Adapting to Social–Ecological Risks to the Conservation of a Muskmelon Landrace in India
Abstract
:1. Introduction
2. Conceptual Framework
3. Research Methodology
3.1. Study Area
3.2. Sampling Design
3.3. Data Collection
3.4. Measurement of Variables
3.4.1. Socio-Economic Variables
3.4.2. Stressors, Enablers and Livelihood Opportunities
3.4.3. Satellite Image Processing
3.5. Data Analysis
3.5.1. Statistical Tests
3.5.2. Tobit Regression
4. Results
4.1. Socio-Economic Profile of Muskmelon Growers
4.2. Traditional Knowledge and Practices
4.3. Stressors and Enablers in Muskmelon Conservation
4.4. Factors Affecting Muskmelon Conservation
4.5. Temporal Changes in Adaptive Management
4.6. Reduction in Muskmelon Area
5. Discussion
6. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellon, M.R. Do We Need Crop Landraces for the Future? Realizing the Global Option Value of In Situ Conservation; Agrobiodiversity Conservation and Economic Development; Routledge: London, UK, 2008; pp. 75–85. [Google Scholar]
- Mandizvo, T.; Odindo, A.O.; Mashilo, J. Citron watermelon potential to improve crop diversification and reduce negative impacts of climate change. Sustainability 2021, 13, 2269. [Google Scholar] [CrossRef]
- Cavatassi, R.; Hopkins, J.; Lipper, L. The Role of Crop Genetic Diversity in Coping with Agricultural Production Shocks: Insights from Eastern Ethiopia. ESA Working Paper No. 06-17; FAO: Rome, Italy, 2006; pp. 6–17. [Google Scholar]
- FAO. Voluntary Guidelines for the Conservation and Sustainable Use of Farmers’ Varieties/Landraces; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca5601en/ca5601en.pdf (accessed on 15 June 2022).
- Sithole, N.J.; Modi, A.T.; Pillay, K. An Assessment of Minerals and Protein Contents in Selected South African Bottle Gourd Landraces (Lageraria siceraria (Mol. Standl.)). J. Hum. Ecol. 2015, 51, 279–286. [Google Scholar] [CrossRef]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Res. 2005, 3, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Ficiciyan, A.; Loos, J.; Sievers-Glotzbach, S.; Tscharntke, T. More than yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability 2018, 10, 2834. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, N.P.; Monforte, A.J.; Pitrat, M.; Sudhakar, P.; Singh, P.K.; Reitsma, K.R.; McCreight, J.D. Melon landraces of India: Contributions and importance. Plant Breed. Rev. 2012, 35, 85–150. [Google Scholar]
- Sarabi, B.; Bolandnazar, S.; Ghaderi, N.; Ghashghaie, J. Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. Plant Phys. Biochem. 2017, 119, 294–311. [Google Scholar] [CrossRef]
- Dube, J.; Ddamulira, G.; Maphosa, M. Watermelon production in Africa: Challenges and opportunities. Int. J. Veg. Sci. 2021, 27, 211–219. [Google Scholar] [CrossRef]
- Walters, S.A.; Abdelaziz, M.; Bouharroud, R. Local melon and watermelon crop populations to moderate yield responses to climate change in North Africa. Climate 2021, 9, 129. [Google Scholar] [CrossRef]
- Hammer, K.; Knüpffer, H.; Xhuveli, L.; Perrino, P. Estimating genetic erosion in landraces—Two case studies. Genet. Res. Crop Evol. 1996, 43, 329–336. [Google Scholar] [CrossRef]
- Engels, J.M.M.; Ebert, A.W.; Thormann, I.; De Vicente, M.C. Centres of crop diversity and/or origin, genetically modified crops and implications for plant genetic resources conservation. Genet. Res. Crop Evol. 2006, 53, 1675–1688. [Google Scholar] [CrossRef]
- Khoury, C.K.; Brush, S.; Costich, D.E.; Curry, H.A.; de Haan, S.; Engels, J.M.; Guarino, L.; Hoban, S.; Mercer, K.L.; Miller, A.J.; et al. Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phyt. 2022, 233, 84–118. [Google Scholar] [CrossRef]
- Singh, A.; Singh, R.K.; Kumar, P.; Singh, A. Mango biodiversity in eastern Uttar Pradesh, India: Indigenous knowledge and traditional products. Indian J. Trad. Knowll. 2015, 14, 258–264. [Google Scholar]
- Altieri, M.A. Linking Ecologists and Traditional Farmers in the Search for Sustainable Agriculture. 2004. Available online: https://doi.org/10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2 (accessed on 15 April 2022). [CrossRef]
- Altieri, M.A.; Merrick, L.C. In Situ Conservation of Crop Genetic Resources through Maintenance of Traditional Farming Systems. Econ. Bot. 1987, 41, 86–96. [Google Scholar] [CrossRef]
- Patil, S.; Reidsma, P.; Shah, P.; Purushothaman, S.; Wolf, J. Comparing conventional and organic agriculture in Karnataka, India: Where and when can organic farming be sustainable? Land Use Policy 2014, 37, 40–51. [Google Scholar] [CrossRef]
- Semwal, R.; Nautiyal, S.; Sen, K.K.; Rana, U.; Maikhuri, R.K.; Rao, K.S.; Saxena, K.G. Patterns and ecological implications of agricultural land-use changes: A case study from central Himalaya, India. Agric. Ecosyst. Environ. 2004, 102, 81–92. [Google Scholar] [CrossRef]
- Koohafkan, P.; Altieri, M.A. Globally Important Agricultural Heritage Systems: A Legacy for the Future; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Available online: https://www.fao.org/3/i2232e/i2232e.pdf (accessed on 30 June 2022).
- Gilles, J.L.; Thomas, J.L.; Valdivia, C.; Yucra, E.S. Laggards or leaders: Conservers of traditional agricultural knowledge in B olivia. Rural Sociol. 2013, 78, 51–74. [Google Scholar] [CrossRef] [Green Version]
- Kothari, A. Agro-Biodiversity: The Future of India’s Agriculture. Maharashtra Council of Agricultural Education & Research. 1999. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1059.911&rep=rep1&type=pdf (accessed on 30 June 2022).
- Singh, R.K.; Singh, A.; Pandey, C.B. Agro-biodiversity in rice–wheat-based agroecosystems of eastern Uttar Pradesh, India: Implications for conservation and sustainable management. Int. J. Sustain. Dev. World Ecol. 2014, 21, 46–59. [Google Scholar] [CrossRef]
- Singh, A.; Singh, R.K.; Kumar, N.; Kumar, S.; Upadhyay, A.; Goswami, A.; Sharma, P.C. Genetic erosion of crop landraces: Trends in the conservation of locally adapted ‘Newar’ radish in Jaunpur district, Uttar Pradesh, India. Indian J. Trad. Knowl. 2018, 17, 344–352. [Google Scholar]
- Singh, R.K.; Singh, A.; Kumar, S.; Sheoran, P.; Sharma, D.K.; Stringer, L.C.; Quinn, C.H.; Kumar, A.; Singh, D. Perceived climate variability and compounding stressors: Implications for risks to livelihoods of smallholder Indian farmers. Environ. Manag. 2020, 66, 826–844. [Google Scholar] [CrossRef]
- Pretty, J.; Smith, D. Social capital in biodiversity conservation and management. Conserv. Biol. 2004, 18, 631–638. [Google Scholar] [CrossRef]
- Westoby, R.; Clissold, R.; McNamara, K.E.; Latai-Niusulu, A.; Chandra, A. Cascading loss and loss risk multipliers amid a changing climate in the Pacific Islands. Ambio 2022, 51, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.P.K.; Begum, H.; Sunil, N.; Reddy, M.T.; Babu, J.D.; Reddy, R.V.S.K.; Purushothama, B. Multivariate analysis of morphological diversity in local land races of muskmelon (Cucumis melo L.) in Andhra Pradesh, India. J Agric. Technol. 2013, 9, 817–828. [Google Scholar]
- NHB. Horticultural Statistics at a Glance 2018. Ministry of Agriculture & Farmers Welfare, Government of India. Available online: https://agricoop.nic.in/sites/default/files/Horticulture%20Statistics%20at%20a%20Glance-2018.pdf (accessed on 2 July 2022).
- Rashid, U.; Rehman, H.A.; Hussain, I.; Ibrahim, M.; Haider, M.S. Muskmelon (Cucumis melo) seed oil: A potential non-food oil source for biodiesel production. Energy 2011, 36, 5632–5639. [Google Scholar] [CrossRef]
- Roy, A.; Bal, S.S.; Fergany, M.; Kaur, S.; Singh, H.; Malik, A.A.; Singh, J.; Monforte, A.J.; Dhillon, N.P.S. Wild melon diversity in India (Punjab state). Genet. Resour. Crop Evol. 2012, 59, 755–767. [Google Scholar] [CrossRef]
- Pandey, S.; Rai, M.; Prasanna, H.C.; Kalloo, G. ‘Kashi Madhu’: A new muskmelon cultivar with high total soluble solids. HortScience 2008, 43, 245–246. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M. Jamaitha Ka Kharbooja. 2009. Available online: http://manjulmanoj.blogspot.in/2009/05/blog-post_28.html (accessed on 29 June 2022).
- Maasoom, S.M. Jamaitha Jaunpur ka Mashhoor Kharbooja Aur Uske Fayde (In Hindi). 2013. Available online: https://readerblogs.navbharattimes.indiatimes.com/Aman-Ka-paigham/muskmelon/ (accessed on 29 June 2022).
- Hashemi, S.M.; Bagheri, A.; Marshall, N. Toward sustainable adaptation to future climate change: Insights from vulnerability and resilience approaches analyzing agrarian system of Iran. Environ Dev Sustain. 2017, 19, 1–25. [Google Scholar] [CrossRef]
- Turner II, B.L. Vulnerability and resilience: Coalescing or paralleling approaches for sustainability science? Global Environ. Chang. 2010, 20, 570–576. [Google Scholar] [CrossRef]
- Hinkel, J. Indicators of vulnerability and adaptive capacity: Towards a clarification of the science–policy interface. Global Environ. Chang. 2011, 21, 198–208. [Google Scholar] [CrossRef]
- O’Brien, K.; Eriksen, S.; Schjolden, A.; Nygaard, L.P. What’s in a Word? Conflicting Interpretations of Vulnerability in Climate Change Research; CICERO Working Paper 2004:04; CICERO: Oslo, Norway, 2004; p. 16. [Google Scholar]
- Marshall, N.A. Understanding social resilience to climate variability in primary enterprises and industries. Glob. Environ. Chang. 2010, 20, 36–43. [Google Scholar] [CrossRef]
- Brown, K. Global environmental change I: A social turn for resilience? Prog. Hum. Geogr. 2014, 38, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Vincent, K. Uncertainty in adaptive capacity and the importance of scale. Glob. Environ. Chang. 2007, 17, 12–24. [Google Scholar] [CrossRef]
- Singh, R.K.; Zander, K.K.; Kumar, S.; Singh, A.; Sheoran, P.; Kumar, A.; Hussain, S.M.; Riba, T.; Rallen, O.; Lego, Y.J.; et al. Perceptions of climate variability and livelihood adaptations relating to gender and wealth among the Adi community of the Eastern Indian Himalayas. Appl. Geogr. 2017, 86, 41–52. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Systems of Humans and Nature; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Adaptability and transformability in social-ecological systems. Ecol. Sociol. 2004, 9, 5. [Google Scholar] [CrossRef]
- NICRA. State Uttar Pradesh: Agriculture Contingency Plan for District Jaunpur. National Innovations in Climate Resilient Agriculture (NICRA). 2012. Available online: http://nicra-icar.in/nicrarevised/images/statewiseplans/Uttar%20Pradesh/UP14-Jaunpur-27.09.2012.pdf (accessed on 10 May 2022).
- Census of India. Jamaitha Population-Jaunpur, Uttar Pradesh. 2011. Available online: http://www.census2011.co.in/data/village/202114-jamaitha-uttar-pradesh.html (accessed on 13 June 2022).
- Mishra, K.N.; Swaraj, B. Study of riparian vegetation growing at varying level of nitrogen and phosphorus in Jaunpur District (UP), India. Plant Arch. 2009, 9, 313–315. [Google Scholar]
- Huynh, L.T.M.; Stringer, L.C. Multi-scale assessment of social vulnerability to climate change: An empirical study in coastal Vietnam. Clim. Risk Manag. 2018, 20, 165–180. [Google Scholar] [CrossRef]
- Singh, R.K.; Bhardwaj, R.; Sureja, A.K.; Kumar, A.; Singh, A.; Hazarika, B.N.; Hussain, S.M.; Singh, A.; Lego, Y.J.; Rallen, O. Livelihood resilience in the face of multiple stressors: Biocultural resource-based adaptive strategies among the vulnerable communities. Sustain. Sci. 2021, 17, 275–293. [Google Scholar] [CrossRef]
- Jha, C.K.; Gupta, V. Farmer’s perception and factors determining the adaptation decisions to cope with climate change: An evidence from rural India. Environ. Sustain. Indic. 2021, 10, 100112. [Google Scholar] [CrossRef]
- Mubaya, C.P.; Njuki, J.; Mutsvangwa, E.P.; Mugabe, F.T.; Nanja, D. Climate variability and change or multiple stressors? Farmer perceptions regarding threats to livelihoods in Zimbabwe and Zambia. J. Environ. Manag. 2012, 102, 9–17. [Google Scholar] [CrossRef]
- Burch, S. Transforming barriers into enablers of action on climate change: Insights from three municipal case studies in British Columbia, Canada. Glob. Environ. Chang. 2010, 20, 287–297. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Midgley, G.F.; Preston, B.L.; Alam, M.; Berkhout, F.G.H.; Dow, K.; Shaw, M.R. Adaptation Opportunities, Constraints, and Limits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 899–943. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap16_FINAL.pdf (accessed on 19 June 2022).
- USGS. 2017 Landsat 5 (5TM, 7 and 8). USGS: Science of a Changing World. Available online: https://www.usgs.gov/landsat-missions/landsat-5 (accessed on 25 April 2017).
- CRAN. The Comprehensive R Archive Network. 2022. Available online: https://cran.r-project.org/ (accessed on 25 June 2022).
- Turinawe, A.; Drake, L.; Mugisha, J. Adoption intensity of soil and water conservation technologies: A case of South Western Uganda. Environ. Dev. Sustain. 2015, 17, 711–730. [Google Scholar] [CrossRef]
- Greene, W. Econometric Analysis; Pearson Education Limited: Essex, UK, 2010; p. 1241. [Google Scholar]
- Abdelali-Martinia, M.; Amri, A.; Ajlouni, M.; Assi, R.; Sbieh, Y.; Khnifes, A. Gender dimension in the conservation and sustainable use of agro-biodiversity in West Asia. J. Socio-Econ. 2008, 37, 365–383. [Google Scholar] [CrossRef]
- Harrison, R. Freezing seeds and making futures: Endangerment, hope, security, and time in agrobiodiversity conservation practices. Cult. Agric. Food Environ. 2017, 39, 80–89. [Google Scholar] [CrossRef] [Green Version]
- López-Sesé, A.I.; Staub, J.E.; Gómez-Guillamón, M.L. Genetic analysis of Spanish melon (Cucumis melo L.) germplasm using a standardized molecular-marker array and geographically diverse reference accessions. Theor. Appl. Genet. 2003, 108, 41–52. [Google Scholar] [CrossRef]
- Douma, C.; Koutis, K.; Thanopoulos, R.; Tsigou, R.; Galanidis, A.; Bebeli, P.J. Diversity of agricultural plants on Lesvos Island (Northeast Aegean, Greece) with emphasis on fruit trees. Sci. Hortic. 2016, 210, 65–84. [Google Scholar] [CrossRef]
- Oswell, F.N.; Rufaro, M.M.; Susan, K.; Arnold, B.M. Indigenous knowledge of the traditional vegetable pumpkin (Cucurbita maxima/moschata) from Zimbabwe. Afr. J. Agric. Res. 2007, 2, 649–655. [Google Scholar]
- Nautiyal, S.; Bisht, V.; Rao, K.S.; Maikhuri, R.K. The role of cultural values in agrobiodiversity conservation: A case study from Uttarakhand, Himalaya. J. Hum. Ecol. 2008, 23, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rijal, D.K. Role of food tradition in conserving crop landraces on-farm. J. Agric. Environ. 2010, 11, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Bellon, M.R.; Hellin, J. Planting hybrids, keeping landraces: Agricultural modernization and tradition among small-scale maize farmers in Chiapas, Mexico. World Dev. 2011, 39, 1434–1443. [Google Scholar] [CrossRef]
- Escribano, S.; Lázaro, A. Agro-morphological diversity of Spanish traditional melons (Cucumis melo L.) of the Madrid provenance. Genet. Resour. Crop Evol. 2009, 56, 481–497. [Google Scholar] [CrossRef]
- Ramendu, R.; Malviya, H.C. Estimation of losses to pulse crops by blue-bulls in Uttar Pradesh. Agric. Situat. India 2008, 73, 48–54. [Google Scholar]
- Kumbhare, N.V.; Sharma, N.; Ahmad, N.; Joshi, P.; Punitha, P.; Dabas, J.P.S.; Sharma, J.P. Micro analysis of yield gain and change in technology adoption in western Uttar Pradesh. J. Community Moblization Sustain. Dev. Vol. 2020, 15, 181–185. [Google Scholar]
- Tomar, B.S.; Singh, J.; Jat, G.S. Low tunnel technology for off season cucurbits cultivation. In Training Manual: Skill Development Course on Protected Cultivation of Vegetable Crops; CSAUA&T: Kanpur, India, 2019; Available online: https://www.researchgate.net/profile/Rajiv-3/publication/348408905_Skill_Development_Course_on_Protected_Cultivation_of_Vegetable_Crops/links/5ffd847892851c13fe0704a3/Skill-Development-Course-on-Protected-Cultivation-of-Vegetable-Crops.pdf#page=43 (accessed on 22 June 2022).
- Rankoana, S.A. Perceptions of climate change and the potential for adaptation in a rural community in Limpopo Province, South Africa. Sustainability 2016, 8, 672. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Bhaduri, A. The “tipping point” in Indian agriculture: Understanding the withdrawal of the Indian rural youth. Asian J. Agric. Dev. 2009, 6, 83–97. [Google Scholar]
- White, B. Agriculture and the generation problem: Rural youth, employment and the future of farming. IDS Bull. 2012, 43, 9–19. [Google Scholar] [CrossRef] [Green Version]
- McCune, N.; Rosset, P.M.; Cruz Salazar, T.; Morales, H.; Saldívar, M. The long road: Rural youth, farming and agroecological formación in Central America. Mind Cult. Act. 2017, 24, 183–198. [Google Scholar] [CrossRef]
- Rana, R.B.; Garforth, C.; Sthapit, B.; Jarvis, D. Influence of socio-economic and cultural factors in rice varietal diversity management on-farm in Nepal. Agric. Hum. Values 2007, 24, 461–472. [Google Scholar] [CrossRef]
- Rajaram, G.; Erbach, D.C.; Warren, D.M. The role of indigenous tillage systems in sustainable food production. Agric. Hum. Values 1991, 8, 149–155. [Google Scholar] [CrossRef]
- Amar, U.; Tarbooj me Laga Kida, Palej Vaalon ne Matha Peeta. Available online: https://www.amarujala.com/uttar-pradesh/rampur/lemon-crop (accessed on 19 December 2017). (In Hindi).
- Kotiyal, R. Jo Tarbooj Ham Kha Rahe Hain, Unhe Ugane Vaale Ujdate Ja Rahe Hain. 2017. Available online: https://satyagrah.scroll.in/article/107093/watermelon-farmers-uttar-pradesh-distress-problems (accessed on 30 June 2022).
- Sriveda, B.; Srihitha, B. Sheep penning: Need to sustain this unique practice. LEISA India 2015, 17, 28–29. [Google Scholar]
- Singh, N.; Aaloo Ki Khudai Hote Hi Shuroo Ho Gai Kharbooje Ki Buvai. Available online: https://www.gaonconnection.com/stories/harvesting-potatoes-initiated-melon-farming.2017 (accessed on 16 June 2022). (In Hindi).
- Silva, M.A.; Albuquerque, T.G.; Alves, R.C.; Oliveira, M.B.P.; Costa, H.S. Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends Food Sci. Technol. 2020, 98, 181–189. [Google Scholar] [CrossRef]
- Maffi, L. Linguistic diversity. In Cultural and Spiritual Values of Biodiversity; Posey, D.A., Ed.; UNDP, Intermediate Technology Publications: London, UK, 1999; pp. 21–57. Available online: https://www.unep.org/resources/publication/cultural-and-spiritual-values-biodiversity (accessed on 25 June 2022).
- Senanayake, R. Voices of the earth. In Cultural and Spiritual Values of Biodiversity; Posey, D.A., Ed.; UNDP, Intermediate Technology Publications: London, UK, 1999; pp. 121–166. Available online: https://www.unep.org/resources/publication/cultural-and-spiritual-values-biodiversity (accessed on 25 June 2022).
- Eyzaguirre, P. The impacts of collective action and property rights on plant genetic resources. World Dev. 2007, 35, 1489–1498. [Google Scholar] [CrossRef]
- Eakin, H. Institutional change, climate risk, and rural vulnerability: Cases from Central Mexico. World Dev. 2005, 33, 923–938. [Google Scholar] [CrossRef]
- Ekboir, J.M.; Dutrénit, G.; Martínez, G.; Torres Vargas, A.; Vera-Cruz, A. Successful Organizational Learning in the Management of Agricultural Research and Innovation: The Mexican Produce Foundations; IFPRI Research Report No. 162; International Food Policy Research Institut: Washington, DC, USA, 2009; Available online: https://ebrary.ifpri.org/digital/collection/p15738coll2/id/29206/ (accessed on 5 August 2022).
- Maikhuri, R.K.; Rao, K.S.; Semwal, R.L. Changing scenario of Himalayan agroecosystems: Loss of agrobiodiversity, an indicator of environmental change in Central Himalaya, India. Environmen 2001, 21, 23–39. [Google Scholar] [CrossRef]
- Dressler, W.H.; Wilson, D.; Clendenning, J.; Cramb, R.; Keenan, R.; Mahanty, S.; Bruun, T.B.; Mertz, O.; Lasco, R.D. The impact of swidden decline on livelihoods and ecosystem services in Southeast Asia: A review of the evidence from 1990 to 2015. Ambio 2017, 46, 291–310. [Google Scholar] [CrossRef] [Green Version]
- CBD. Aichi Biodiversity Targets. 2020. Available online: https://www.cbd.int/sp/targets/ (accessed on 25 June 2022).
- Cowie, A. Guidelines for Land Degradation Neutrality: A report prepared for the Scientific and Technical Advisory Panel of the Global Environment Facility; GEF Secretariat: Washington, DC, USA, 2020; Available online: https://catalogue.unccd.int/1474_LDN_Technical_Report_web_version.pdf (accessed on 25 June 2022).
Variable | Estimate | Standard Error | Marginal Effect | Standard Error |
---|---|---|---|---|
a. Socio-economic variables | ||||
Intercept | 0.238 *** | 0.059 | ||
Age | 0.002 *** | 0.001 | 0.002 *** | 0.001 |
Experience | 0.002 *** | 0.001 | 0.002 ** | 0.001 |
Education | −0.007 ** | 0.003 | −0.007 ** | 0.003 |
Total land-holding | −0.031 *** | 0.010 | −0.031 *** | 0.010 |
Two sources of income | −0.017 | 0.014 | −0.017 | 0.014 |
More than two sources of income | 0.072 *** | 0.020 | 0.072 *** | 0.020 |
Extension contacts | 0.041 ** | 0.019 | 0.041 ** | 0.019 |
b. Perceived stressors | ||||
Blue bull minace (high) | −0.026 * | 0.015 | −0.026 * | 0.015 |
Erratic rainfall (moderate) | −0.028 ** | 0.013 | −0.028 | 0.013 |
Erratic rainfall (high) | −0.006 | 0.023 | −0.006 | 0.023 |
Declining interest (moderate) | 0.035 *** | 0.013 | 0.035 ** | 0.013 |
Declining interest (high) | 0.014 | 0.021 | 0.014 | 0.021 |
Market constraints (moderate) | −0.060 *** | 0.020 | −0.060 *** | 0.020 |
Market constraints (high) | −0.042 * | 0.022 | −0.042 * | 0.022 |
Poor institutional support (moderate) | −0.046 *** | 0.015 | −0.046 *** | 0.015 |
Poor institutional support (high) | −0.044 * | 0.023 | −0.044 * | 0.023 |
c. Perceived enablers | ||||
Cultural heritage (moderate) | −0.012 | 0.018 | −0.012 | 0.018 |
Cultural heritage (high) | 0.054 *** | 0.018 | 0.054 *** | 0.018 |
Social prestige (high) | 0.040 *** | 0.014 | 0.040 *** | 0.014 |
Short duration (high) | −0.004 | 0.014 | −0.004 | 0.014 |
Ease in crop management (high) | 0.021 * | 0.013 | 0.021 | 0.013 |
Pleasant fruit taste (moderate) | −0.005 | 0.020 | −0.005 | 0.020 |
Pleasant fruit taste (high) | 0.103 *** | 0.032 | 0.103 *** | 0.032 |
Livelihood support (moderate) | 0.010 | 0.016 | 0.010 | 0.016 |
Livelihood support (high) | 0.045 *** | 0.017 | 0.045 ** | 0.017 |
Log Sigma | −3.333 *** | 0.094 |
Practice | Up to 1990 | 1991 to Present | Reason(s) |
---|---|---|---|
Field preparation | Use of desi plow, careful land levelling and pulverization | Tractor-drawn implements | Gradual replacement of indigenous tillage equipment |
Seed source | Farmer-saved seeds | Farmer-saved and purchased (hybrid) seeds | Obsession with higher yields |
Sowing time | mid-January to mid-February | Second week of February to first week of March | Potato cultivation |
Fertility management | Fallowing, green manuring, sheep rearing, FYM and neem cake application | Increasing use chemical fertilizers | Crop intensification, diminishing availability of organic inputs |
Plant protection | Application of neem cake | Pesticide sprays | Increased insect-pest infestations |
Harvesting time | Last week of April to second week of May | Second to third week of May | Delayed crop sowing |
Traditional uses | Use as dessert, gifting fruits to relatives, sale of fruits and seeds, seed oil extraction | Use as desert, sending to relatives and sale of fruits | Disappearance of seed chain, oilseed (e.g., mustard) cultivation |
Indigenous institutions | Collective management (sajha system), resource pooling and exchange | Individual and independent approach | Disintegration of joint family system, erosion of traditional values and economic changes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Singh, R.K.; Kumar, N.; Kumar, S.; Sheoran, P.; Singh, D.; Kumar, S.; Sharma, P.C. Adapting to Social–Ecological Risks to the Conservation of a Muskmelon Landrace in India. Sustainability 2022, 14, 9880. https://doi.org/10.3390/su14169880
Singh A, Singh RK, Kumar N, Kumar S, Sheoran P, Singh D, Kumar S, Sharma PC. Adapting to Social–Ecological Risks to the Conservation of a Muskmelon Landrace in India. Sustainability. 2022; 14(16):9880. https://doi.org/10.3390/su14169880
Chicago/Turabian StyleSingh, Anshuman, Ranjay K. Singh, Neeraj Kumar, Suresh Kumar, Parvender Sheoran, Dheeraj Singh, Satyendra Kumar, and P. C. Sharma. 2022. "Adapting to Social–Ecological Risks to the Conservation of a Muskmelon Landrace in India" Sustainability 14, no. 16: 9880. https://doi.org/10.3390/su14169880
APA StyleSingh, A., Singh, R. K., Kumar, N., Kumar, S., Sheoran, P., Singh, D., Kumar, S., & Sharma, P. C. (2022). Adapting to Social–Ecological Risks to the Conservation of a Muskmelon Landrace in India. Sustainability, 14(16), 9880. https://doi.org/10.3390/su14169880