Predicting Factors Influencing Preservice Teachers’ Behavior Intention in the Implementation of STEM Education Using Partial Least Squares Approach
Abstract
:1. Introduction
- What are the significant positive factors influencing the preservice teachers’ attitudes toward STEM education?
- What are the significant positive factors influencing the behavioral intention of preservice teachers to implement STEM education?
- What are the factors with the highest positive significance on the attitudes of preservice teachers toward implementing STEM education?
- What are the factors with the highest positive significance on the behavioral intention of preservice teachers toward implementing STEM education?
- Do gender and age affect preservice teachers in STEM education?
2. Theoretical Background and Hypothesis Development
2.1. STEM Education
2.2. Stem Education in Indonesia
2.3. Theoretical Analysis Model
2.4. Knowledge of STEM Education
2.5. Value of STEM Education
2.6. Habit
2.7. Attitude towards STEM Education
2.8. Perceived Usefulness
2.9. Subjective Norms Related to STEM Education
2.10. Perceived Behavioral Control of STEM Education
2.11. Innovativeness
2.12. Behavioral Intention to Implement STEM Education
2.13. Moderation Effect
3. Methods
3.1. Sample and Population
3.2. Data Analysis
4. Results
4.1. Data Normality Analysis
4.2. Measurement Model
4.3. Internal Consistency, Reliability, and Validity
4.4. Structural Model
4.5. Collinearity
4.6. Coefficient of Determination (R2)
4.7. Predictive Relevance (Q2)
4.8. Effect Size (F2)
4.9. Moderating Effect Analysis of Gender and Age
5. Discussion
6. Conclusions and Implication
7. Limitation and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Construct | English Version | Indonesian Version |
---|---|---|
Knowledge of STEM education | I am familiar with science knowledge (chemistry/physics/biology) at the junior and senior high school levels | Saya farmiliar dengan pengetahuan science (kimia/fisika/biologi) di level SMP dan SMA |
I am familiar with technology-related knowledge at the junior and senior high school level | Saya farmiliar dengan pengetahuan terkait teknologi pada level SMP dan SMA | |
I am familiar with the knowledge of engineering (STEM) at the junior and senior high school level | Saya farmiliar dengan pengetahuan mengenai engineering (STEM) pada level SMP dan SMA | |
I am familiar with mathematics knowledge at the junior and senior high school level | Saya farmiliar dengan pengetahuan matematika pada level SMP dan SMA | |
Value of STEM education | I feel teaching students how to collect STEM-related data during the teaching process is very important | Saya merasa mengajarkan siswa bagaiamana cara mengumpulkan data yang berhubungan dengan STEM selama proses mengajar sangat penting |
I feel teaching students how to use STEM-related data during the teaching process is very important | Saya merasa mengajarkan siswa bagaimana cara menggunakan data yang berhubungan dengan STEM selama proses mengajar sangat penting | |
I feel like teaching students how to use STEM-related data during the testing and modification process. | Saya merasa mengajarkan siswa bagaiamana cara menggunakan data yang berhubungan dengan STEM pada saat testing dan proses modifikasi. | |
I like using STEM learning in class | Saya suka menggunakan pembelajaran STEM di kelas | |
I think STEM activities help improve students’ abilities | Saya pikir kegiatan STEM sangat membantu meningkatkan kemampuan siswa | |
I think STEM activities help improve student learning scores | saya pikir STEM activites dapat membantu meningkatkan nilai belajar siswa | |
Attitude concerning STEM education | Using STEM learning is a good idea | Menggunakan pembelajaran STEM adalah ide yang bagus |
Using STEM learning makes teaching and learning activities interesting | Menggunakan pembelajaran STEM membuat kegaiatan belajar mengajar menjadi menarik | |
I enjoy using STEM learning when teaching | Saya senang menggunakan pembelajaran STEM saat mengajar | |
Subjective norm | Other teachers at my school use STEM learning when teaching | Guru guru lain di sekolah saya menggunakan pembelajaran STEM saat mengajar |
The government advise teachers to implement STEM learning | Pemerintah menyarankan para guru untuk mengimplementasikan pembelajaran STEM | |
The head of the curriculum section advises teachers to implement STEM education | Kepala bagian kurikulum menyarankan para guru untuk mengimplementasikan STEM education | |
Perceived behavior control in STEM education | I will try to collaborate with other teachers to implement STEM education | Saya akan berusaha berkolaborasi dengan guru lain untuk mengimplementasikan STEM education |
I will try to remind students to solve problems based on STEM knowledge | Saya akan berusaha mengingatkan siswa untuk memecahkan masalah berdasarkan pengetahuan STEM | |
I will try to teach students how to modify products based on STEM knowledge | Saya akan berusaha mengajarkan siswa bagaimana untuk memodifikasi produk berdasarkan pengetahuan STEM | |
I will try to teach students how to think based on STEM knowledge in teaching and learning activities | Saya akan berusaha untuk mengajarkan siswa bagaimana untuk berpikir berdasarkan pengetahuan STEM pada kegiatan belajar mengajar | |
Perceived usefulness | I think STEM learning is useful in teaching and learning activities | Saya rasa pembelajaran STEM bermanfaat pada kegiatan belajar mengajar |
STEM learning improves my teaching skills in school | Pembelajaran STEM meningkatkan kemampuan mengajar saya di sekolah | |
I think using STEM learning for teaching is more effective than traditional teaching | Saya pikir menggunakan pembelajaran STEM untuk mengajar efektif dibanding pengajaran tradisional | |
Behavioral intention toward STEM education | I will use STEM learning at every teaching opportunity | Saya akan menggunakan pembelajaran STEM pada setiap kesempatan mengajar |
I will recommend STEM learning to my teacher friends | Saya akan merekomendasikan pembelajaran STEM kepada teman teman guru | |
Using STEM learning has become my teaching habit | ||
Habit | I have to use the STEM approach if I teach at the junior high and high school levels | Menggunakan pembelajaran STEM sudah menjadi kebiasaan mengajar saya |
I enjoy learning about new learning approaches | Saya harus menggunakan pendekatan STEM jika mengajar di tingkat SMP dan SMA | |
Innovativeness | I enjoy using new teaching methods | Saya senang belajar tentang pendekatan pembelajaran baru |
When there is a new teaching approach, I try to practice it in the classroom | Saya senang menggunakan metode mengajar yang baru | |
Compared to other teachers, I am usually the first to try a new learning model | Ketika ada pendekatan mengajar yang baru, saya mencoba untuk mempraktekkannya di dalam kelas | |
I am curious about teaching using the STEM approach | Dibandingkan dengan guru guru lain, saya biasanya orang pertama yang mencoba model pembelajaran baru | |
Anxiety | I am afraid I cannot teach well if I use the STEM approach | Saya merasa penasaran mengajar menggunakan pendekatan STEM |
I am afraid that students will not like my teaching method using the STEM approach | Saya takut tidak dapat mengajar dengan baik jika menggunakan pendekatan STEM | |
I will use STEM learning at every teaching opportunity | Saya takut siswa tidak menyukai cara mengajar saya menggunakan pendekatan STEM |
References
- So, H.J.; Ryoo, D.; Park, H.; Choi, H. What Constitutes Korean Pre-service Teachers’ Competency in STEAM Education: Examining the Multi-functional Structure. Asia-Pacific Educ. Res. 2019, 28, 47–61. [Google Scholar] [CrossRef]
- Grodal, S.; Thoma, G. Cross-pollination in science and technology: Concept mobility in the nanobiotechnology field. Ann. Econ. Stat. d’E’conomie Stat. 2014, 115, 57–80. [Google Scholar] [CrossRef]
- Kier, M.W.; Johnson, L.L. Exploring How Secondary STEM Teachers and Undergraduate Mentors Adapt Digital Technologies to Promote Culturally Relevant Education during COVID-19. Educ. Sci. 2022, 12, 48. [Google Scholar] [CrossRef]
- Williams, J.; Roth, W.-M.; Swanson, D.; Doig, B.; Groves, S.; Omuvwie, M.; Ferri, R.B.; Mousoulides, N. Interdisciplinary Mathematics Education: A State of the Art; ICME-13 Topical Surveys; Springer: Cham, Switzerland, 2016; pp. 1–35. [Google Scholar] [CrossRef]
- Lee, K.T.; Nason, R.A. Reforming the preparation of future STEM teachers. In Proceedings of the 2nd International STEM in Education Conference, Beijing, China, 30 June 2012. [Google Scholar]
- Honey, M.; Pearson, G.; Schweingruber, H. STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Ahmad, J.; Siew, N.M. Curiosity towards stem education: A questionnaire for primary school students. J. Balt. Sci. Educ. 2021, 20, 289–304. [Google Scholar] [CrossRef]
- Makamure, C.; Tsakeni, M. COVID-19 as an agent of change in teaching and learning stem subjects. J. Balt. Sci. Educ. 2020, 19, 1078–1091. [Google Scholar] [CrossRef]
- Bybee, R.W. Advancing STEM Education: A 2020 Vision. Technol. Eng. Teach. 2010, 70, 30–35. [Google Scholar]
- Schmid, M.; Brianza, E.; Petko, D. Self-reported technological pedagogical content knowledge (TPACK) of pre-service teachers in relation to digital technology use in lesson plans. Comput. Hum. Behav. 2021, 115, 106586. [Google Scholar] [CrossRef]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior in Action Control; SSSP Springer Series in Social Psychology; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Lin, K.Y.; Williams, P.J. Taiwanese Preservice Teachers’ Science, Technology, Engineering, and Mathematics Teaching Intention. Int. J. Sci. Math. Educ. 2016, 14, 1021–1036. [Google Scholar] [CrossRef]
- ACM International Conference Proceeding Series. 2019. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117535722&partnerID=40&md5=7c9a8692c55c8d5b5f1d39815a2549ef (accessed on 10 June 2022).
- Syahmani, S.; Hafizah, E.; Sauqina, S.; Adnan, M.B.; Ibrahim, M.H. STEAM Approach to Improve Environmental Education Innovation and Literacy in Waste Management: Bibliometric Research. Indones. J. Learn. Adv. Educ. 2021, 3, 130–141. [Google Scholar] [CrossRef]
- Khadri, H.O. Becoming future-proof STEM teachers for enhancing sustainable development: A proposed general framework for capacity-building programs in future studies. Prospects 2022, 1–15. [Google Scholar] [CrossRef]
- Chang, D.F.; Lee, K.Y.; Tseng, C.W. Exploring Structural Relationships in Attracting and Retaining International Students in STEM for Sustainable Development of Higher Education. Sustainability 2022, 14, 1267. [Google Scholar] [CrossRef]
- Newhouse, C.P. STEM the Boredom: Engage Students in the Australian Curriculum Using ICT with Problem-Based Learning and Assessment. J. Sci. Educ. Technol. 2017, 26, 44–57. [Google Scholar] [CrossRef]
- Nicholas, C.; Scribner, J.A. Enhancing PBL Authenticity by Engaging STEM-Professional Volunteers. Interdiscip. J. Probl. Learn. 2021, 15, 2. [Google Scholar] [CrossRef]
- Kilty, T.; Burrows, A.; Welsh, K.; Kilty, K.; McBride, S.; Bergmaier, P. Transcending Disciplines: Engaging College Students in Interdisciplinary Research, Integrated Stem, and Partnerships. J. Technol. Sci. Educ. 2021, 11, 146–166. [Google Scholar] [CrossRef]
- Thu, H.L.T.; Tran, T.; Phuong, T.T.T.; Tuyet, T.L.T.; le Huy, H.; Thi, T.V. Two decades of stem education research in middle school: A bibliometrics analysis in scopus database (2000–2020). Educ. Sci. 2021, 11, 353. [Google Scholar] [CrossRef]
- Simoncini, K.; Lasen, M. Ideas About STEM Among Australian Early Childhood Professionals: How Important is STEM in Early Childhood Education? Int. J. Early Child. 2018, 50, 353–369. [Google Scholar] [CrossRef]
- Petrosino, A.J., Jr.; Stroup, W.M. Group-Based Cloud Computing for Secondary STEM Education. June 2017. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030539786&partnerID=40&md5=49d7d118ea79fd3cec66892c7900a7ba (accessed on 11 June 2022).
- Wijaya, T.T.; Zhou, Y.; Ware, A.; Hermita, N. Improving the Creative Thinking Skills of the Next Generation of Mathematics Teachers Using Dynamic Mathematics Software. Int. J. Emerg. Technol. Learn. 2021, 16, 212–226. [Google Scholar] [CrossRef]
- Purwaningsih, E.; Sari, S.P.; Sari, A.M.; Suryadi, A. The effect of stem-pjbl and discovery learning on improving students’ problem-solving skills of the impulse and momentum topic. J. Pendidik. IPA Indones. 2020, 9, 465–476. [Google Scholar] [CrossRef]
- Smith, K.N.; Jaeger, A.J.; Thomas, D. ‘Science Olympiad Is Why I’m Here’: The Influence of an Early STEM Program on College and Major Choice. Res. Sci. Educ. 2019, 51, 443–459. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chai, C.S.; Jong, M.S.Y. A Study of Disposition, Engagement, Efficacy, and Vitality of Teachers in Designing Science, Technology, Engineering, and Mathematics Education. Front. Psychol. 2021, 12, 661631. [Google Scholar] [CrossRef]
- Correia, M.S.M.; Baptista, M.L.M. The effects of a STEM approach on preservice elementary teachers’ subject matter knowledge about sound. Acta Sci. 2021, 23, 179–208. [Google Scholar] [CrossRef]
- Coles, A. Facilitating the use of video with teachers of mathematics: Learning from staying with the detail. Int. J. STEM Educ. 2019, 6, 1. [Google Scholar] [CrossRef]
- Wong, C.Y.; Shih, Y.T. Enhance STEM Education by Integrating Product Design with Computer-Aided Design Approaches. Comput. Aided. Des. Appl. 2022, 19, 694–711. [Google Scholar] [CrossRef]
- Arlinwibowo, J.; Retnawati, H.; Kartowagiran, B. How to Integrate STEM Education in The Indonesian Curriculum? A Systematic Review. Chall. Sci. 2021, 18–25. [Google Scholar] [CrossRef]
- Prabowo, A.; Anggoro, R.P.; Adiyanto, R.; Rahmawati, U. Interactive Multimedia-based Teaching Material for Trigonometry. J. Phys. Conf. Ser. 2018, 1097, 012138. [Google Scholar] [CrossRef]
- Farwati, R.; Metafisika, K.; Sari, I.; Sitinjak, D.S.; Solikha, D.F.; Solfarina, S. STEM Education Implementation in Indonesia: A Scoping Review. Int. J. STEM Educ. Sustain. 2021, 1, 11–32. [Google Scholar] [CrossRef]
- Stössel, J.; Baumann, R.; Wegner, E. Predictors of student teachers’ esd implementation intention and their implications for improving teacher education. Sustainability 2021, 13, 9027. [Google Scholar] [CrossRef]
- Zhao, W.; Mok, I.A.C.; Cao, Y. Factors influencing teachers’ implementation of a reformed instructional model in China from the theory of planned behavior perspective: A multiple case study. Sustainability 2020, 12, 1. [Google Scholar] [CrossRef]
- Yusop, F.D.; Habibi, A.; Razak, R.A. Factors Affecting Indonesian Preservice Teachers’ Use of ICT During Teaching Practices Through Theory of Planned Behavior. SAGE Open 2021, 11, 21582440211027572. [Google Scholar] [CrossRef]
- National Research Council (NRC). National Science Education Standards; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Dias, A.; Ordaz, M.G.; López, F.M. The wisdom innovation model—Adjusting new insights and hosting new perspectives to human augmented reality. Commun. Comput. Inf. Sci. 2011, 219, 73–85. [Google Scholar] [CrossRef]
- 15th International Conference on Human Computer Interaction, HCI International 2013. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015595703&partnerID=40&md5=9e54145641ddf1a2aeebdc27bb2b347a (accessed on 10 June 2022).
- Nejkovic, V.; Tosic, M. Exploring factors for effective use of online information in SPOC within the engineering education. Comput. Appl. Eng. Educ. 2018, 26, 1457–1469. [Google Scholar] [CrossRef]
- American Association for the Advanced of Science. Benchmarks for Science Literacy; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Monroe, M.; Day, B.; Grieser, M. Environmental Education & Communication for a Sustainable World; Academy for Educational Development: Washington, DC, USA, 2000. [Google Scholar]
- Smith, P.J.; Murphy, K.L.; Mahoney, S.E. Towards identifying factors underlying readiness for online learning: An exploratory study. Distance Educ. 2003, 24, 57–67. [Google Scholar] [CrossRef]
- Venkatesh, V.Y.L.; Thong, J.; Xu, X. Consumer acceptance and use of information Technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly. Manag. Inf. Syst. Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Gefen, D. TAM or just plain habit: A look at experienced online shoppers. J. End User Comput. 2003, 15, 1–13. [Google Scholar] [CrossRef]
- Gellerstedt, M.; Babaheidari, S.M.; Svensson, L. A first step towards a model for teachers’ adoption of ICT pedagogy in schools. Heliyon 2018, 4, e00786. [Google Scholar] [CrossRef]
- Drueke, B.; Mainz, V.; Lemos, M.; Wirtz, M.A.; Boecker, M. An Evaluation of Forced Distance Learning and Teaching Under Pandemic Conditions Using the Technology Acceptance Model. Front. Psychol. 2021, 12, 701347. [Google Scholar] [CrossRef]
- Smeda, A.; Shiratuddin, M.F.; Wong, K.W. A structural equation modelling approach for adoption of e-book amongst mathematics and statistics (MAS) students at higher education institutions in Libya. Int. J. Inf. Learn. Technol. 2018, 35, 240–254. [Google Scholar] [CrossRef]
- Osih, S.C.; Singh, U.G.; Africa, S. Students ’ perception on the adoption of an e-textbook ( digital ) as an alternative to the printed textbook. S. Afr. J. High. Educ. 2020, 34, 201–215. [Google Scholar] [CrossRef]
- Joo, Y.J.; Park, S.; Lim, E. Factors Influencing Preservice Teachers’ Intention to Use Technology. J. Educ. Technol. Soc. 2018, 21, 48–59. Available online: http://www.jstor.org/stable/26458506 (accessed on 10 June 2022).
- Lavidas, K.; Komis, V.; Achriani, A. Explaining faculty members’ behavioral intention to use learning management systems. J. Comput. Educ. 2022, 0123456789. [Google Scholar] [CrossRef]
- Saleem, M.; Kamarudin, S.; Shoaib, H.M.; Nasar, A. Influence of augmented reality app on intention towards e-learning amidst COVID-19 pandemic. Interact. Learn. Environ. 2021, 1–15. [Google Scholar] [CrossRef]
- Wijaya, T.T.; Cao, Y.; Weinhandl, R.; Yusron, E. Applying the UTAUT Model to Understand Factors Affecting Micro-Lecture Usage by Mathematics Teachers in China. Mathematics 2022, 10, 1008. [Google Scholar] [CrossRef]
- Mukminin, A.; Habibi, A.; Muhaimin, M.; Prasojo, L.D. Exploring the drivers predicting behavioral intention to use m-learning management system: Partial least square structural equation model. IEEE Access 2020, 8, 181356–181365. [Google Scholar] [CrossRef]
- Taamneh, A.; Alsaad, A.; Elrehail, H.; Al-Okaily, M.; Lutfi, A.; Sergio, R.P. University lecturers acceptance of moodle platform in the context of the COVID-19 pandemic. Glob. Knowl. Mem. Commun. 2022; Ahead-of-print. [Google Scholar] [CrossRef]
- Alenezi, A.R. Modeling the Social Factors Affecting Students’ Satisfaction with Online Learning: A Structural Equation Modeling Approach. Educ. Res. Int. 2022, 2022, 2594221. [Google Scholar] [CrossRef]
- Venkatesh, M.G.; Morris, G.B.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. Manag. Inf. Syst. Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Azizan, S.N.; Lee, A.S.H.; Crosling, G.; Atherton, G.; Arulanandam, B.V.; Lee, C.E. Online Learning and COVID-19 in Higher Education: The Value of IT Models in Assessing Students’ Satisfaction. Int. J. Emerg. Technol. Learn. 2022, 17, 245–278. [Google Scholar] [CrossRef]
- Reyes, E.G.D.; Galura, J.C.; Pineda, J.L.S. C5-LMS design using Google Classroom: User acceptance based on extended Unified Theory of Acceptance and Use of Technology. Interact. Learn. Environ. 2022, 1–10. [Google Scholar] [CrossRef]
- El-Sofany, H.F.; El-Seoud, S.A. Implementing effective learning with ubiquitous learning technology during coronavirus pandemic. Comput. Syst. Sci. Eng. 2022, 40, 389–404. [Google Scholar] [CrossRef]
- Mujalli, A.; Khan, T.; Almgrashi, A. University Accounting Students and Faculty Members Using the Blackboard Platform during COVID-19; Proposed Modification of the UTAUT Model and an Empirical Study. Sustainability 2022, 14, 2360. [Google Scholar] [CrossRef]
- Salloum, S.A.; Al-emran, M.; Shaalan, K.; Tarhini, A. Factors affecting the E-learning acceptance: A case study from UAE. Educ. Inf. Technol. 2019, 24, 509–530. [Google Scholar] [CrossRef]
- Abu-Al-Aish, A.; Love, S. Factors influencing students’ acceptance of m-learning: An investigation in higher education. Int. Rev. Res. Open Distance Learn. 2013, 14, 82–107. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Su, Y.-S. Exploring Factors of Preschool Parents’ Behavioral Intention to Use Face Recognition Technology on Campus. Front. Phys. 2022, 10, 857751. [Google Scholar] [CrossRef]
- Saprikis, V.; Avlogiaris, G.; Katarachia, A. Determinants of the intention to adopt mobile augmented reality apps in shopping malls among university students. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 30. [Google Scholar] [CrossRef]
- Law, K.M.Y.; Geng, S. Correction to: How innovativeness and handedness affect learning performance of engineering students? Int. J. Technol. Des. Educ. 2019, 29, 1207. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- Venkatesh, V.; Davis, F.D. Theoretical extension of the technology acceptance model: Four longitudinal field studies. Manage. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Palomares-Ruiz, A.; Cebrián-Martínez, A.; García-Toledano, E.; López-Parra, E. Digital gender gap in university education in Spain. Study of a case for paired samples. Technol. Forecast. Soc. Chang. 2021, 173, 121096. [Google Scholar] [CrossRef]
- Garg, A. Investigating the Moderating Effects of Age and Gender on Customers’ Use of Tablet Menu in Casual Dining Restaurants. J. Qual. Assur. Hosp. Tour. 2021, 1–39. [Google Scholar] [CrossRef]
- Erdogan, A.; Sahin, I. Relationship between math teacher candidates’ Technological Pedagogical and Content Knowledge (TPACK) and achievement levels. Procedia—Soc. Behav. Sci. 2010, 2, 2707–2711. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wu, M.C.; Wang, H.Y. Investigating the determinants and age and gender differences in the acceptance of mobile learning. Br. J. Educ. Technol. 2009, 40, 92–118. [Google Scholar] [CrossRef]
- Lin, T.C.; Tsai, C.C.; Chai, C.S.; Lee, M.H. Identifying Science Teachers’ Perceptions of Technological Pedagogical and Content Knowledge (TPACK). J. Sci. Educ. Technol. 2013, 22, 325–336. [Google Scholar] [CrossRef]
- Hair, J.; Black, B.; Babin, B.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Prentice Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Leow, L.P.; Phua, L.K.; Teh, S.Y. Extending the social influence factor: Behavioural intention to increase the usage of information and communication technology-enhanced student-centered teaching methods. Educ. Technol. Res. Dev. 2021, 69, 1853–1879. [Google Scholar] [CrossRef]
- Jiang, H.; Islam, A.Y.M.A.; Gu, X.; Spector, J.M. Online learning satisfaction in higher education during the COVID-19 pandemic: A regional comparison between Eastern and Western Chinese universities. Educ. Inf. Technol. 2021, 26, 6747–6769. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. E-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Wut, T.M.; Lee, S.W.; Xu, J.B. How do Facilitating Conditions Influence Student-to-Student Interaction within an Online Learning Platform? A New Typology of the Serial Mediation Model. Educ. Sci. 2022, 12, 337. [Google Scholar] [CrossRef]
- Law, L.; Fong, N. Applying partial least squares structural equation modeling (PLS-SEM) in an investigation of undergraduate students’ learning transfer of academic English. J. English Acad. Purp. 2020, 46, 100884. [Google Scholar] [CrossRef]
- Morchid, N. The Determinants of Use and Acceptance of Mobile Assisted Language Learning: The Case of EFL Students in Morocco. Arab World Eng. J. 2019, 5, 76–97. [Google Scholar] [CrossRef]
- Moorthy, K.; T’Ing, L.C.; Ming, K.S.; Ping, C.C.; Ping, L.Y.; Joe, L.Q.; Jie, W.Y. Behavioral Intention to Adopt Digital Library by the Undergraduates. Int. Inf. Libr. Rev. 2019, 51, 128–144. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Siguaw, J.A. Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. Br. J. Manag. 2006, 17, 263–282. [Google Scholar] [CrossRef]
- Alvi, I. College students’ reception of social networking tools for learning in India: An extended UTAUT model. Smart Learn. Environ. 2021, 8, 1–18. [Google Scholar] [CrossRef]
- Mukminin, A.; Habibi, A.; Muhaimin, M.; Asrial, A.; Haryanto, E.; Setiono, P.; Sofyan, S. Vocational Technical High School teachers’ beliefs towards ICT for the 21 st century education: Indonesian context. Probl. Educ. 21st Century 2019, 77, 22–38. [Google Scholar] [CrossRef]
- Mulyani, E.A.; Alpusari, M.; Putra, E.D. The Effect of Learning Facilities and Family Environment on Motivation to Learn of Prospective Elementary Teacher Education on Online Learning. J. Teach. Learn. Elem. Educ. 2021, 4, 89. [Google Scholar] [CrossRef]
- Shiferaw, K.B.; Mengiste, S.A.; Gullslett, M.K.; Zeleke, A.A.; Tilahun, B.; Tebeje, T.; Wondimu, R.; Desalegn, S.; Mehari, E.A. Healthcare providers’ acceptance of telemedicine and preference of modalities during COVID-19 pandemics in a low-resource setting: An extended UTAUT model. PLoS ONE 2021, 16, 1–15. [Google Scholar] [CrossRef]
- Wijaya, T.T.; Zhou, Y.; Houghton, T.; Weinhandl, R.; Lavicza, Z.; Yusop, F.D. Factors affecting the use of digital mathematics textbooks in indonesia. Mathematics 2022, 10, 1808. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Yusop, F.D. Exploring the factors affecting pre-service science teachers ’ actual use of technology during teaching practice Exploring the factors affecting pre-service science t eachers ’ actual use of technology during teaching practice. S. Afr. J. Educ. 2022, 42, 1–11. [Google Scholar] [CrossRef]
- Almekhlafi, A.G. The effect of E-books on Preservice student teachers’ achievement and perceptions in the United Arab Emirates. Educ. Inf. Technol. 2021, 26, 1001–1021. [Google Scholar] [CrossRef]
- Akar, E.; Mardikyan, S. Analyzing factors affecting users ’ behavior intention to use social media: Twitter. Int. J. Bus. Soc. Sci. 2014, 5, 85–95. [Google Scholar]
- Turner, A. Generation Z: Technology and Social Interest. J. Individ. Psychol. 2015, 71, 103–113. [Google Scholar] [CrossRef]
- Cilliers, E.J. The Challenge of Teaching Generation Z. People Int. J. Soc. Sci. 2017, 3, 188–198. [Google Scholar] [CrossRef]
- Priporas, C.V.; Stylos, N.; Fotiadis, A.K. Generation Z consumers’ expectations of interactions in smart retailing: A future agenda. Comput. Hum. Behav. 2017, 77, 374–381. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Wijaya, T.T. Determinants of Behavioral Intention and Use of Interactive Whiteboard by K-12 Teachers in Remote and Rural Areas. Front. Psychol. 2022, 13, 934423. [Google Scholar] [CrossRef]
- Joa, C.Y.; Magsamen-Conrad, K. Social influence and UTAUT in predicting digital immigrants’ technology use. Behav. Inf. Technol. 2021, 41, 1620–1638. [Google Scholar] [CrossRef]
- Saxton, E.; Burns, R.; Holveck, S.; Kelley, S.; Prince, D.; Rigelman, N.; Skinner, E.A. A Common Measurement System for K-12 STEM education: Adopting an educational evaluation methodology that elevates theoretical foundations and systems thinking. Stud. Educ. Eval. 2014, 40, 18–35. [Google Scholar] [CrossRef]
Data Demography | N | % | |
---|---|---|---|
gender | male | 30 | 9.14 |
female | 171 | 85.07 | |
age | under 20 | 54 | 26.87 |
20–25 | 147 | 73.13 | |
major | mathematics | 136 | 67.66 |
physics | 17 | 8.46 | |
biology | 29 | 14.43 | |
chemistry | 19 | 9.45 |
Mean | Min | Max | Standard Deviation | Excess Kurtosis | Skewness | |
---|---|---|---|---|---|---|
KNW1 | 4.005 | 1.000 | 5.000 | 0.820 | 0.397 | −0.665 |
KNW2 | 3.796 | 1.000 | 5.000 | 0.794 | 2.013 | −1.000 |
KNW3 | 3.572 | 1.000 | 5.000 | 0.873 | 0.058 | −0.359 |
KNW4 | 4.025 | 1.000 | 5.000 | 0.729 | 1.362 | −0.737 |
VAL1 | 3.980 | 2.000 | 5.000 | 0.684 | −0.582 | −0.069 |
VAL2 | 4.020 | 2.000 | 5.000 | 0.654 | 0.049 | −0.236 |
VAL3 | 3.960 | 2.000 | 5.000 | 0.675 | −0.258 | −0.147 |
VAL4 | 3.950 | 2.000 | 5.000 | 0.718 | −0.430 | −0.170 |
VAL5 | 4.164 | 2.000 | 5.000 | 0.660 | −0.308 | −0.297 |
VAL6 | 4.075 | 2.000 | 5.000 | 0.661 | −0.343 | −0.187 |
ATD1 | 4.184 | 3.000 | 5.000 | 0.565 | −0.169 | 0.008 |
ATD2 | 4.159 | 2.000 | 5.000 | 0.610 | 0.158 | −0.233 |
ATD3 | 3.905 | 2.000 | 5.000 | 0.681 | −0.612 | 0.025 |
SN1 | 3.532 | 1.000 | 5.000 | 0.829 | −0.297 | 0.108 |
SN2 | 3.920 | 1.000 | 5.000 | 0.722 | 0.135 | −0.198 |
SN3 | 3.836 | 1.000 | 5.000 | 0.718 | 0.507 | −0.313 |
PBC1 | 4.095 | 3.000 | 5.000 | 0.524 | 0.527 | 0.111 |
PBC2 | 4.065 | 2.000 | 5.000 | 0.607 | 1.233 | −0.435 |
PBC3 | 4.085 | 2.000 | 5.000 | 0.588 | 1.655 | −0.462 |
PBC4 | 4.090 | 2.000 | 5.000 | 0.592 | 1.589 | −0.461 |
PU1 | 4.149 | 3.000 | 5.000 | 0.629 | −0.536 | −0.126 |
PU2 | 4.035 | 3.000 | 5.000 | 0.649 | −0.617 | −0.034 |
PU3 | 4.114 | 3.000 | 5.000 | 0.663 | −0.736 | −0.131 |
BI1 | 3.821 | 2.000 | 5.000 | 0.704 | −0.806 | 0.182 |
BI2 | 4.090 | 3.000 | 5.000 | 0.671 | −0.777 | −0.107 |
HB1 | 3.512 | 1.000 | 5.000 | 0.864 | 0.014 | −0.085 |
HB2 | 3.726 | 1.000 | 5.000 | 0.834 | 0.321 | −0.276 |
INV1 | 4.114 | 2.000 | 5.000 | 0.616 | 0.111 | −0.204 |
INV2 | 4.124 | 3.000 | 5.000 | 0.654 | −0.680 | −0.133 |
INV3 | 4.040 | 2.000 | 5.000 | 0.653 | −0.280 | −0.148 |
INV4 | 3.592 | 1.000 | 5.000 | 0.877 | −0.476 | −0.083 |
ANX1 | 4.060 | 3.000 | 5.000 | 0.681 | −0.840 | −0.075 |
ANX2 | 3.682 | 2.000 | 5.000 | 0.874 | −0.721 | −0.096 |
ANX3 | 3.741 | 2.000 | 5.000 | 0.787 | −0.611 | 0.001 |
Construct | Cronbach’s Alpha | Rho-A | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|---|
ATD | 0.831 | 0.860 | 0.896 | 0.743 |
BI | 0.727 | 0.728 | 0.880 | 0.786 |
HABIT | 0.836 | 0.842 | 0.924 | 0.859 |
INNOVATIVENESS | 0.899 | 0.900 | 0.952 | 0.908 |
KNOWLEDGE | 0.879 | 0.881 | 0.917 | 0.735 |
PBC | 0.937 | 0.945 | 0.955 | 0.843 |
PU | 0.847 | 0.865 | 0.907 | 0.765 |
SN | 0.891 | 0.899 | 0.933 | 0.822 |
VALUE | 0.920 | 0.923 | 0.938 | 0.715 |
ATD | BI | HABIT | INV | KNW | PBC | PU | SN | VALUE | |
---|---|---|---|---|---|---|---|---|---|
ATD | 0.862 | ||||||||
BI | 0.567 | 0.886 | |||||||
HABIT | 0.429 | 0.750 | 0.927 | ||||||
INV | 0.547 | 0.643 | 0.537 | 0.953 | |||||
KNW | 0.404 | 0.382 | 0.379 | 0.526 | 0.858 | ||||
PBC | 0.592 | 0.627 | 0.560 | 0.563 | 0.446 | 0.918 | |||
PU | 0.688 | 0.621 | 0.402 | 0.657 | 0.376 | 0.611 | 0.874 | ||
SN | 0.450 | 0.629 | 0.681 | 0.518 | 0.379 | 0.567 | 0.494 | 0.907 | |
VALUE | 0.690 | 0.616 | 0.570 | 0.571 | 0.486 | 0.664 | 0.593 | 0.501 | 0.846 |
ATD | BI | HABIT | INV | KNW | PBC | PU | SN | VALUE | |
---|---|---|---|---|---|---|---|---|---|
ATD | |||||||||
BI | 0.702 | ||||||||
HABIT | 0.477 | 0.863 | |||||||
INV | 0.619 | 0.792 | 0.616 | ||||||
KNW | 0.452 | 0.470 | 0.435 | 0.589 | |||||
PBC | 0.661 | 0.756 | 0.627 | 0.613 | 0.484 | ||||
PU | 0.801 | 0.767 | 0.445 | 0.740 | 0.425 | 0.674 | |||
SN | 0.495 | 0.780 | 0.794 | 0.577 | 0.423 | 0.616 | 0.547 | ||
VALUE | 0.773 | 0.748 | 0.642 | 0.626 | 0.535 | 0.710 | 0.661 | 0.542 |
Construct | VIF Value | Construct | VIF Value |
---|---|---|---|
ATD1 | 2.348 | PBC3 | 6.500 |
ATD2 | 2.205 | PBC4 | 6.605 |
ATD3 | 1.611 | PU1 | 2.087 |
BI1 | 1.485 | PU2 | 2.763 |
BI2 | 1.485 | PU3 | 1.900 |
HB1 | 2.067 | SN1 | 2.092 |
HB2 | 2.067 | SN2 | 3.263 |
INV1 | 3.002 | SN3 | 3.446 |
INV2 | 3.002 | VAL1 | 2.899 |
KNW1 | 3.135 | VAL2 | 3.720 |
KNW2 | 3.366 | VAL3 | 3.473 |
KNW3 | 1.759 | VAL4 | 2.357 |
KNW4 | 2.574 | VAL5 | 3.865 |
PBC1 | 2.585 | VAL6 | 2.776 |
PBC2 | 3.250 |
Hypothesis | β | Mean | STDEV | T Statistics | p-Values | Hypothesis Testing Results | |
---|---|---|---|---|---|---|---|
H1 | KNOWLEDGE → ATD | 0.130 | 0.136 | 0.063 | 2.062 | 0.040 | supported |
H2 | KNOWLEDGE → PU | 0.114 | 0.110 | 0.078 | 1.459 | 0.145 | Not supported |
H3 | KNOWLEDGE → SN | 0.177 | 0.167 | 0.092 | 1.924 | 0.050 | supported |
H4 | KNOWLEDGE → PBC | 0.161 | 0.159 | 0.081 | 1.975 | 0.049 | supported |
H5 | VALUE → PU | 0.538 | 0.540 | 0.076 | 7.070 | 0.000 | supported |
H6 | VALUE → SN | 0.415 | 0.422 | 0.074 | 5.637 | 0.000 | supported |
H7 | VALUE → PBC | 0.586 | 0.587 | 0.064 | 9.159 | 0.000 | supported |
H8 | HABIT → ATD | 0.146 | 0.145 | 0.057 | 2.557 | 0.011 | supported |
H9 | PU → ATD | 0.580 | 0.578 | 0.057 | 10.257 | 0.000 | supported |
H10 | HABIT → BI | 0.487 | 0.490 | 0.064 | 7.646 | 0.000 | supported |
H11 | ATD → BI | 0.066 | 0.065 | 0.061 | 1.083 | 0.280 | Not supported |
H12 | PU → BI | 0.224 | 0.227 | 0.067 | 3.335 | 0.001 | supported |
H13 | SN → BI | 0.045 | 0.048 | 0.058 | 0.776 | 0.438 | Not supported |
H14 | PBC → BI | 0.080 | 0.083 | 0.073 | 1.103 | 0.271 | Not supported |
H15 | INNOVATIVENESS → BI | 0.131 | 0.121 | 0.064 | 2.045 | 0.041 | supported |
Construct | R2 | Interpretation |
---|---|---|
PU | 0.362 | moderate |
SN | 0.275 | moderate |
PBC | 0.461 | moderate |
ATD | 0.514 | moderate |
BI | 0.704 | moderate |
Construct | SSO | SSE | Q2 (=1 − SSE/SSO) | Interpretation Q2 Value |
---|---|---|---|---|
ATD | 603.000 | 387.197 | 0.358 | large |
BI | 402.000 | 186.412 | 0.536 | large |
PBC | 804.000 | 495.756 | 0.383 | large |
PU | 603.000 | 446.721 | 0.259 | medium |
SN | 603.000 | 472.187 | 0.217 | medium |
Relationship | F-Square | Effect Size |
---|---|---|
ATD → BI | 0.007 | small |
HABIT → ATD | 0.034 | small |
HABIT → BI | 0.367 | large |
INNOVATIVENESS → BI | 0.027 | small |
KNOWLEDGE → ATD | 0.028 | small |
KNOWLEDGE → PBC | 0.037 | small |
KNOWLEDGE → PU | 0.016 | small |
KNOWLEDGE → SN | 0.033 | small |
PBC → BI | 0.010 | small |
PU → ATD | 0.540 | large |
PU → BI | 0.064 | small |
SN → BI | 0.003 | small |
VALUE → PBC | 0.487 | large |
VALUE → PU | 0.346 | large |
VALUE → SN | 0.182 | medium |
Variable | Male | Female | t-Value | p-Value | ||
---|---|---|---|---|---|---|
Mean | Std | Mean | Std | |||
KNW | 3.8500 | 0.75886 | 3.8494 | 0.67871 | 0.000 | 0.997 |
VAL | 4.0833 | 0.44150 | 4.0146 | 0.59267 | 0.367 | 0.545 |
ATD | 3.9333 | 0.49052 | 4.1092 | 0.53971 | 2.779 | 0.097 |
SN | 3.9778 | 0.80674 | 3.7251 | 0.65815 | 3.504 | 0.063 |
PBC | 4.1500 | 0.41833 | 4.0716 | 0.55005 | 0.552 | 0.458 |
PU | 4.1000 | 0.41199 | 4.0994 | 0.59177 | 0.000 | 0.996 |
BI | 4.1000 | 0.63518 | 3.9298 | 0.60468 | 1.991 | 0.160 |
HB | 3.7500 | 0.75144 | 3.5965 | 0.79579 | 0.965 | 0.327 |
INV | 3.8417 | 0.49777 | 3.9898 | 0.60595 | 1.600 | 0.207 |
Construct | Under 20 | 20–25 | t-Value | p-Value | ||
---|---|---|---|---|---|---|
Mean | Std | Mean | Std | |||
KNW | 3.8750 | 0.66366 | 3.8401 | 0.70038 | 0.101 | 0.751 |
VAL | 3.9568 | 0.66208 | 4.0499 | 0.53579 | 1.046 | 0.308 |
ATD | 4.0802 | 0.57530 | 4.0839 | 0.52174 | 0.002 | 0.966 |
SN | 3.9259 | 0.66562 | 3.7029 | 0.68594 | 4.239 | 0.041 |
PBC | 4.1435 | 0.53111 | 4.0612 | 0.53282 | 0.944 | 0.333 |
PU | 4.0494 | 0.60884 | 4.1179 | 0.55284 | 0.574 | 0.449 |
BI | 4.0833 | 0.67816 | 3.9082 | 0.57938 | 3.286 | 0.071 |
HB | 3.8333 | 0.81264 | 3.5408 | 0.76863 | 5.546 | 0.019 |
INV | 4.0833 | 0.61621 | 3.9252 | 0.57963 | 2.842 | 0.093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, T.T.; Jiang, P.; Mailizar, M.; Habibi, A. Predicting Factors Influencing Preservice Teachers’ Behavior Intention in the Implementation of STEM Education Using Partial Least Squares Approach. Sustainability 2022, 14, 9925. https://doi.org/10.3390/su14169925
Wijaya TT, Jiang P, Mailizar M, Habibi A. Predicting Factors Influencing Preservice Teachers’ Behavior Intention in the Implementation of STEM Education Using Partial Least Squares Approach. Sustainability. 2022; 14(16):9925. https://doi.org/10.3390/su14169925
Chicago/Turabian StyleWijaya, Tommy Tanu, Peijie Jiang, Mailizar Mailizar, and Akhmad Habibi. 2022. "Predicting Factors Influencing Preservice Teachers’ Behavior Intention in the Implementation of STEM Education Using Partial Least Squares Approach" Sustainability 14, no. 16: 9925. https://doi.org/10.3390/su14169925