
sustainability

Article

Research on the Effect of Urbanization on China’s
Carbon Emission Efficiency

Lianshui Li 1, Yang Cai 1 and Liang Liu 2,*
1 School of Applied Meteorology, Nanjing University of Information Science & Technology,

Nanjing 210044, China; llsh@nuist.edu.cn (L.L.); caiyang@nuist.edu.cn (Y.C.)
2 School of Economics and Management, Southeast University, Nanjing 210096, China
* Correspondence: liuliang0204@seu.edu.cn

Received: 15 November 2019; Accepted: 23 December 2019; Published: 24 December 2019 ����������
�������

Abstract: Improvements in carbon emission efficiency are crucial to China’s economic growth; carbon
emission reduction and urbanization are two of the focuses of research on carbon emission efficiency.
This paper selects 2000–2015 panel data from 30 provinces in China, evaluates the carbon emission
efficiency of each province using the DEA method and, based on the STIRPAT expansion form,
empirically looks at the effect of urbanization on carbon emission efficiency. The results show that,
during the chosen time frame, not only did the carbon emission efficiency of China’s provinces show an
upward trend but the carbon emission efficiency of the Eastern, Central and Western regions differed
markedly, with the highest efficiency in the Eastern region, the second highest in the Central region
and the lowest in the Western region. After controlling for population density, economic development
level, energy intensity and industrial structure, urbanization we determine that urbanization can
indeed improve carbon emission efficiency, although there are regional differences. Urbanization is
conducive to improvements in carbon emission efficiency in both the Central and Western regions
but the promotion effect of the Western region is stronger. The effect in the Eastern region is not
significant. Based on the conclusions above, this paper puts forward policy recommendations that
promote both China’s lower carbon efficiency and future environmental protection.
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1. Introduction

With the rapid economic growth of China in recent years, environmental problems are now
becoming serious issues. This is especially true of carbon emissions. Carbon emissions are shorthand
for greenhouse gas emissions, which may constitute a disaster, not only for humans, but also for
the planet. Such catastrophic events include, inter alia, climate anomalies, shrinking glaciers, rising
sea levels caused by melting glaciers, flooding of some coastal cities, melting permafrost, loss of
biodiversity. Carbon emissions are closely related to various human activities, including both daily
activities and factory production. China’s GDP in 2017 ranked second in the world, accounting for
about 15% of world GDP. According to the 2017 Global Carbon Budget Report, made public during the
Bonn Climate Conference [1], 28% of the global carbon emissions are attributable to China. In 2015,
China submitted to the Secretariat of the United Nations Framework Convention on Climate Change
(INDC), a report reiterating that China’s carbon emissions would peak around 2030 and presenting
up to 20% of autonomous goals. Economic growth and population size are the two most important
factors influencing carbon emissions [2]. However, as both the world’s largest developing country
and the most populous country, China needs to focus on economic development. The increasing
aging of the population in China may further increase carbon emissions, thereby posing an obstacle to
the goal of emissions reduction [3,4]. At present, substitution of fossil fuels by renewable energy is
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one of the important methods undertaken by China to achieve a reduction in carbon emissions [5].
However, China’s leading role in renewable energy notwithstanding, the overall investment efficiency
of the new energy industry is relatively low [6]. In addition, some evidence has come to light that
environment regulation is one of the influencing factors. Nevertheless, as the current environmental
policy in China stands, the goal of peak carbon emissions may not be achieved on time [7]. How to
save energy and reduce carbon emissions has become an increasing concern to both the Chinese
people and the government. It is urgent to solve the problem of China’s carbon emissions while
sustaining the demands of economic growth and improving carbon emission efficiency in a way that
does not affect normal economic activities [8]. The improvement of CO2 emission efficiency is of
paramount importance in reducing carbon emissions and achieving low-carbon development [9].
As China’s carbon emission efficiency is still relatively low compared with developed countries,
improving carbon emission efficiency is completely in line with national goals. All in all, the key to
China’s low-carbon economy is to improve carbon emissions efficiency; this will not only promote
the sustainable development of China’s economy and society but will also help optimize the world
environment from an ecological and climate point of view.

Today, cities are one of the most important factors influencing carbon emissions with some
studies even showing that urbanization and urbanized populations are the major drivers of carbon
emissions [10,11]. Since the implementation of reforms and opening up, China’s urbanization rate
has gradually risen from 17.92% in 1978 to 57.35% in 2016, which is a significant increase, but still
far from the 70% urbanization level and carbon emission efficiency found in developed countries.
Therefore, studying the impact of urbanization on carbon emission efficiency is of great importance in
pointing the way to future urbanization in China. This article studies how urbanization affects the
efficiency of China’s carbon emissions and computes the efficiency of carbon emissions vis a vis both
China’s current urbanization level and available data. This points the way not only to, how to arrange
the deployment of energy conservation but also, how to formulate measures to reduce the carbon
emissions and improve the efficiency of carbon. These measures will help achieve future sustainable
economic and social development in China.

2. Literature Review

There is little in the literature on urbanization and carbon emission efficiency; relevant research
mainly focuses on urbanization and carbon emissions. Even though many scholars have studied the
impact of urbanization on carbon emissions and their conclusions vary a lot, there are, in essence, three
main views.

The first view is that urbanization increases carbon emissions. As urbanization improves, the
demand for urban infrastructure, transportation and personal consumption increases. This will lead to
urban traffic congestion and overcrowding, creating, in turn, more air pollution and carbon emissions.
Ren et al. pointed out that urbanization had a significant positive impact on carbon emissions; in their
25-year study of data from Shandong Province (China), they found the effect was more significant
in the middle stages than in the early stages [12]. Based on the data from 216 municipal areas in
China, Lu used the STIRPAT model and determined that urbanization leads to an increase in energy
consumption and carbon emissions [13]. Behera and Dash based their study on 32 years of data from
17 countries in South and East Asia and used the Pedroni co-integration test to show a co-integration
relationship between urbanization, energy consumption, FDI and carbon dioxide emissions [14].
Franco, et al. used 110 years of census data from India and found that the annual increase in urban
population led to a faster growth in carbon dioxide emissions [15]. Fang and Tao selected nine energy
types, including coal, coke and gasoline, took 15 years of urban population data in China and then
used the LMDI decomposition method to prove that urbanization rate and population size do have a
positive impact on carbon emissions [16].

The second view is that urbanization reduces carbon emissions. When the level of urbanization
improves, urban land use will increase, public infrastructure and transportation will be improved
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and car use will be reduced. Meanwhile, environmental regulations and technological innovation
will reduce carbon emissions. Zhang and Xu took 10 years of data from China as a sample and
adopted the STIRPAT model to empirically test if the urbanization of the land and the economy had
significantly impacted carbon emissions; they found the urbanization rate of land tended to reduce
carbon emissions [17]. Ali, et al. took 45 years of Singapore data and used an auto-regressive distributed
lag model to conclude that urbanization inhibited the impact of carbon emissions in Singapore and
that urbanization improved environmental quality by reducing carbon emissions [18]. Zhang et al.
based their study on 13 years of panel data in China and, using three estimation methods, including
the fixed-effect model, showed that urbanization reduces China’s carbon emissions through human
capital accumulation and clean production [19]. Based on data over 25-years from ten Asian countries,
including China and India, Bilgili et al. [20] used both unit root and co-integration tests to prove that
urbanization has a negative impact on carbon emissions.

The third view is that urbanization and carbon emissions are not simply linear. When the level
of urbanization is low, a huge change in the pattern of consumption occurs with improvements in
urbanization; this puts strain on various public facilities. Energy consumption will increase rapidly
and carbon emissions will increase. When the level of urbanization is high, the level of economic
development is even higher than that of the already high consumption. At the same time, a low-carbon
consciousness will emerge so it could be argued that urbanization plays a moderating role in carbon
emissions. Martini-Zarzoso and Maruotti used data from 88 developing countries to demonstrate an
inverted U-shaped relationship between urbanization and carbon dioxide emissions [21]. Cao et al.
based their study on 36 years data after China’s reform and opening up and, adopting a threshold
regression, concluded that the relationship between urbanization and CO2 emissions showed periodicity
and regional characteristics [22]. As an example, Wang et al. used data from 30 provinces and cities
in China over the past 15 years and, employing STIRPAT, proved that urbanization had a positive
effect on carbon emissions in Western China, a negative effect on carbon emissions in Central China
and a non- statistically significant effect in Eastern China [23]. He et al. based their study on 19 years’
provincial panel data in China and, using the STIRPAT model as an example, verified that the impact
of urbanization varies greatly in different regions [24].

The literature focuses on the effect of urbanization on carbon emissions and draws rich conclusions.
This does indeed provide some reference for the study of this article. However, there is still little
literature on the effect of urbanization on carbon emission efficiency. In the context of China’s economic
growth and the need for reduction in carbon emissions, improving carbon emission efficiency is of
great importance. At the same time, an analysis of the impact of urbanization on carbon emission
efficiency is certainly worthwhile as it can serve to guide the development of China’s new urbanization.
Compared to existing research, the innovations of this paper are as follows: first, this paper studies the
relationship between urbanization and carbon emission efficiency, an important complement to the
literature. Second, using both the static and dynamic spatial models, we estimate the space overflow
effect of urbanization on carbon emission efficiency. Third, taking the case of China’s 30 provinces
(cities), we compare the heterogeneous impacts of urbanization scale; this is important for both the
formulation of urbanization development policies and science-based urban development in China.

3. Carbon Emission Efficiency Measurement and Result Analysis

3.1. The SBM Model

This paper uses the DEA SBM model to calculate the carbon emission efficiency of each province.
The DEA method is a model established by Charnes et al. to evaluate the efficiency of multiple decision
making units with multiple inputs and outputs [25]. DEA is a kind of non-parametric method, which
does not need a specific function form but only needs specific output value. Tone modified the basic
model of DEA, improved the problem of input-output relaxation and proposed the SBM model [26].
Because the traditional DEA model cannot examine all the relaxation variables, there will be deviations
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in the efficiency evaluation. The relaxation variable problem can be solved by the SBM model. At the
same time, the measurement values of the SBM model are less than those of the traditional DEA model,
which makes the comparison of each decision making unit (DMU) more convenient. The specific
model is as follows:

minρ =

[
1− (1/m)

m∑
i=1

s−i /xi0

]
/
[
1− (1/s)

s∑
i=1

s+i /yr0

]
x0 = Xλ+ s−

y0 = Yλ− s+

λ ≥ 0; s+ ≥ 0; s+ ≥ 0

(1)

In Equation (1), ρ is the value of efficiency, x0 and y0 are the input and output of the DMU, xi0 and
yr0 are the elements of x0 and y0, x and y is the DMU input-output matrix, λ is the weight column
matrix. When 0 < ρ < 1, the DMU is not valid, and when ρ = 1, the DMU is valid.

3.2. Research Indicators and Data Selection

As there is no authoritative carbon emission data in China, the carbon emission data in this paper
are calculated. Considering the consumption of fossil fuels is the main source of carbon emissions, this
paper selects eight kinds of fossil fuels–coal, coke, crude oil, kerosene, gasoline, diesel, fuel oil and
natural gas. The annual consumption of these eight kinds of fossil fuels comes from the China energy
statistical yearbook. We then use the carbon emission calculation method provided by the IPCC to
calculate carbon emissions. The formula can be shown as follows:

(CO2)t =
8∑

i=1

(CO2)it =
8∑

i=1

Eit ×NCVit ×CEFit ×COFit × 44/12 (2)

In Equation (2), CO2 is the carbon emission, i is the type of fossil fuel, t is time, E is fuel consumption,
NCV is low calorific value, CEF is carbon content, COF is oxidation rate of carbon, 44 and 12 are
the molecular weights of carbon dioxide and carbon respectively. We can then calculate the carbon
emission coefficients of various fossil fuels by NCV, CEF and COF.

Carbon emissions and GDP are counted as outputs; the input variables are capital, labor and
energy. Capital refers to the net value of fixed assets, labor to the number of employees and energy to
the total energy consumption. Provincial and urban labor force data from 2000 to 2008 were obtained
from a compilation of 60 years of the new China statistical data and the labor force data of provinces
and cities from 2009 to 2016 were obtained from the annual statistical yearbook of each province.
The GDP and capital of all provinces and cities come from the China statistical yearbook and the energy
data of all provinces and cities come from the China Energy Statistical Yearbook. Descriptive statistics
of study samples are shown in Table 1.

Table 1. Descriptive analysis of sample data.

Categories Variables The Proxy
Variables Unit Max Min Standard

Deviation The Mean

Input
Capital Net fixed assets Hundred million RMB 35,587.4 160.46 6791.101 6751.503
Labour The number of jobs Ten thousand people 6726.0 275.5 1679.449 2495.408

Energy Total energy
consumption Ten thousand tons standard coal 85,857.509 399.360 9720.539 11,892.351

Output GDP —— One hundred million RMB 80,854.91 263.59 13,346.559 12,507.752
CO2 —— Ten thousand tons of 54,295.632 239.269 6868.665 8361.558

3.3. Results Analysis of Carbon Emission Efficiency

With the SBM model of DEA and the input-output index in Table 1 as the basis, EMS1.3 software
was used to process the above data. The carbon emission efficiency values of 30 provinces in China
from 2000 to 2015 is shown in Table 2.
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Table 2. Carbon emission efficiency of 30 provinces in China from 2000 to 2015.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Beijing 0.097 0.102 0.124 0.154 0.190 0.274 0.175 0.209 0.307 0.293 0.358 0.515 0.498 0.810 1.000 1.000
Tianjin 0.120 0.126 0.154 0.183 0.187 0.220 0.255 0.262 0.359 0.282 0.541 0.748 0.747 0.930 1.000 1.000
Hebei 0.040 0.037 0.039 0.043 0.045 0.048 0.053 0.064 0.075 0.078 0.111 0.156 0.154 0.250 0.198 0.239

Liaoning 0.059 0.060 0.070 0.084 0.097 0.113 0.137 0.136 0.179 0.176 0.226 0.301 0.356 0.468 0.365 0.435
Shanghai 0.165 0.175 0.226 0.298 0.311 0.323 0.391 0.477 0.556 0.499 0.802 0.932 0.956 0.911 0.951 0.889
Jiangsu 0.143 0.169 0.202 0.243 0.228 0.232 0.314 0.421 0.489 0.439 0.627 0.710 0.849 1.000 1.000 1.000

Zhejiang 0.152 0.173 0.190 0.247 0.222 0.265 0.303 0.360 0.397 0.386 0.703 0.780 0.799 0.631 0.633 0.583
Fujian 0.110 0.126 0.134 0.157 0.172 0.138 0.154 0.179 0.210 0.199 0.276 0.478 0.413 0.386 0.431 0.609

Shandong 0.128 0.124 0.145 0.132 0.154 0.192 0.266 0.369 0.452 0.477 0.571 0.727 0.811 1.000 1.000 1.000
Guangdong 0.205 0.218 0.244 0.235 0.341 0.364 0.369 0.506 0.602 0.475 0.735 0.914 0.739 1.000 1.000 1.000

Hainan 0.082 0.079 0.064 0.055 0.041 0.084 0.117 0.159 0.167 0.136 0.226 0.218 0.214 0.175 0.185 0.184
Shanxi 0.053 0.042 0.046 0.058 0.078 0.114 0.129 0.162 0.088 0.098 0.189 0.284 0.292 0.346 0.301 0.352

Jilin 0.140 0.159 0.190 0.196 0.212 0.192 0.189 0.228 0.323 0.360 0.191 0.459 0.381 0.485 0.546 0.543
Heilongjiang 0.235 0.242 0.235 0.277 0.326 0.418 0.399 0.422 0.266 0.233 0.295 0.317 0.648 0.393 0.309 0.377

Anhui 0.073 0.070 0.082 0.099 0.152 0.188 0.214 0.264 0.163 0.225 0.382 0.541 0.646 0.622 0.632 0.424
Jiangxi 0.115 0.117 0.151 0.175 0.196 0.251 0.277 0.369 0.204 0.271 0.468 0.639 0.753 1.000 1.000 0.931
Henan 0.141 0.145 0.162 0.185 0.184 0.189 0.215 0.268 0.357 0.380 0.377 0.574 0.734 0.645 0.599 0.630
Hubei 0.107 0.112 0.122 0.131 0.153 0.165 0.189 0.220 0.133 0.171 0.289 0.343 0.432 0.695 0.606 0.648
Hunan 0.127 0.101 0.110 0.138 0.158 0.124 0.155 0.199 0.133 0.189 0.366 0.591 0.613 0.747 0.631 0.627

Neimenggu 0.037 0.034 0.038 0.037 0.043 0.053 0.070 0.089 0.104 0.114 0.159 0.245 0.167 0.214 0.176 0.195
Guangxi 0.052 0.048 0.060 0.053 0.063 0.071 0.076 0.088 0.109 0.116 0.153 0.191 0.234 0.259 0.298 0.351

Chongqing 0.043 0.052 0.054 0.082 0.088 0.079 0.102 0.137 0.113 0.121 0.196 0.226 0.247 0.409 0.441 0.486
Sichuan 0.068 0.070 0.073 0.061 0.072 0.134 0.116 0.136 0.137 0.161 0.200 0.255 0.267 0.283 0.359 0.331
Quizhou 0.040 0.039 0.043 0.036 0.034 0.030 0.042 0.054 0.071 0.076 0.087 0.096 0.098 0.160 0.219 0.222
Yunnan 0.069 0.071 0.065 0.061 0.092 0.048 0.063 0.074 0.076 0.075 0.091 0.105 0.113 0.105 0.113 0.125
Shanxi 0.083 0.071 0.077 0.090 0.094 0.096 0.117 0.127 0.139 0.141 0.168 0.190 0.211 0.211 0.219 0.225
Gansu 0.065 0.063 0.073 0.072 0.072 0.075 0.093 0.106 0.118 0.129 0.160 0.184 0.181 0.198 0.156 0.164

Qinghai 0.062 0.060 0.074 0.066 0.074 0.093 0.086 0.094 0.091 0.092 0.150 0.150 0.112 0.078 0.074 0.086
Ningxia 0.032 0.023 0.019 0.016 0.041 0.038 0.059 0.078 0.070 0.079 0.094 0.089 0.109 0.086 0.067 0.071
Xinjiang 0.065 0.071 0.076 0.079 0.083 0.086 0.082 0.092 0.096 0.081 0.101 0.109 0.087 0.102 0.102 0.112

The 30 provinces in China are divided into three regions: the Eastern, the Central and the Western
(Tibet, Hong Kong, Macao and Taiwan lack energy data with which to calculate the total carbon
emission, so they are omitted from the study). It can be seen from Figures 1–3 that the carbon emission
efficiency of the three regions in China show a rising trend line. The highest carbon emission efficiency
of the Eastern and Central regions is 1, while the highest carbon emission efficiency of the Western
regions is 0.6. It can be clearly seen that the carbon emission efficiency in the Western regions is
far lower than that of the Eastern and Central regions. However, from 2000 to 2015, Hebei’s carbon
emission efficiency and its growth rate were far lower than that of other provinces of the Eastern region,
just slightly more than that for Hainan.

The reason may be that the coal and metallurgical industries, which are important industries in
Hebei, exhibit low carbon emission efficiency. In addition, according to “The Outline of Coordinated
Development for the Beijing-Tianjin-Hebei region”, some basic industries, notably the high pollution
industries, will continue to relocate to Hebei, meaning that Hebei will face more pressure on carbon
emissions and therefore have even more environmental problems [27].

Figure 4 shows the annual carbon emission efficiency of each province, calculated by DEA, and
then calculated and analyzed by regions. On the whole, both the nation as a whole and the three
sub-regions show a similar trend; the overall trend of carbon emission efficiency is rising. The Eastern
region has the highest carbon emission efficiency, followed by the Central and Western regions.
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Figure 1. Carbon emission efficiency of provinces and cities in eastern China from 2000 to 2015.
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Figure 2. Carbon emission efficiency of provinces and cities in central China from 2000 to 2015.

In particular, the nation and the three sub-regions showed a gradual increase in carbon efficiency
between 2000 and 2007. During this period, China put forward its tenth and eleventh “five-year plans”,
both of which incorporate ecological improvements, environmental protection and environmental
governance into one of the key special plans. To this end, the government has enacted relevant
measures and laws and the carbon emission efficiency has gradually increased.

From 2007 to 2009, the efficiency of carbon emissions in the Eastern and Central regions declined
by varying degrees while that of the Western region was basically flat. In 2007, as the financial
crisis quickly swept across the world, China exhibited a negative increase in GDP. In response to the
economic crisis, China proposed a series of measures, including the speeding up of the construction of
infrastructure such as railways and roads. As a result, some secondary industry pollution-intensive
enterprises again started to appear with consequent reductions in carbon emission efficiency.
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Figure 4. Change of carbon emission efficiency by region in China from 2000 to 2015.

After 2009, the carbon emission efficiency of China’s Eastern, Central and Western regions increased
rapidly. Because of China’s commitments at the World Meteorological conference in Copenhagen,
the carbon emissions per unit of GDP must be reduced by 40–45% by 2020. To this end, China has
taken on tackling climate change as a major strategy for national economic and social development
and has sought to constantly improve carbon emission efficiency through industrial restructuring and
technological progress.

In Table 3 the carbon emission efficiency of each province from 2000 to 2015 calculated by the DEA
model, with calculated average values is given. The carbon emission efficiency of each province is
assigned by region, Eastern, Central or Western region, and then ranked. As can be seen from Table 3,
the carbon emission efficiency of the Eastern region is higher than that of the Central region, while that
of the Western region is the lowest.
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Table 3. Average carbon emission efficiency of each province from 2000 to 2015.

The Eastern
Region

Carbon
Emission
Efficiency

Ranking The Central
Region

Carbon
Emission
Efficiency

Ranking The Western
Region

Carbon
Emission
Efficiency

Ranking

Beijing 0.382 8 Shanxi 0.164 19 Inner
Mongolia 0.111 24

Tianjin 0.445 5 Jilin 0.299 12 Guangxi 0.139 21
Hebei 0.102 25 Heilongjiang 0.337 10 Chongqing 0.180 17

Liaoning 0.204 16 Anhui 0.299 13 Sichuan 0.170 18
Shanghai 0.554 2 Jiangxi 0.432 6 Guizhou 0.084 28
Jiangsu 0.504 3 Henan 0.362 9 Yunnan 0.084 29

Zhejiang 0.427 7 Hubei 0.282 14 Shaanxi 0.141 20
Fujian 0.261 15 Hunan 0.313 11 Gansu 0.119 23

Shandong 0.472 4 Qinghai 0.090 26
Guangdong 0.559 1 Ningxia 0.061 30

Hainan 0.137 22 Xinjiang 0.089 27
Mean 0.368 0.311 0.115

Figure 5 takes the average carbon emission data of each province and city in Table 3 so as to
display the carbon emission efficiency distribution of each province more intuitively. We have ranked
the average carbon efficiency from large to small, and divided the data into five intervals; the number
of provinces and cities in each interval are equal. Respectively they are greater than or equal to 0.4323
for the high average carbon efficiency area, 0.2996–0.4323 for the higher average carbon efficiency area,
average 0.1702–0.2995 for the medium carbon efficiency area, average 0.111–0.172 for the low carbon
efficiency area; the average is less than 0.111 for the low carbon efficiency area. The darker the color,
the higher the average carbon efficiency.Sustainability 2020, 12, x FOR PEER REVIEW 9 of 16 
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Of the 11 provinces and cities in the Eastern region, all except Hebei and Hainan are in the medium
or above carbon emission efficiency range. The Eastern region accounts for the majority of the high
average carbon emission efficiency figures. Of the eight provinces and cities in the Central region,
most are in the range of moderate carbon efficiency but of the 11 provinces and cities in the Western
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region (Tibet lacks the energy data used to calculate total carbon emissions and so is omitted), only
Chongqing and Sichuan are in the range of average medium carbon efficiency.

4. Establishment of Measurement Model and Data Description

4.1. Original Model

Most of the studies on the relationship between environmental problems and economic population
have adopted the IPAT model proposed by Ehrlich and Holdelanno, in which I represents ecological
environment problems, P represents population size, A represents economic development level and T
represents technical level [28]. However, IPAT was an early model with certain limitations. For example,
in IPAT the elasticity of population size, economic development level and technical level is assumed to
be 1; this is not, however, the case in practice. Modeled on the IPAT, Dietz and Rosa proposed a random
environmental impact assessment model, namely the STIRPAT model, to evaluate the relationship
between the dependent variable and the three independent variables of population size, economic
development level and technical level [29]:

I = aPbAcTdε (3)

In Equation (3), I, P, A and T are still the original indicators. a, b, c and d are the prediction
parameters of the model, and ε is the random error term of the model. Differing from the original
IPAT model, in the STIRPAT model T can choose different economic variables as explanatory variables.
For example, Wang and Liu adopted energy consumption intensity, i.e., the ratio of energy consumption
to GDP [30]; Ma adopted R&D intensity, i.e., the ratio of R&D expenditure to GDP [31]. In this paper,
T is the energy consumption intensity, that is, the ratio of total energy consumption to GDP. In the
calculation process, the logarithm of both ends of Equation (3) is usually taken, and the specific formula
is as follows:

ln I = ln a + b ln P + c ln T + ε (4)

4.2. Model Extension

This paper also uses the extended form of STIRPAT to study the effect of urbanization on carbon
emission efficiency. Urbanization can affect carbon emission efficiency from two aspects. On the
one hand, an increase in urbanization levels will lead to an enhancement in scale efficiency of public
facilities and a reduction in car usage, mobile distance and power supply and deployment. At the
same time, when urbanization levels are high, energy-saving products and high-tech products will
increase; consumers will tend to turn to energy-saving products, thereby reducing carbon emissions.
On the other hand, an increase in urbanization levels also leads to urban traffic jams, overcrowding
and more air pollution. Moreover, at the same time, the increase in urbanization levels necessitates an
increase in urban land area which then requires the construction of buildings and public facilities, all
of which increase carbon emissions. At the same time, industrial structure index is added, also an
important factor affecting carbon emission efficiency. The industrial structure here is the proportion
of secondary industry GDP to inter-provincial GDP of each province. Because secondary industry is
often composed of processing manufacturing industries, the processing and manufacturing operations
will generate large amounts of CO2, which, to a certain extent, determines the size of carbon emissions.

Urbanization (U) and industrial structure (S) were added to the model to establish the following
general static panel model:

ln Ii,t = β0 + β1 ln Pi,t + β2 ln Ai,t + β3 ln Ti,t + β4 ln Ui,t + β5 ln Si,t + εi,t (5)

Considering that in real life, changes in some of the variables will have a certain lag effect and,
considering that carbon emissions are indicators that exhibit dynamic effect, the carbon dioxide
emissions in this year are derived from increases or decreases of carbon emissions in the previous year.
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After changes in each item, a change of each item’s explained variable in the previous period usually
cannot take effect immediately. They usually affect the carbon emission efficiency in the following
period. Therefore, this paper has included the first-order lag item of carbon emission efficiency and
established the following general dynamic panel model:

ln Ii,t = β0 + τ ln Ii,t−1 + β1 ln Pi,t + β2 ln Ai,t + β3 ln Ti,t + β4 ln Ui,t + β5 ln Si,t + εi,t (6)

Considering the spatial linkage and spatial spillover of carbon emissions between regions, the
carbon emission efficiency of surrounding areas may affect the carbon emission efficiency of the region
through a spatial spillover effect. Therefore, this paper has included the spatial lag item of carbon
emission efficiency and established the following static spatial panel model:

ln Ii,t = β0 + ρ
∑

Wi, j ln I j,t + β1 ln Pi,t + β2 ln Ai,t + β3 ln Ti,t + β4 ln Ui,t + β5 ln Si,t + αi + υt+εi,t
εi,t = λ

∑
Wi, jε j,t + µi,t

(7)

In Equation (7), αi, νt, εi,t represent the regional effect, the time effect and the random disturbance
term respectively, reflecting the random disturbances of different dimensions that affect carbon emission
efficiency. W represents the spatial weight matrix, reflecting the spatial correlation between regions.
In this paper, geographical distance is used to construct the spatial weight matrix, which can fully
consider the fact that two non-adjacent regions in space, also interact with each other. It is possible for
carbon emission efficiency to have both spatial and dynamic effects, this paper, based on Equation (5),
includes both spatial lag terms and early lag terms of carbon emission efficiency and constructs the
following dynamic spatial panel model:

ln Ii,t = β0 + ρ
∑

Wi, j ln I j,t + τ ln Ii,t−1 + βl ln Pi,t + β2 ln Ai,t+β3 ln Ti,t + β4 ln Ui,t + β5 ln Si,t + αi + νt + εi,t

εi,t = λ
∑

Wi, jε j,t + µi,t
(8)

4.3. Variable Description

4.3.1. Explained Variable

Carbon emission efficiency (I): this paper selects data on eight types of energies in 30 provinces
and cities in China from 2000 to 2015 and calculates the total annual inter-provincial carbon emissions
according to IPCC2007. It then takes annual inter-provincial GDP, capital and labor data and uses the
DEA model to calculate inter-provincial carbon emission efficiency.

4.3.2. Core Explanatory Variable

Urbanization level (U): ecological modernization theory, urban environment transformation theory
and compact city theory show that urbanization is an important factor affecting carbon emissions,
which, in turn, affect carbon emission efficiency. We use the proportion of inter-provincial urban
population to the total population to measure the level of urbanization; this is expected to have a
significant positive impact on carbon emission efficiency.

4.3.3. Control Variables

(1) Population size (P): population size is an important factor affecting carbon emissions. Carbon
emissions have spatial attributes so population density is used as a proxy variable for population
size in this paper. (2) Economic development level (A): according to environmental Kuznets theory,
economic development level is an important factor affecting carbon emissions. This paper uses GDP
per capita to measure the level of economic development. (3) Energy intensity (E): energy intensity is
an important reflection of technical level and has an important impact on carbon emissions. This paper
uses the ratio of total energy consumption to GDP to measure energy intensity. (4) Industrial structure
(S): industry is the main source of carbon emissions, so industrial structure is also an important factor
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affecting emissions. We use the proportion of secondary industry GDP to provincial GDP to measure
the industrial structure.

4.4. Data Sources

The regional gross domestic product (GDP), per capita income level and capital amount of the
provinces and cities involved in this paper all come from the China Statistical Yearbook. The labor
force data of provinces and cities from 2000 to 2008 were obtained from the Compilation of 60 Years of
Statistical Data of New China and the labor force data of provinces and cities from 2009 to 2016 were
obtained from the annual statistical yearbook of each province. The eight energy indicators needed
to calculate total new energy consumption and total carbon emissions are all from the China Energy
Statistics Yearbook. The level of urbanization, GDP of secondary industry and population size of each
province in China come from the annual statistical yearbook of each province. The descriptive statistics
of the sample are shown in Table 4.

Table 4. Statistical description of variables.

Variable
Symbols Variable Names Sample Size Average

Value
Maximum

Value
Minimum

Value
Standard
Deviation

I Carbon emission
efficiency 480 0.260 1.000 0.0157 0.241

U Urbanization rate 480 0.489 0.896 0.233 0.153
P Population density 480 0.431 0.985 0.0517 0.255

A Economic
development level 480 0.275 1.080 0.0266 0.216

E Energy intensity 480 1.354 5.229 0.298 0.826
S Industrial structure 480 0.469 0.615 0.197 0.0766

5. Empirical Analysis

5.1. Regression Results Analysis at the National Level

Model (I) is a general static panel model which uses the feasible generalized least square method
(FGLS) to estimate. Model (II) is a general dynamic panel model where the System GMM method is
used to estimate. Model (III) is a static spatial panel model; we use the maximum likelihood method
(ML) for estimations. Model (V) is a dynamic spatial panel model where we use the spatial GMM
method for estimations. The regression results are shown in Table 5 below.

Comparing Models (I), (II), (III) and (V), we see that the regression results of model (V) are better
than those of Models (I) (II) or (III). This may be because the dynamic and spatial effects of carbon
emission efficiency have been considered in the regression process of model (V) making the estimation
results more accurate and reliable. In the regression results of model (V), the coefficients of the time lag
and spatial lag terms are significantly positive, which clearly shows that there are significant dynamic
and spatial effects in carbon emission efficiency. However, if we do not consider the dynamic and
spatial effects at the same time in the regression process, it may lead to biased estimations; Model V is
therefore chosen as the interpretation model.

From the regression results of Model (V), we find that the urbanization coefficient is positive
at the 1% significance level, indicating that an improvement in urbanization rate is conducive to an
improvement in carbon emission efficiency. When the urbanization rate is increased by 1%, the carbon
emission efficiency is increased by 0.931%. The possible reasons are as follows. First, urbanization
is conducive to the intensive use and recycling of energy, as well as the centralized treatment of
pollutants and wastes. Urbanization is also conducive to the extensive and effective use of both
energy conservation and emission reduction technologies and so has a significant role in improving
carbon emission efficiency. Second, with increases in urbanization level, the scale benefit of urban
public facilities will be enhanced and car usage, moving distance, power supply and deployment
will be reduced. This effectively reduces the carbon emissions of transportation and electricity
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generation, leading to significant improvements in carbon emission efficiency. Third, when the level of
urbanization is improved, the rural population is transformed into an urban population with higher
levels of education. With improvements in the quality of human resources, higher quality human
resources will displace other material resources. Meanwhile, more people will advocate low-carbon
consumption; carbon emission efficiency will thus be improved. In terms of control variables, the
coefficient of population density is significantly positive, indicating that increases in population density
are conducive to improvements in carbon emission efficiency. This may be because high population
density is conducive to the intensive use of energy, effectively reducing the cost of transportation and
living; this has a significant role in promoting economic growth and energy efficiency. Improvements in
energy intensity have a significant inhibitory effect on improvements in carbon emission efficiency. This
is mainly because, when the energy intensity increases, the energy consumption brought by economic
growth will increase significantly, bringing about an increase in carbon emissions. An increase in the
proportion of secondary industry is not conducive to improvements in carbon emission efficiency. This
is mainly because an increase in the proportion of secondary industry will also lead to a sharp increase
in energy consumption, resulting in an increase in carbon emissions. Improvements in the level of
economic development beyond what is expected reduce the efficiency of carbon emissions; this may
be due to the fact that China is currently on the left side of the inverted “U” inflection point of the
Environmental Kuznets curve. The pursuit of rapid economic growth brings about a sharp increase
in energy consumption, but the technological and structural effects caused by economic growth are
significantly lower than the scale effect.

Table 5. Regression results at the national level.

Variables I (FGLS) II (Sys-GMM) III (ML) V (Spatial-GMM)

τ (time lag term) 0.425 ***
(5.165)

0.137 ***
(3.275)

ρ (Spatial lag term) 0.325 ***
(5.286)

0.014 **
(2.172)

urban 0.719 *** 0.906 *** 0.598 * 0.831 ***
(2.697) (3.253) (1.731) (3.618)

population 0.233 *** 0.216 *** 0.278 *** 0.237 ***
(4.180) (3.725) (4.580) (4.081)

pgdp −0.061 * −0.054 −0.047 * −0.052 **
(−1.787) (−1.119) (−1.812) (−2.125)

structure −0.762 −0.981** −0.637 −0.707 ***
(−1.306) (−2.064) (−1.152) (−2.545)

energy −0.482 *** −1.106 *** −0.966 *** −1.003 ***
(−5.279) (−4.871) (−5.198) (−5.105)

_cons −1.089 *** −1.178 *** −1.436 *** −1.926 ***
(−6.724) (−7.104) (−5.813) (−7.724)

AR(1) −3.42 −3.86
Test(p) (0.001) (0.000)
AR(2) −1.23 −1.28
Test(p) (0.22) (0.19)
Hansen 27.81 28.26
Test(p) (1.000) (1.000)

N 450 420 450 420

Figures in parentheses are progressive t statistics. *, **, *** denote statistical significance levels at 10%, 5% and
1%, respectively.

5.2. Analysis of Regression Results in the Eastern, Central and Western Regions

With respect to the third part, the 30 provinces in China are classified into Eastern, Central and
Western regions.

In order to better study whether there is a regional difference in the impact of urbanization on
carbon emission efficiency, we use the dynamic spatial panel model to conduct regressions on the
panel data of the three respective regions. The regression results are shown in Table 6.
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Table 6. Regression results of the eastern, central and western regions.

Variables
Eastern Region Western Region Central Region

(Spatial-GMM) (Spatial-GMM) (Spatial-GMM)

τ (time lag term) 0.145 ***
(3.417)

0.136 ***
(3.286)

0.127 ***
(3.069)

ρ (Spatial lag term) 0.017 ***
(2.673)

0.015 **
(2.147)

0.011 *
(1.775)

Urban 0.742 0.796 ** 0.883 ***
(1.406) (2.185) (2.927)

Population 0.286 *** 0.242 *** 0.211 ***
(4.741) (4.170) (3.635)

Pgdp −0.039 −0.050 ** −0.058 ***
(−1.507) (−2.173) (−2.619)

Structure
−0.762 *** −0.711 ** −0.675
(−2.614) (−2.175) (−1.490)

Energy −1.021 *** −1.067 *** −0.086 ***
(−5.186) (−5.364) (−5.027)

_cons −1.906 *** −2.052 *** −2.136 ***
(−7.423) (−7.658) (−8.035)

AR(1) −3.46 −3.74 −3.62
Test(p) (0.001) (0.000) (0.000)
AR(2) −1.25 −1.29 −1.22
Test(p) (0.21) (0.20) (0.24)
Hansen 23.25 24.41 25.07
Test(p) (1.000) (1.000) (1.000)

N 165 165 120

Figures in parentheses are progressive t statistics. *, **, *** denote statistical significance levels at 10%, 5% and
1%, respectively.

Table 6 shows that the dynamic lag term of carbon emission efficiency is significantly positive,
indicating that there are significant dynamic effects of carbon emission efficiency in the three regions.
Comparing the coefficients, we see that the Eastern region is the largest, the Central region is the
second largest and the Western region is the smallest. This may be due to the higher carbon emission
efficiency in the Eastern region which depends more on the early stage. The spatial lag term of carbon
emission efficiency is also significantly positive which shows that there are significant spatial effects
in three regions. Comparing the coefficients, the Eastern region is the largest, the Central region is
the second and the Western region is the smallest. This may be due to the higher level of economic
development in the Eastern region; the closer economic exchanges and ties between regions makes the
spatial effect of carbon emission efficiency stronger.

From the regression results in Table 6, there are indeed regional differences in the impact of
urbanization on carbon emission efficiency. Specifically, urbanization has no significant effect on carbon
emission efficiency in the Eastern region. Urbanization is significantly conducive to improvements in
carbon emission efficiency in the Central and Western regions with its effects in the Western region
stronger. This is mainly because urbanization has a marginal decreasing effect on the improvement
of carbon emission efficiency and the urbanization level in Eastern China has entered the late stage.
It is difficult for the urbanization rate to further increase significantly, so its promoting effect is not
significant. The Central and Western regions are still in the stage of continuous development of
urbanization. The intensive use of resources and the accumulation of human capital brought by it can
significantly promote the efficiency of carbon emissions. Compared with the Central region, the level
of urbanization in the Western region is lower, which makes its effect stronger.
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6. Conclusions

Based on panel data of 30 provinces in China from 2000 to 2015, this paper first calculates carbon
emissions and then uses the DEA model to calculate the carbon emission efficiency. Thereafter, it
employs both static and dynamic panel models to comprehensively investigate those factors affecting
carbon emission efficiency. The main conclusions are as follows: (1) The carbon emission efficiency
of China’s provinces is on the rise but with a significant difference in the carbon emission efficiency
between the Eastern and Western regions. The Eastern region has the highest carbon emission efficiency
while the Western region has the lowest. (2) Urbanization can significantly improve carbon efficiency
but there are significant regional differences in this contribution. (3) Population density has a significant
positive impact on carbon emission efficiency but industrial structure, energy intensity and per capita
GDP all have a significant negative impact on carbon emission efficiency.

Based on empirical test results, the government should vigorously promote the construction of
new urbanization model with a focus on high-quality development. Such high-quality urbanization
can improve carbon emission efficiency and ultimately make contributions to the overall reduction
of carbon dioxide emissions. Different regions should adhere to different urbanization strategies.
Considering the heterogeneity impact of urbanization scale, the Eastern region with its higher level of
urbanization should accelerate the coordination of urbanization development levels in the other regions.
The Eastern provinces have more developed economies and higher levels of technology. They should
change their traditional model of economically extensive urbanization and instead promote both
high-quality and coordinated action as regards regional agglomeration urbanization. The Central
and Western regions should continue to accelerate the promotion of urbanization in Central cities.
They should encourage the transfer from large and medium-sized cities in some provinces (cities) to
smaller cities, forming an urbanization development model that is both mutually advantageous and
cooperates in the region to reduce carbon emissions.
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