Fermentation Processes for Bioplastic Production: A Narrative Review of Polyhydroxyalkanoates (PHA) and Polylactic Acid (PLA). J. Polym. Environ. 2021, 30, 810–832. [Google Scholar] [CrossRef]
- Koller, M. Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): The biotechnological escape route of choice out of the plastic predicament? EuroBiotech J. 2019, 3, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Filipe, D.A.; Paço, A.; Duarte, A.C.; Rocha-Santos, T.; Patrício Silva, A.L. Are Biobased Plastics Green Alternatives?—A Critical Review. Int. J. Environ. Res. Public Health 2021, 18, 7729. [Google Scholar] [CrossRef]
- Taufik, D.; Reinders, M.J.; Molenveld, K.; Onwezen, M.C. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci. Total Environ. 2020, 705, 135820. [Google Scholar] [CrossRef]
- Mehta, N.; Cunningham, E.; Roy, D.; Cathcart, A.; Dempster, M.; Berry, E.; Smyth, B.M. Exploring perceptions of environmental professionals, plastic processors, students and consumers of bio-based plastics: Informing the development of the sector. Sustain. Prod. Consum. 2021, 26, 574–587. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks: The Triple Bottom Line of the 21st Century; Stoney Creek: New Society Publishers: Gabriola, BC, Canada, 1998. [Google Scholar]
- Gimenezn, C.; Sierra, V.; Rodon, J. Sustainable operations: Their impact on the triple bottom line. Int. J. Prod. Econ. 2012, 140, 149–159. [Google Scholar] [CrossRef]
- Jum’a l Zimon, D.; Ikram, M.; Madzík, P. Towards a sustainability paradigm; the nexus between lean green practices, sustainability-oriented innovation and Triple Bottom Line. Int. J. Prod. Econ. 2022, 245, 108393. [Google Scholar]
- Lerman, L.V.; Benitez, G.B.; Gerstlberger, W.; Rodrigues, V.P.; Frank, A.G. Sustainable conditions for the development of renewable energy systems: A triple bottom line perspective. Sustain. Cities Soc. 2021, 75, 103362. [Google Scholar] [CrossRef]
- Morelli, J. Environmental sustainability: A definition for environmental professionals. J. Environ. Sustain. 2011, 1, 2. [Google Scholar]
- Kiritsis, D.; Bufardi, A.; Xirouchakis, P. Research issues on product lifecycle management and information tracking using smart embedded systems. Adv. Eng. Inform. 2003, 17, 189–202. [Google Scholar] [CrossRef]
- European Bioplastics. What Are Bioplastics? Available online: https://www.european-bioplastics.org/bioplastics/ (accessed on 1 November 2021).
- Lee, R.A.; Lavoie, J.-M. From first—To third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. [Google Scholar] [CrossRef]
- WMuhamad, N.A.W.; Othman, R.; Shaharuddin, R.I.; Hasni, M.S.I. Microorganisms as Plastic Biodegredation Agent towards Sustainable Environment. Adv. Environ. Biol. 2015, 9, 8–13. [Google Scholar]
- Bartolo, A.D.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef]
- European Environment Agency. Biodegradable and Compostable Plastics—Challenges and Opportunities; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Soc. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Reddy, M.M.; Vivekanandhan, S.; Misra, M.; Bhatia, S.K.; Mohanty, A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Polym. Polym. Sci. 2013, 38, 1653–1689. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef]
- European Bioplastics. Frequently Asked Questions on Bioplastics. 2021. Available online: https://docs.european-bioplastics.org/publications/EUBP_FAQ_on_bioplastics.pdf (accessed on 30 October 2021).
- Epps, T.H.; Korley, L.T.J.; Yan, T.; Beers, K.L.; Burt, T.M. Sustainability of Synthetic Plastics: Considerations in Materials Life-Cycle Management. JACS Au 2022, 2, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Chaudhary, J.; Sharma, B.; Verma, A.; Tamulevicius, S.; Thakur, V.K. Sustainability of bioplastics: Opportunities and challenges. Curr. Opin. Green Sustain. Chem. 2018, 13, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Daia, B.; Gu, X.; Xie, B. Policy Framework and Mechanism of Life Cycle Management of Industrial Land (LCMIL) in China. Land Use Policy 2020, 99, 104997. [Google Scholar] [CrossRef]
- Sinha, P.; Kriegner, C.J.; Schew, W.A.; Kaczmar, S.W.; Traister, M.; Wilson, D.J. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle. Energy Policy 2008, 36, 381–387. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, L.S.; Pratt, S.; Lant, P.A.; Laycock, B. The role of biodegradable plastic in solving plastic solid waste accumulation. In Plastics to Energy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 469–505. [Google Scholar]
- Klein, F.; Emberger-Klein, A.; Menrad, K.; Möhring, W.; Blesin, J.-M. Influencing factors for the purchase intention of consumers choosing bioplastic products in Germany. Sustain. Prod. Consum. 2019, 19, 33–43. [Google Scholar] [CrossRef]
- Chen, W.; Oldfield, T.L.; Cinelli, P.; Righetti, M.C.; Holden, N.M. Hybrid life cycle assessment of potato pulp valorisation in biocomposite production. J. Clean. Prod. 2020, 269, 122366. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Cavanagh, S. Content analysis: Concepts, methods and applications: Content analysis is a flexible methodology that is particularly useful to nurse researchers, asserts Stephan Cavanagh. Nurse Res. 1997, 4, 5–16. [Google Scholar] [CrossRef]
- Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: An Expanded Source Book, 2nd ed.; Sage: Thousand Oaks, CA, USA, 1994; ISBN 978-0-8039-4653-8. [Google Scholar]
- Hsieh, H.F.; Shannon, S.E. Three Approaches to Content Analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef]
- Briassoulis, D.; Pikasi, A.; Hiskakis, M. Recirculation potential of post-consumer /industrial bio-based plastics through mechanical recycling—Techno-economic sustainability criteria and indicators. Polym. Degrad. Stab. 2021, 183, 109217. [Google Scholar] [CrossRef]
- Lorencatto, A.L.; Michie, S.; Miodownik, M. Barriers and Enablers to Buying Biodegradable and Compostable Plastic Packaging. Sustainability 2021, 13, 1463. [Google Scholar]
- Kawashima, N.; Yagi, T.; Kojima, K. How Do Bioplastics and Fossil-Based Plastics Play in a Circular Economy? Macro Mol. Mater. Enginering 2019, 304, 1900383. [Google Scholar] [CrossRef]
- Zaborowska, M.; Bernat, K.; Pszczółkowski, B.; Wojnowska-Baryła, I.; Kulikowska, D. Challenges in Sustainable Degradability of Bio-Based and Oxo-Degradable Packaging Materials during Anaerobic Thermophilic Treatment. Energies 2021, 14, 4775. [Google Scholar] [CrossRef]
- Rosemboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Scarfato, P.; Di Maio, L.; Incarnato, L. Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J. Appl. Polym. Sci. 2015, 132, 42597. [Google Scholar] [CrossRef]
- Storz, H.; Vorlop, K.-D. Bio-based plastics: Status, challenges and trends. Appl. Agric. For. Res. 2013, 4, 321–332. [Google Scholar]
- Escobar, N.; Haddad, S.; Boerner, J.; Britz, W. Land use mediated GHG emissions and spillovers from increased consumption of bioplastics. Environ. Res. Lett. 2018, 13, 125005. [Google Scholar] [CrossRef]
- Hottle, T.A.; Bilec, M.M.; Landis, A.E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stabil. 2013, 98, 1898–1907. [Google Scholar] [CrossRef]
- Rujnic-Sokele, M.; Pilipovic, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res. 2017, 35, 132–140. [Google Scholar] [CrossRef]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef]
- World Economic Forum, Ellen Macarthur Foundation, McKinsey & Company. The New Plastics Economy—Rethinking the Future of Plastics 2016; Ellen Macarthur Foundation: Cowes, UK, 2016. [Google Scholar]
- Maga, D.; Hiebel, M.; Aryan, V. A Comparative Life Cycle Assessment of Meat Trays Made of Various Packaging Materials. Sustainability 2019, 11, 5324. [Google Scholar] [CrossRef] [Green Version]
- Majer, S.; Wurster, S.; Moosmann, D.; Ladu, L.; Sumfleth, B.; Thrän, D. Gaps and Research Demand for Sustainability Certification and Standardisation in a Sustainable Bio-Based Economy in the EU. Sustainability 2018, 10, 2455. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Chen, E. Chemically recyclable polymers: A circular economy approach to sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Narancic, T.; O’Connor, K. Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology 2019, 165, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Tucker, N.; Johnson, M. Low Environmental Impact Journals; iSmithers Rapra Publishing: Shrewsbury, UK, 2004. [Google Scholar]
- Siddiqui, M.N.; Redhwi, H.H.; Al-Arfaj, A.A.; Achilias, D.S. Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. Sustainability 2021, 13, 10528. [Google Scholar] [CrossRef]
- Manik, Y.; Leahy, J.; Halog, A. Social life cycle assessment of palm oil biodiesel: A case study in Jambi Province of Indonesia. Int. J. Life Cycle Assess. 2013, 18, 1386–1392. [Google Scholar] [CrossRef]
- Herbes, C.; Beuthner, C.; Ramme, I. Consumer attitudes towards biobased packaging—A cross-cultural comparative study. J. Clean. Prod. 2018, 194, 203–218. [Google Scholar] [CrossRef]
Research Protocol | Description |
---|---|
Databases | Scopus, Web of Science, |
Search field | Title-Abstract-Keywords |
Search string | ((bio* plastic) AND packaging) AND (sustainab* OR environment* OR social OR econom*) AND (challenge OR risk OR drawback OR problem) |
Language | English |
Data range | Beginning of 2011 until April 2022 |
Publication type | Peer-reviewed journals, book chapters, and conference papers |
Inclusion criteria | Papers that mention environmental, social, and/or economic challenges of biobased plastic packaging products |
Exclusion criteria | Papers that do not address any sustainability challenges in the abstract, keyword, or title, or papers that do not contain biobased plastic packaging products |
Environmental Challenges | Economic Challenges | Social Challenges | |
---|---|---|---|
Phase 1: Beginning of life: Resource Extraction |
| ||
Phase 2: Middle of Life: Production |
| ||
Phase 3: Middle of Life: Use | |||
Phase 4: End of Life |
| ||
General |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turkcu, D.; Tura, N.; Ojanen, V. A Conceptual Framework of the Sustainability Challenges Experienced during the Life Cycle of Biobased Packaging Products. Sustainability 2022, 14, 10465. https://doi.org/10.3390/su141710465
Turkcu D, Tura N, Ojanen V. A Conceptual Framework of the Sustainability Challenges Experienced during the Life Cycle of Biobased Packaging Products. Sustainability. 2022; 14(17):10465. https://doi.org/10.3390/su141710465
Chicago/Turabian StyleTurkcu, Deniz, Nina Tura, and Ville Ojanen. 2022. "A Conceptual Framework of the Sustainability Challenges Experienced during the Life Cycle of Biobased Packaging Products" Sustainability 14, no. 17: 10465. https://doi.org/10.3390/su141710465