Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Model
3.1. Production Function
3.2. Firms’ Production Decisions
3.3. Carbon Dioxide Emission Decisions of Enterprises
3.4. Maximizing Social Welfare
4. Methodology, Variables and Data
4.1. The Specification of Econometric Model
4.1.1. Non-Spatial Panel Econometric Model
4.1.2. Spatial Econometric Model
4.1.3. Spatial Moderating Effect Model
4.2. Descriptions of Variables
4.2.1. Dependent Variable
4.2.2. Core Independent Variables
- Fiscal revenue decentralization (FRD). Referring to Jiménez-Rubio et al. [65], FRD is calculated as the ratio of per capita local government budget revenue to central government budget revenue. Higher FRD is associated with a higher share of tax revenue owned by the local government in the region.
- Fiscal expenditure decentralization (FED). Following Xia et al. [66], we used the ratio of per capita local government budget expenditure to central government budget expenditure to measure FED. A higher FED shows that more discretion is given to local governments in the allocation of public spending in their regions.
4.2.3. Moderating Variables
- R&D intensity (RD). Theoretically, the increase in R&D investment can promote low-carbon technology progress and thus effectively reduce CO2 emissions. Therefore, we adopt the ratio of R&D investment to GDP to reflect R&D intensity.
- Foreign direct investment (FDI). Previous studies have demonstrated that FDI can promote enterprises’ technological innovation through the effects of demonstration, competition, and input flow, which in turn improve resource allocation efficiency and thus promote CO2 emissions reduction. Therefore, FDI is presented by the actual per capita FDI in each province.
4.2.4. Control Variables
4.3. Data Sources
5. Empirical Results and Analysis
5.1. Panel Unit Root Test and Cointegration Test
5.2. Empirical Results and Analysis of Non-Spatial Panel Economic Model
5.3. Spatial Econometric Regression Results and Analysis
5.3.1. Spatial Correlation Test
5.3.2. Empirical Results and Analysis of Spatial Econometric Models
5.3.3. Spatial Heterogeneity of Spillover Effects
5.3.4. Robustness Tests
- Replacing the independent variables (Method 1). The denominator of the FD constructed in this paper is a deterministic value, which makes FD as a relative indicator. To ensure the accuracy of the FD index, following Chen et al. [72], we reconstructed the FD, and then estimated the Equation (20). The new FD indicator is as follows:
- Adjusting the sample interval (Method 2). Usually, the results will vary for different sample period. To verify the robustness of empirical results, we simply considered the sample data from 2005 to 2017 to see whether the estimation results will change.
- Replacing the spatial weight matrix (Method 3). The weight matrix of economic geographical distance (W2) was chosen to replace W1. Because W2 considers both the geographical distance and the variability of economic development among provinces, it may be more appropriate to estimate the SAR model. The regression results of spatial spillover effects for all robustness tests are presented in Table 9.
5.4. Further Discussion
5.4.1. Moderating Effect Analysis
5.4.2. Environmental Policy Impact Analysis
6. Conclusions and Policy Recommendations
6.1. Conclusions
6.2. Policy Recommendations
- Strengthening regional collaborative governance. The central government should foster people’s awareness of carbon emission reduction, and accelerate to establish a cross-regional and cross-sectoral carbon emission management mechanism. First, the government should increase the publicity of carbon emission reduction, and enhance environmental law enforcement and investigation; second, China should develop differentiated emission reduction strategies in the east, central and west regions according to the difference of talents, technology, resource endowment, and economic development level. Finally, considering that reducing CO2 emission is a public good, the central government needs to unify the planning to realize the integration and coordination of carbon emission governance in the whole region.
- Adjusting the tax system. The central government should improve the fiscal decentralization system, clarify the division of powers and responsibilities, optimize the structure of central and local financial and administrative powers, and implement positive interaction. Specifically, China should improve its tax system. Local governments should increase tax incentives for green production enterprises, accelerate the formulation and introduction of carbon tax nationwide, and implement policies such as environmental tax and emission permits to promote the R&D and innovation of green technologies. Meanwhile, through improving the system of budget revenue and expenditure supervision, China should fundamentally optimize the distribution of financial resources to promote carbon emission reduction.
- Improving the structure of fiscal expenditures. Firstly, it is essential to optimize the structure of local governments’ fiscal expenditures and change the spending preference of “emphasizing production over science and education”. Fiscal funds should be focused on scientific research, education development, and other aspects to promote low-carbon technological innovation. Secondly, the government should clarify the responsibility of spending on public services such as environmental protection at all levels, reduce common responsibilities, and avoid overlapping responsibilities. Thirdly, the local government should adjust the form of environmental protection investment by establishing a green development fund and building a low-carbon technology subsidy system to encourage enterprises to carry out green innovation spontaneously.
- Restructuring the promotion system for officials. The central government should improve the existing government performance assessment system. To be specific, China should strengthen the horizontal supervision of local officials and fully utilize the coordinated supervision role of the government, the media, and the public. In addition, a multi-dimensional assessment system, which will combine with an accountability regulatory and disciplinary system to gradually change from a GDP orientation to a people’s livelihood orientation, should be quickly established.
6.3. Limitations and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, L.; Wei, C.; Cai, S. Economic development and carbon dioxide emissions in China: Provincial panel data analysis. China Econ. Rev. 2012, 23, 371–384. [Google Scholar] [CrossRef]
- Mattauch, L.; Matthews, H.D.; Millar, R.; Rezai, A.; Solomon, S.; Venmans, F. Steering the climate system: Using inertia to lower the cost of policy: Comment. Am. Econ. Rev. 2020, 110, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Zheng, X.P. China’s fiscal decentralization and regional economic growth. Jpn. Econ. Rev. 2013, 64, 537–549. [Google Scholar] [CrossRef]
- Yang, Z. Tax reform, fiscal decentralization, and regional economic growth: New evidence from China. Econ. Model. 2016, 59, 520–528. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Li, J. Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Vera, S.; Sauma, E. Does a carbon tax make sense in countries with still a high potential for energy efficiency? Comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chilean case. Energy 2015, 88, 478–488. [Google Scholar] [CrossRef]
- Xu, H.; Li, X. Effect mechanism of Chinese-style decentralization on regional carbon emissions and policy improvement: Evidence from China’s 12 urban agglomerations. Environ. Dev. Sustain. 2022, 1–32. [Google Scholar] [CrossRef]
- Oates, W.E. Fiscal decentralization and economic development. Natl. Tax J. 1993, 46, 237–243. [Google Scholar] [CrossRef]
- Baskaran, T.; Feld, L.P.; Schnellenbach, J. Fiscal federalism, decentralization, and economic growth: A meta-analysis. Econ. Inq. 2016, 54, 1445–1463. [Google Scholar] [CrossRef] [Green Version]
- He, Q. Fiscal decentralization and environmental pollution: Evidence from Chinese panel data. China Econ. Rev. 2015, 36, 86–100. [Google Scholar] [CrossRef]
- Lv, Y.; Pang, Y.; Doğan, B. The role of Chinese fiscal decentralization in the governance of carbon emissions: Perspectives from spatial effects decomposition and its heterogeneity. Ann. Reg. Sci. 2022, 68, 635–668. [Google Scholar] [CrossRef]
- Andersen, J.J.; Greaker, M. Emission trading with fiscal externalities: The case for a common carbon tax for the non-ETS emissions in the EU. Environ. Resour. Econ. 2018, 71, 803–823. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does fiscal decentralization improve energy and environmental performance? New perspective on vertical fiscal imbalance. Appl. Energy 2021, 302, 117–495. [Google Scholar] [CrossRef]
- Akai, N.; Hosoi, M.; Nishimura, Y. Fiscal decentralization and economic volatility: Evidence from state-level cross-section data of the USA. Jpn. Econ. Rev. 2009, 60, 223–235. [Google Scholar] [CrossRef]
- Hayek, F.A. The use of knowledge in society. In Knowledge Management and Organizational Design; Routledge: London, UK, 2009; pp. 7–15. [Google Scholar]
- Khan, Z.; Ali, S.; Dong, K.; Li, R.Y.M. How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital. Energy Econ. 2021, 94, 105060. [Google Scholar] [CrossRef]
- Jin, J.; Zou, H.F. Fiscal decentralization, revenue and expenditure assignments, and growth in China. J. Asian Econ. 2005, 16, 1047–1064. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Weingast, B.R. Federalism as a commitment to reserving market incentives. J. Econ. Perspect. 1997, 11, 83–92. [Google Scholar] [CrossRef]
- Iimi, A. Decentralization and economic growth revisited: An empirical note. J. Urban Econ. 2005, 57, 449–461. [Google Scholar] [CrossRef]
- Buser, W. The impact of fiscal decentralization on economics performance in high-income OECD nations: An institutional approach. Public Choice 2011, 149, 31–48. [Google Scholar] [CrossRef]
- Canavire-Bacarreza, G.; Martinez-Vazquez, J.; Yedgenov, B. Identifying and disentangling the impact of fiscal decentralization on economic growth. World Dev. 2020, 127, 104742. [Google Scholar] [CrossRef] [Green Version]
- Huynh, C.M.; Tran, H.N. Moderating effects of corruption and informality on the fiscal decentralization—economic growth nexus: Insights from OECD countries. Ann. Public Coop. Econ. 2021, 92, 355–373. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, H.F. Fiscal decentralization, public spending, and economic growth in China. J. Public Econ. 1998, 67, 221–240. [Google Scholar] [CrossRef] [Green Version]
- Davoodi, H.; Zou, H.F. Fiscal decentralization and economic growth: A cross-country study. J. Urban Econ. 1998, 43, 244–257. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Ezcurra, R. Is fiscal decentralization harmful for economic growth? Evidence from the OECD countries. J. Econ. Geogr. 2011, 11, 619–643. [Google Scholar] [CrossRef] [Green Version]
- Baskaran, T.; Feld, L.P. Fiscal decentralization and economic growth in OECD countries: Is there a relationship? Public Financ. Rev. 2013, 41, 421–445. [Google Scholar] [CrossRef]
- Gemmell, N.; Kneller, R.; Sanz, I. Fiscal decentralization and economic growth: Spending versus revenue decentralization. Econ. Inq. 2013, 51, 1915–1931. [Google Scholar] [CrossRef]
- Thießen, U. Fiscal decentralization and economic growth in high-income OECD Countries. Fisc. Stud. 2003, 24, 237–274. [Google Scholar] [CrossRef]
- Cantarero, D.; Gonzalez, P.P. Fiscal decentralization and economic growth: Evidence from Spanish regions. Public Budg. Financ. 2009, 29, 24–44. [Google Scholar] [CrossRef]
- Mauro, L.; Pigliaru, F.; Carmeci, G. Decentralization and growth: Do informal institutions and rule of law matter? J. Policy Model. 2018, 40, 873–902. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Dong, B.; Gu, G.; Chen, R.; Li, Y.; Li, Q. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. A multivariate analysis of carbon dioxide emissions, electricity consumption, economic growth, financial development, industrialization, and urbanization in Senegal. Energy Sources Part B. 2017, 12, 77–84. [Google Scholar] [CrossRef]
- Heidari, H.; Katircioğlu, S.T.; Saeidpour, L. Economic growth, CO2 emissions, and energy consumption in the five ASEAN countries. Int. J. Electr. Power Energy Syst. 2015, 64, 785–791. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Sab, C.N.B.C.; Fereidouni, H.G. Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission. Energy 2012, 46, 156–167. [Google Scholar] [CrossRef]
- Li, L.; Cai, Y.; Liu, L. Research on the Effect of Urbanization on China’s Carbon Emission Efficiency. Sustainability 2020, 12, 163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy. 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Hao, Y.; Ba, N.; Ren, S.; Wu, H. How does international technology spillover affect China’s carbon emissions? A new perspective through intellectual property protection. Sustain. Prod. Consump. 2021, 25, 577–590. [Google Scholar] [CrossRef]
- Adams, S.; Boateng, E.; Acheampong, A.O. Transport energy consumption and environmental quality: Does urbanization matter? Sci. Total Environ. 2020, 744, 140617. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Wang, Y.; Qin, Y. Industrial structure, technological progress and CO2 emissions in China: Analysis based on the STIRPAT framework. Nat. Hazards 2017, 88, 1545–1564. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.E.; Chang, C.P. The effects of environmental regulation and industrial structure on carbon dioxide emission: A non-inear investigation. Environ. Sci. Pollut. Res. 2019, 26, 30252–30267. [Google Scholar] [CrossRef]
- Liu, X.; Latif, Z.; Latif, S.; Mahmood, N. The corruption-emissions nexus: Do information and communication technologies make a difference? Util. Policy 2021, 72, 101244. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Wang, B. The moderating role of corruption between economic growth and CO2 emissions: Evidence from BRICS economies. Energy 2018, 148, 506–513. [Google Scholar] [CrossRef]
- Ren, Y.S.; Ma, C.Q.; Apergis, N.; Sharp, B. Responses of carbon emissions to corruption across Chinese provinces. Energy Econ. 2021, 98, 105241. [Google Scholar] [CrossRef]
- Noorpoor, A.R.; Kudahi, S.N. CO2 emissions from Iran’s power sector and analysis of the influencing factors using the stochastic impacts by regression on population, affluence and technology (STIRPAT) model. Carbon Manag. 2015, 6, 101–116. [Google Scholar] [CrossRef]
- Rahman, M.M.; Nepal, R.; Alam, K. Impacts of human capital, exports, economic growth and energy consumption on CO2 emissions of a cross-sectionally dependent panel: Evidence from the newly industrialized countries (NICs). Environ. Sci. Policy 2021, 121, 24–36. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Chapman, A.; Farabi-Asl, H. Nation-wide emission trading model for economically feasible carbon reduction in Japan. Appl. Energy 2019, 255, 113869. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Y.; Zhao, X.; Chen, H. The policy effects and influence mechanism of China’s carbon emissions trading scheme. Air Qual. Atmos. Health 2021, 14, 2101–2114. [Google Scholar] [CrossRef]
- Ma, Q.; Murshed, M.; Khan, Z. The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China. Energy Policy 2021, 155, 112345. [Google Scholar] [CrossRef]
- Tiebout, C.M. A pure theory of local expenditures. J. Polit. Econ. 1956, 64, 416–424. [Google Scholar] [CrossRef]
- Millimet, D.L. Assessing the empirical impact of environmental federalism. J. Reg. Sci. 2003, 43, 711–733. [Google Scholar] [CrossRef]
- Sigman, H. Decentralization and environmental quality: An international analysis of water pollution levels and variation. Land Econ. 2014, 90, 114–130. [Google Scholar] [CrossRef]
- Lee, D.; Cho, S.H.; Roberts, R.K.; Lambert, D.M. Effects of Population Redistribution on Greenhouse Gas Emissions: A Case Study of South Korea. Int. Reg. Sci. Rev. 2016, 39, 177–202. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Z.Y.; Liang, Q.M. An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization. Energy Policy 2017, 103, 203–211. [Google Scholar] [CrossRef]
- Iqbal, N.; Abbasi, K.R.; Shinwari, R.; Guangcai, W.; Ahmad, M.; Tang, K. Does exports diversification and environmental innovation achieve carbon neutrality target of OECD economies? J. Environ. Manag. 2021, 291, 112648. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, Z.; Malik, H.A.; Razzaq, A.; An, H.; Hassan, M. Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries. Energy Environ. 2021, 33, 752–782. [Google Scholar] [CrossRef]
- Liu, L.; Ding, D.; He, J. Fiscal decentralization, economic growth, and haze pollution decoupling effects: A simple model and evidence from China. Comput. Econ. 2019, 54, 1423–1441. [Google Scholar] [CrossRef]
- Cheng, S.; Fan, W.; Chen, J.; Meng, F.; Liu, G.; Song, M.; Yang, Z. The impact of fiscal decentralization on CO2 emissions in China. Energy 2020, 192, 116685. [Google Scholar] [CrossRef]
- Du, J.; Sun, Y. The nonlinear impact of fiscal decentralization on carbon emissions: From the perspective of biased technological progress. Environ. Sci. Pollut. Res. 2021, 28, 29890–29899. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. North-South trade and the environment. Q. J. Econ. 1994, 109, 755–787. [Google Scholar] [CrossRef]
- Grimaud, A.; Rougé, L. Polluting non-renewable resources, innovation and growth: Welfare and environmental policy. Resour. Energy Econ. 2005, 27, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46 (Supp. 1), 234–240. [Google Scholar] [CrossRef]
- Chai, J.; Hao, Y.; Wu, H.; Yang, Y. Do constraints created by economic growth targets benefit sustainable development? Evidence from China. Bus. Strateg. Environ. 2021, 30, 4188–4205. [Google Scholar] [CrossRef]
- Bai, P.; Tang, Y.; Zhang, W.; Zeng, M. Does Economic Policy Uncertainty Matter for Healthcare Expenditure in China? A Spatial Econometric Analysis. Front. Public Health 2021, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Jiménez-Rubio, D. The impact of fiscal decentralization on infant mortality rates: Evidence from OECD countries. Soc. Sci. Med. 2011, 73, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; You, D.; Tang, Z.; Yang, B. Analysis of the spatial effect of fiscal decentralization and environmental decentralization on carbon emissions under the pressure of officials’ promotion. Energies 2021, 14, 1878. [Google Scholar] [CrossRef]
- Shi, T.; Yang, S.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment-Empirical evidence from tropical and subtropical regions of China. J. Clean Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Wang, B.; Tian, L.; Yao, Z. Institutional uncertainty, fragmented urbanization and spatial lock-in of the peri-urban area of China: A case of industrial land redevelopment in Panyu. Land Use Policy 2018, 72, 241–249. [Google Scholar] [CrossRef]
- Örsal, D.D.K. Comparison of Panel Cointegration Tests (No. 2007, 029). SFB 649 Discussion Paper. 2007. Available online: http://hdl.handle.net/10419/25201 (accessed on 16 June 2022).
- Xu, J.; Wang, H.; Tang, K. The sustainability of industrial structure on green eco−efficiency in the Yellow River Basin. Econ. Anal. Policy 2022, 74, 775–788. [Google Scholar] [CrossRef]
- Huang, J.; Chen, X.; Huang, B.; Yang, X. Economic and environmental impacts of foreign direct investment in China: A spatial spillover analysis. China Econ. Rev. 2017, 45, 289–309. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Song, Y.; Liang, X.; Wang, L.; Geng, Y. Fiscal decentralization, urban-rural income gap, and tourism. Sustainability 2020, 12, 10398. [Google Scholar] [CrossRef]
Themes | Results | Authors | |
---|---|---|---|
The link between fiscal decentralization and economic development | Positive relationship | Chu and Zheng [3]; Iimi [19] | |
Non-linear relationship | Yang [4]; Thießen [28] | ||
Negative relationship | Davoodi and Zou [24]; Baskaran and Feld [26] | ||
The factors influencing CO2 emissions | Economic factors | Positive relationship | Ma ei al. [31]; Hao et al. [37], |
Non-linear relationship | Heidari et al. [33]; Zhang et al. [36]; Chen et al. [40] | ||
Negative relationship | Asumadu-Sarkodie and Owusu [32]; Li et al. [39] | ||
Non-economic factors | Positive relationship | Liu et al. [41]; Wang et al. [42] | |
Non-linear relationship | Ren et al. [43] | ||
Negative relationship | Rahman et al. [45]; Wang et al. [47] | ||
The nexus between fiscal decentralization and CO2 emissions | Positive relationship | Zhang et al. [53]; Iqbal et al. [54] | |
Non-linear relationship | Liu et al. [56]; Du and Sun [58] | ||
Negative relationship | He [10]; Hayek [15] |
Variable | Definition | Obs | Mean | Std. Dev | Min | Max | VIF |
---|---|---|---|---|---|---|---|
lnCE | Per capita carbon emissions | 510 | 1.6681 | 0.5493 | 0.2660 | 3.3606 | - |
FRD | Fiscal revenue decentralization | 510 | 1.1666 | 1.0068 | 0.3427 | 5.9256 | 3.38 |
FED | Fiscal expenditure decentralization | 510 | 5.5143 | 2.9886 | 1.2910 | 14.8297 | 2.61 |
RD | R&D intensity | 510 | 0.0148 | 0.0107 | 0.0017 | 0.0630 | 3.59 |
lnFDI | Foreign direct investment | 510 | 5.9239 | 1.3907 | 1.0821 | 8.8097 | 2.25 |
lnPGDP | Economic development level | 510 | 10.0412 | 0.6378 | 8.2141 | 11.6462 | 4.37 |
IS | Industrial structure | 510 | 1.1572 | 0.6254 | 0.5271 | 5.2340 | 2.13 |
HC | Human capital | 510 | 8.7721 | 1.0628 | 6.0405 | 13.2268 | 4.69 |
Variable | Level | 1st Difference | ||||
---|---|---|---|---|---|---|
LLC | ADF-Fisher | PP-Fisher | LLC | ADF-Fisher | PP-Fisher | |
lnCE | −9.5462 *** | 152.89 *** | 345.83 *** | −8.5433 *** | 126.56 *** | 126.94 *** |
FRD | −4.2603 *** | 53.282 | 35.511 | −10.870 *** | 194.46 *** | 274.19 *** |
FED | −6.2180 *** | 48.430 | 50.371 | −8.3063 *** | 140.13 *** | 197.76 *** |
lnFDI | −3.4316 *** | 92.041 *** | 183.45 *** | −9.9681 *** | 221.99 *** | 356.77 *** |
lnPGDP | −15.293 *** | 154.85 *** | 613.61 *** | −8.0416 *** | 123.11 *** | 121.51 *** |
IS | −4.3829 *** | 42.635 | 81.109 ** | −6.7391 *** | 137.27 *** | 193.61 *** |
HC | −1.3111 * | 76.067 * | 116.65 *** | −13.125 *** | 234.95 *** | 524.65 *** |
RD | −0.2391 | 41.845 | 78.012 * | −9.2310 *** | 193.60 *** | 286.84 *** |
Test Method | FRD as the Core Independent Variable | FED as the Core Independent Variable | |||
---|---|---|---|---|---|
Pedroni test | common (within-dimension) | Weighted-statistic | Prob | Weighted-statistic | Prob |
Panel v-Statistic | −1.7881 | 0.9631 | −3.3361 | 0.9996 | |
Panel rho-Statistic | 6.4063 | 1.0000 | 6.7316 | 1.0000 | |
Panel PP-Statistic | −10.9000 | 0.0000 | −9.9820 | 0.0000 | |
Panel ADF-Statistic | −2.5589 | 0.0053 | −3.5392 | 0.0002 | |
individual (between-dimension) | Statistic | Prob | Statistic | Prob | |
Group rho-Statistic | 7.9555 | 1.0000 | 8.0436 | 1.0000 | |
Group PP-Statistic | −20.8197 | 0.0000 | −18.8094 | 0.0000 | |
Group ADF-Statistic | −2.1451 | 0.0160 | −2.4549 | 0.0070 | |
Kao test | T-statistic | p value | T-statistic | p value | |
ADF | −2.6868 | 0.0036 | −3.2116 | 0.0007 | |
Residuals | 0.0036 | - | 0.0036 | - | |
HAC variance | 0.0049 | - | 0.0049 | - |
Variables | RE | FE | FGLS | DIFF-GMM | SYS-GMM | |||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
FRD | 0.1508 *** | 0.2846 *** | 0.1619 *** | 0.1059 *** | 0.1621 *** | |||||
(0.0310) | (0.0322) | (0.0316) | (0.0381) | (0.0515) | ||||||
FED | 0.0630 *** | 0.0560 *** | 0.0622 *** | 0.0264 *** | 0.0463 *** | |||||
(0.0065) | (0.0075) | (0.0064) | (0.0102) | (0.0059) | ||||||
RD | −13.545 *** | −13.328 *** | −23.277 *** | −18.518 *** | −13.056 *** | −13.211 *** | −23.437 *** | −28.352 *** | −5.2582 * | −6.2004 *** |
(2.3042) | (2.1527) | (2.3281) | (2.3470) | (2.2506) | (2.1134) | (4.0203) | (4.2825) | (2.8415) | (1.6605) | |
lnFDI | −0.0395 *** | −0.0169 | −0.0365 *** | −0.0097 | −0.0371 *** | −0.0158 | −0.0141 * | −0.0184 ** | −0.0652 *** | −0.0209 ** |
(0.0116) | (0.0109) | (0.0109) | (0.0113) | (0.0112) | (0.0106) | (0.0084) | (0.0082) | (0.0131) | (0.0106) | |
lnPGDP | 0.7377 *** | 0.5975 *** | 0.1220 | 0.2483 *** | 0.7405 *** | 0.6069 *** | 0.0124 | 0.0793 | 0.0981 | 0.1397 *** |
(0.0304) | (0.0323) | (0.0756) | (0.0745) | (0.0296) | (0.0315) | (0.0911) | (0.0822) | (0.0684) | (0.0454) | |
IS | −0.2841 *** | −0.2812 *** | −0.3200 *** | −0.3566 *** | −0.2780 *** | −0.2767 *** | −0.2102 *** | −0.3182 *** | −0.4692 *** | −0.4342 *** |
(0.0284) | (0.0262) | (0.0346) | (0.0351) | (0.0278) | (0.0255) | (0.0492) | (0.0381) | (0.0526) | (0.0444) | |
HC | −0.0366 | −0.0645 *** | −0.0822 *** | −0.1817 ** | −0.0454 * | −0.0725 *** | −0.0446 | −0.0719 *** | −0.0406 | −0.0036 |
(0.0255) | (0.0241) | (0.0311) | (0.0496) | (0.0248) | (0.0235) | (0.0380) | (0.0268) | (0.0337) | (0.0363) | |
L.lnCE | 0.4455 *** | 0.3708 *** | 0.3876 *** | 0.4035 *** | ||||||
(0.0753) | (0.0404) | (0.0395) | (0.0341) | |||||||
R2 | 0.3217 | 0.4081 | 0.2873 | 0.2914 | 0.4257 | 0.4702 | ||||
Hausman | 25.35 *** | 21.82 *** | ||||||||
AR (1) | 0.0017 | 0.0107 | 0.0378 | 0.0146 | ||||||
AR (2) | 0.8040 | 0.9666 | 0.8211 | 0.6389 | ||||||
Hansen | 0.2676 | 0.4140 | 0.3632 | 0.4657 | ||||||
Obs | 510 | 510 | 510 | 510 | 510 | 510 | 480 | 480 | 480 | 480 |
Year | Moran’s I | Z-Stat Value | p-Value | Year | Moran’s I | Z-Stat Value | p-Value |
---|---|---|---|---|---|---|---|
2003 | 0.327 *** | 2.945 | 0.002 | 2012 | 0.414 *** | 3.699 | 0.000 |
2004 | 0.375 *** | 3.324 | 0.000 | 2013 | 0.400 *** | 3.573 | 0.000 |
2005 | 0.383 *** | 3.380 | 0.000 | 2014 | 0.410 *** | 3.656 | 0.000 |
2006 | 0.382 *** | 3.376 | 0.000 | 2015 | 0.385 *** | 3.457 | 0.000 |
2007 | 0.394 *** | 3.481 | 0.000 | 2016 | 0.359 *** | 3.231 | 0.001 |
2008 | 0.410 *** | 3.631 | 0.000 | 2017 | 0.334 *** | 3.047 | 0.001 |
2009 | 0.395 *** | 3.518 | 0.000 | 2018 | 0.238 ** | 3.034 | 0.001 |
2010 | 0.422 *** | 3.745 | 0.000 | 2019 | 0.332 *** | 3.047 | 0.001 |
2011 | 0.413 *** | 3.703 | 0.000 |
Variables | Coefficient | Direct | Indirect | Total | Coefficient | Direct | Indirect | Total |
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
FRD | 0.2908 *** | 0.2944 *** | 0.0784 *** | 0.3728 *** | ||||
(9.2768) | (9.5402) | (3.4622) | (8.2187) | |||||
FED | 0.0546 *** | 0.0551 *** | 0.0109 *** | 0.0659 *** | ||||
(7.3481) | (7.0258) | (2.9854) | (6.6647) | |||||
RD | −20.028 *** | −20.350 *** | −5.3663 *** | −25.717 *** | −16.029 *** | −16.059 *** | −3.1413 *** | −19.200 *** |
(−8.5185) | (−8.7219) | (−3.8305) | (−8.7803) | (−6.7116) | (−6.9063) | (−3.1840) | (−7.0177) | |
lnFDI | −0.0378 *** | −0.0385 *** | −0.0103 ** | −0.0488 *** | −0.0111 | −0.0113 | −0.0023 | −0.0136 |
(−3.5512) | (−3.5652) | (−2.4339) | (−3.4205) | (−0.9919) | (−0.9989) | (−0.9171) | (−0.9958) | |
lnPGDP | 0.1500 ** | 0.1541 ** | 0.0409 * | 0.1950 ** | 0.2726 *** | 0.2767 *** | 0.0549 ** | 0.3315 *** |
(2.0361) | (2.1054) | (1.8032) | (2.0898) | (3.7213) | (3.7396) | (2.3354) | (3.6246) | |
IS | −0.2754 *** | −0.2791 *** | −0.0739 *** | −0.3530 *** | −0.3237 *** | −0.3258 *** | −0.0639 *** | −0.3897 *** |
(−8.0595) | (−7.8663) | (−3.5752) | (−7.5772) | (−9.2308) | (−9.3339) | (−3.2765) | (−9.2026) | |
HC | −0.0896 *** | −0.0881 *** | −0.0236 ** | −0.1116 *** | −0.0698 ** | −0.0707 ** | −0.0142 * | −0.0849 ** |
(−2.9559) | (−2.8095) | (−2.1530) | (−2.7436) | (−2.2442) | (−2.3036) | (−1.7720) | (−2.2645) | |
ρ | 0.2198 *** | 0.1678 *** | ||||||
(4.7738) | (3.5792) | |||||||
Log-Lik | 404.47 | 389.96 | ||||||
Adj-R2 | 0.5371 | 0.5143 | ||||||
Obs | 510 | 510 |
Variables | The Spatial Spillover Effect Based on FRD Perspective | The Spatial Spillover Effect Based on FED Perspective | ||||
---|---|---|---|---|---|---|
Eastern | Central | Western | Eastern | Central | Western | |
FRD | 0.0338 ** | 0.0024 | 0.0752 | |||
(2.0274) | (0.1190) | (1.1831) | ||||
FED | 0.0053 | −0.0005 | 0.0139 ** | |||
(1.4771) | (−0.1024) | (2.0571) | ||||
RD | −2.1688 * | 0.3333 | −2.8664 | −1.5609 * | 0.2509 | −6.0738 * |
(−1.9032) | (0.3737) | (−1.1562) | (−1.6868) | (0.2822) | (−1.9484) | |
lnFDI | −0.0141 * | −0.0005 | 0.0007 | −0.0086 | −0.0007 | 0.0118 |
(−1.9120) | (−0.1492) | (0.3801) | (−1.4228) | (−0.1965) | (1.5701) | |
lnPGDP | 0.1656 ** | −0.0797 * | −0.0820 | 0.1885 ** | −0.0755 * | −0.1714 ** |
(2.1642) | (1.6229) | (1.2066) | (2.0703) | (1.6372) | (−2.3810) | |
IS | −0.0282 ** | −0.0219 | −0.0259 | −0.0342 * | −0.0221 | −0.1022 ** |
(2.0557) | (−1.2883) | (−1.0299) | (−1.9639) | (−1.2921) | (−2.0380) | |
HC | −0.0407 ** | −0.0089 | −0.0170 | −0.0323 * | −0.0090 | −0.0524 * |
(−2.0705) | (−0.9834) | (−1.0805) | (−1.8573) | (−1.0718) | (−1.7978) |
Variables | The Spatial Spillover Effect Based on FRD Perspective | The Spatial Spillover Effect Based on FED Perspective | ||||
---|---|---|---|---|---|---|
Method 1 | Method 2 | Method 3 | Method 1 | Method 2 | Method 3 | |
FRD | 0.5230 *** | 0.0565 *** | 0.0906 *** | |||
(3.1298) | (2.7882) | (3.3797) | ||||
FED | 0.4519 *** | 0.0178 *** | 0.0142 *** | |||
(2.7374) | (3.3024) | (2.0571) | ||||
RD | −3.4522 *** | −4.2807 *** | −7.1032 *** | −3.5179 *** | −4.6582 *** | −3.9701 *** |
(−3.3075) | (−2.9052) | (−3.6291) | (−3.0762) | (−3.4939) | (−3.0499) | |
lnFDI | −0.0095 ** | −0.0079 ** | −0.0119 ** | −0.0102 ** | −0.0038 | −0.0012 |
(−2.5360) | (−2.2153) | (−2.2511) | (−2.3860) | (−1.0113) | (−0.3834) | |
lnPGDP | −0.0254 | 0.0239 | 0.0378 | 0.0170 | 0.0718 ** | 0.0657 ** |
(−1.2209) | (1.3895) | (1.1305) | (0.7056) | (2.4677) | (2.1336) | |
IS | −0.0626 *** | −0.0579 *** | −0.0698 *** | −0.0676 *** | −0.0932 *** | −0.0590 *** |
(3.2771) | (−2.8680) | (−3.2745) | (−3.1852) | (−3.7049) | (−2.8375) | |
HC | −0.0119 | −0.0154 * | −0.0247 * | −0.0058 | −0.0181 * | −0.0136 |
(−1.5811) | (−1.8606) | (−1.8474) | (−0.7146) | (−1.7253) | (−1.4687) |
Variables | Technology Innovation Pathway (R&D) | Government Resource Allocation Pathway (FDI) | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Direct | Indirect | Total | Coefficient | Direct | Indirect | Total | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
FRD | 0.3912 *** | 0.3953 *** | 0.1021 *** | 0.4975 *** | 1.0495 *** | 1.0543 *** | 0.2037 *** | 1.2579 *** |
(9.8660) | (10.026) | (3.4843) | (8.7216) | (8.2407) | (8.3991) | (2.9596) | (7.9612) | |
RD | −10.255 *** | −10.376 *** | −2.6511 ** | −13.027 *** | −15.845 *** | −16.097 *** | −3.0988 *** | −19.196 *** |
(−3.0634) | (−3.1210) | (−2.4860) | (−3.1325) | (−6.6319) | (−6.8211) | (−2.9105) | (−6.7355) | |
lnFDI | −0.0392 *** | −0.0399 *** | −0.0103 ** | −0.0503 *** | 0.0363 ** | 0.0363 ** | 0.0069 * | 0.0432 ** |
(−3.7455) | (−3.7988) | (−2.5739) | (−3.6819) | (2.2954) | (2.2744) | (1.8672) | (2.2856) | |
FRD * RD | −4.1818 *** | −4.2013 *** | −1.0802 *** | −5.2816 *** | ||||
(−4.0361) | (−4.0895) | (−2.7981) | (−4.0266) | |||||
FRD * lnFDI | −0.0945 *** | −0.0947 *** | −0.0183 *** | −0.1130 *** | ||||
(−6.1501) | (−6.2141) | (−2.8522) | (−6.1078) | |||||
lnPGDP | 0.0955 | 0.0975 | 0.0251 | 0.1226 | 0.0348 | 0.0313 | 0.0060 | 0.0373 |
(1.2980) | (1.2998) | (1.1800) | (1.2906) | (0.4759) | (0.4246) | (0.3914) | (0.4223) | |
IS | −0.2364 *** | −0.2390 *** | −0.0615 *** | −0.3005 *** | −0.2068 *** | −0.2094 *** | −0.0405 *** | −0.2499 *** |
(−6.7527) | (−6.8997) | (−3.3930) | (−6.6227) | (−5.8710) | (−6.0012) | (−2.7435) | (−5.7584) | |
HC | −0.0921 *** | −0.0921 *** | −0.0238 ** | −0.1159 *** | −0.0764 *** | −0.0759 *** | −0.0148 * | −0.0908 ** |
(−3.0894) | (−3.0292) | (−2.3017) | (−2.9807) | (−2.6096) | (−2.6016) | (−1.8703) | (−2.5480) | |
ρ | 0.2124 *** | 0.1682 *** | ||||||
(4.5624) | (3.6550) | |||||||
Log-Lik | 413.44 | 424.49 | ||||||
Adj-R2 | 0.5540 | 0.5757 | ||||||
Obs | 510 | 510 |
Variables | Technology Innovation Pathway (R&D) | Government Resource Allocation Pathway (FDI) | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Direct | Indirect | Total | Coefficient | Direct | Indirect | Total | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
FED | 0.0945 *** | 0.0949 *** | 0.0110 * | 0.1060 *** | 0.0731 *** | 0.0738 *** | 0.0116 ** | 0.0855 *** |
(11.213) | (11.065) | (1.9023) | (9.8085) | (4.8566) | (4.6903) | (2.5607) | (4.9039) | |
RD | 3.1841 | 3.0603 | 0.3617 | 3.4220 | −14.520 *** | −14.606 *** | −2.3490 ** | −16.955 *** |
(0.9844) | (0.9092) | (0.7416) | (0.9053) | (−5.4149) | (−5.5227) | (−2.3641) | (−5.4214) | |
lnFDI | 0.0026 | 0.0020 | 0.0002 | 0.0023 | 0.0109 | 0.0113 | 0.0014 | 0.0127 |
(0.2438) | (0.1921) | (0.1429) | (0.1885) | (0.5694) | (0.5629) | (0.4324) | (0.5502) | |
FED * RD | −2.1951 *** | −2.2017 *** | −0.2541 * | −2.4558 *** | ||||
(−8.2543) | (−8.1475) | (−1.9155) | (−7.9450) | |||||
FED * lnFDI | −0.0032 | −0.0033 | −0.0005 | −0.0037 | ||||
(−1.4149) | (−1.3697) | (−1.2097) | (−1.3787) | |||||
lnPGDP | 0.2114 *** | 0.2122 *** | 0.0245 | 0.2368 *** | 0.2622 *** | 0.2588 *** | 0.0418 ** | 0.3006 *** |
(3.0814) | (3.0690) | (1.6141) | (3.0477) | (3.5809) | (3.6026) | (2.1013) | (3.5449) | |
IS | −0.1750 *** | −0.1747 *** | −0.0203 * | −0.1950 *** | −0.3090 *** | −0.3117 *** | −0.0505 ** | −0.3621 *** |
(−4.6443) | (−4.8028) | (−1.7670) | (−4.6890) | (−8.2471) | (−7.9620) | (−2.4390) | (−7.2740) | |
HC | −0.0398 | −0.0410 | −0.0048 | −0.0458 | −0.0649 ** | −0.0664 ** | −0.0110 | −0.0773 ** |
(−1.3633) | (−1.3889) | (−1.0356) | (−1.3824) | (−2.0786) | (−2.1266) | (−1.5288) | (−2.0878) | |
ρ | 0.1050 ** | 0.1405 *** | ||||||
(2.1909) | (2.8992) | |||||||
Log-Lik | 426.29 | 391.27 | ||||||
Adj-R2 | 0.5772 | 0.5175 | ||||||
Obs | 510 | 510 |
Variables | 2003–2013 | 2014–2019 | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Indirect | Coefficient | Indirect | Coefficient | Indirect | Coefficient | Indirect | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
FRD | 0.2631 *** | 0.0306 | 0.0648 | 0.0227 | ||||
(8.0452) | (1.5878) | (1.5301) | (1.2474) | |||||
FED | 0.0603 *** | 0.0032 | 0.0086 | 0.0032 | ||||
(8.4119) | (0.8679) | (0.6458) | (0.5691) | |||||
RD | −14.605 *** | −1.6251 | −8.4605 *** | −0.3986 | −1.9108 | −0.7000 | −0.3306 | −0.0942 |
(−4.7732) | (−1.6337) | (−2.7742) | (−0.7771) | (−0.5901) | (−0.5373) | (−0.1078) | (−0.0719) | |
lnFDI | −0.0621 *** | −0.0073 | −0.0242 * | −0.0014 | −0.0137 | −0.0047 | −0.0125 | −0.0047 |
(−4.4337) | (−1.4737) | (−1.7151) | (−0.7174) | (−1.1188) | (−0.9441) | (−0.9858) | (−0.8229) | |
lnPGDP | 0.3829 | 0.0445 | 0.6722 *** | 0.0367 | 0.0585 | 0.0215 | 0.0776 | 0.0285 |
(3.8459) | (1.4579) | (7.3373) | (0.8621) | (0.3932) | (0.3582) | (0.5178) | (0.4560) | |
IS | −0.2713 *** | −0.0305 | −0.3017 *** | −0.0158 | −0.2140 *** | −0.0765 * | −0.2100 *** | −0.0778 * |
(−5.8290) | (−1.6101) | (−6.5916) | (−0.8532) | (−3.8020) | (−1.9189) | (−3.5055) | (−1.9291) | |
HC | −0.0640 ** | −0.0075 | −0.0469 | −0.0026 | −0.0101 | −0.0034 | −0.0087 | −0.0034 |
(−1.9998) | (−1.1794) | (−1.4853) | (−0.6523) | (−l0.3342) | (−0.3040) | (−0.2855) | (−0.2682) | |
ρ | 0.1024 * | 0.0498 | 0.2638 *** | 0.2763 *** | ||||
(1.7183) | (0.8638) | (2.9457) | (3.0994) | |||||
Log-Lik | 348.69 | 351.80 | 279.72 | 278.51 | ||||
Adj-R2 | 0.5885 | 0.5972 | 0.1303 | 0.1165 | ||||
Obs | 330 | 330 | 180 | 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, S. Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis. Sustainability 2022, 14, 9884. https://doi.org/10.3390/su14169884
Xu X, Li S. Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis. Sustainability. 2022; 14(16):9884. https://doi.org/10.3390/su14169884
Chicago/Turabian StyleXu, Xianpu, and Shan Li. 2022. "Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis" Sustainability 14, no. 16: 9884. https://doi.org/10.3390/su14169884
APA StyleXu, X., & Li, S. (2022). Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis. Sustainability, 14(16), 9884. https://doi.org/10.3390/su14169884