Response of Ground Beetle (Coleoptera: Carabidae) Communities to Effect of Urbanization in Southern Osaka: An Analytical Approach Using GIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Survey and Ground Beetle Identification
2.3. Body Size and Habitat Type
2.4. Land Use Analysis
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güeralp, B.; Marcotullio, P.J.; McDonald, R.I.; Parnell, S.; Schewenius, M.; Sendstad, M.; Seto, K.C.; et al. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2013. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations, Department of Economic and Social Affirs, Population Division: New York, NY, USA, 2018. [Google Scholar]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Martinson, H.M.; Raupp, M.J. A meta-analysis of the effects of urbanization on ground beetle communities. Ecosphere 2013, 4, 60. [Google Scholar] [CrossRef]
- Piano, E.; Souffreau, C.; Merckx, T.; Baardsen, L.F.; Backeljau, T.; Bonte, D.; Brans, K.I.; Cours, M.; Dahirel, M.; Debortoli, N.; et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 2020, 26, 1196–1211. [Google Scholar] [CrossRef]
- Elek, Z.; Lövei, G.L. Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark. Acta Oecologica 2007, 32, 104–111. [Google Scholar] [CrossRef]
- Lee, C.M.; Park, J.W.; Kwon, T.-S.; Kim, S.-S.; Ryu, J.W.; Jung, S.J.; Lee, S.K. Diversity and density of butterfly communities in urban green areas: An analytical approach using GIS. Zool. Stud. 2015, 54, 4. [Google Scholar] [CrossRef] [Green Version]
- Magura, T.; Horváth, R.; Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landsc. Ecol. 2010, 25, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Rainio, J.; Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserve. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Stewart, A.J.A.; New, T.R.; Lewis, O.T. Insect Conservation Biology; CABI: Wallingford, UK, 2007. [Google Scholar]
- Magura, T.; Lövei, G.L. Consequences of urban living: Urbanization and ground beetles. Curr. Landsc. Ecol. Rep. 2020, 6, 9–21. [Google Scholar] [CrossRef]
- Hartley, D.J.; Koivula, M.J.; Spence, J.R.; Pelletier, R.; Ball, G.E. Effects of urbanization on ground beetle assemblages (Coleoptera, Carabidae) of grassland habitats in western Canada. Ecography 2007, 30, 673–684. [Google Scholar] [CrossRef]
- Magura, T.; Lövei, G.; Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob. Ecol. Biogeogr. 2010, 19, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Kwon, T.-S. Community structure, species diversity of insects (ants, ground beetle), and forest health in the Hongneung Forest. J. Korean Soc. For. Sci. 2013, 102, 97–106. [Google Scholar] [CrossRef]
- Buczkowski, G.; Richmond, D.S. The Effect of Urbanization on Ant Abundance and Diversity: A Temporal Examination of Factors Affecting Biodiversity. PLoS ONE 2012, 7, e41729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueno, S.-I.; Kurosawa, Y.; Sato, M. The Coleoptera of Japan in Color; Hoikusha Publishing Co., Ltd.: Osaka, Japan, 1989; Volume II. [Google Scholar]
- Lee, C.M. Ecological Study on the Ground Beetle Assemblages of Urban Green Areas in Japan. Ph.D. Thesis, Osaka Prefecture University, Osaka, Japan, 2009. [Google Scholar]
- Lake Biwa Museum. Ground Beetles of Satoyama, Shiga. 2021. Available online: https://www.biwahaku.jp/research/data/gomimushi/kamei_list.html (accessed on 12 March 2021).
- Lee, C.M.; Kwon, T.-S. Response of ground arthropods to effect of urbanization in southern Osaka, Japan. J. Asia-Pac. Biodivers. 2015, 8, 343–348. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 April 2021).
- Ishitani, M.; Kotze, D.J.; Niemelä, J. Changes in carabid beetle assemblages across an urban–rural gradient in Japan. Ecography 2003, 26, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Ishii, M. Species diversity of ground beetle assemblages at urban greeneries in southern Osaka, central Japan. Jpn. J. Environ. Entomol. Zool. 2009, 20, 47–58. [Google Scholar]
- Lee, C.M.; Ishii, M. Species diversity of ground beetle assemblages in the riverbed of the Yamato River. Jpn. J. Environ. Entomol. Zool. 2009, 21, 15–28. [Google Scholar]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space nextwork development for biodiversity conservation, Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Koivula, M.; Vermeulen, H.J.W. Highways and forest fragmentation. Landsc. Ecol. 2005, 20, 911–926. [Google Scholar] [CrossRef]
- Keller, I.; Largiadèr, C.R. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. R. Soc. Lond. 2003, 270, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study Site | Acronym | Coordinates | Year | Area (ha) | Main Plants | Cho/Dai/ Machi | City | Facility | Remark | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Latitude | Longitude | Subsite 1 | Subsite 2 | ||||||||
Suzunomiya park | SU | 34.5284 | 135.4804 | 1976 | Small (1.4) | Q. glauca grove | Lawn area around deciduous trees such as C. sinensis var, japonica, and Ligustrum japonicum | Hatanishimachi | Sakai | Playground | Near to Hatadaimyou temple |
Chayama park | CH | 34.4889 | 135.5186 | 1982 | Small (4.4) | Q. glauca grove | Lawn area near deciduous trees such as L. tulipifera and Triadica sebifera | Chayamadai | Sakai | Playground | Surrounded by residential areas |
Takasago park | TA | 34.5379 | 135.4063 | 1979 | Small (4.8) | Around deciduous trees such as Rhaphiolepis indica var. umbellate | Grassland area where the majority of herbs were Desmodium paniculatum and Hypochaeris radicata | Takaishi | Baseball ground | landfill area | |
Izumigaokaryokuchi | IZ | 34.5029 | 135.5304 | 1982 | Medium (5.3) | Secondary forest where the majority of trees were Q. serrata and Q. acutissima | Grassland where the majority of herbs were S. canadensis var. scabra and Juncus tenuis | Ueno | Sakai | Connected to natural forests | |
Niwasiro park | NI | 34.4742 | 135.4975 | 1982 | Medium (6.9) | Around deciduous trees such as Myrica rubra and Q. glauca | Lawn area near deciduous trees such as Albizia julibrissin and Ulmus parvifolia | Niwasirodai | Sakai | Baseball ground | Surrounded by residential areas |
Kurotoriyama park | KU | 34.4866 | 135.4438 | 1960 | Medium (7.2) | Around a secondary forest where the majority of trees were Q. serrata and Q. acutissima | Lawn area near a lake | Kurotoricho | Izumi | Playground | Partially surrounded by paddy fields and crop fields |
Umitonohureaihiroba | UM | 34.6027 | 135.4256 | 2000 | Large (15.8) | Around a colony of Pittosporum tobira | Grassland area where the majority of herbs were Trifolium repens and Digitaria ciliaris | Chikkoyawatamachi | Sakai | Biotope | Landfill area near the mouth of Yamato River |
Kouzen park | KO | 34.5012 | 135.4965 | 1982 | Large (17.4) | Around an Acer buergerianum grove | Grassland dominated by Erigeron annuus and near deciduous trees such as Liriodendron tulipifera and L. japonicum | Miyayamadai | Sakai | Playground | Tajihayahime temple’s private estate |
Koumyouike park | KM | 34.4610 | 135.4756 | 1987 | Large (33.4) | Second forest where the majority of trees were Q. serrata and Q. acutissima | Grassland where the majority of herbs were Artemisia indica var. maximowiczii and Pueraria lobata | Kurotoricho | Izumi | Artifical lake | Partially connected to natural forests |
Species | Small Area (<5 ha) | Medium Area (>5 ha and <15 ha) | Large Area (>15 ha) | Total | % | Body Size | Habitat Type | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SU | CH | TA | IZ | NI | KU | UM | KO | KM | |||||
Carabidae | |||||||||||||
Campalita chinense | 0.16 (2) | 2 (0.12) | 0.1 | L | O | ||||||||
Carabus yaconinus | 0.18 (3) | 1.99 (34) | 0.94 (14) | 51 (3.11) | 1.7 | L | F | ||||||
Leptocarabus kumagaii | 0.27 (4) | 4 (0.27) | 0.1 | L | F | ||||||||
Scarites terricola pacificus | 0.12 (2) | 0.2 (3) | 0.29 (5) | 0.26 (4) | 14 (0.88) | 0.5 | M | O | |||||
Tachyura laetifica | 0.2 (3) | 3 (0.2) | 0.1 | S | O | ||||||||
Archipatrobus flavipes | 0.29 (5) | 0.18 (3) | 0.12 (2) | 0.12 (2) | 12 (0.7) | 0.4 | M | O | |||||
Lesticus magnus | 0.12 (2) | 0.06 (1) | 0.46 (8) | 0.13 (2) | 0.27 (4) | 17 (1.04) | 0.6 | L | O | ||||
Trigonotoma lewisii | 0.06 (1) | 1 (0.06) | 0.0 | M | F | ||||||||
Pterostichus sulcitarsis | 0.62 (10) | 0.18 (3) | 0.13 (2) | 2.67 (41) | 0.2 (3) | 59 (3.81) | 2.0 | S | O | ||||
P. fortis | 0.64 (11) | 11 (0.64) | 0.4 | M | O | ||||||||
P. prolongatus | 0.17 (3) | 3 (0.17) | 0.1 | M | O | ||||||||
P. microcephalus | 0.06 (1) | 0.06 (1) | 0.06 (1) | 0.13 (2) | 0.07 (1) | 6 (0.37) | 0.2 | S | O | ||||
P. polygenus | 0.34 (5) | 0.2 (3) | 8 (0.54) | 0.3 | S | O | |||||||
Platynus magnus | 0.06 (1) | 1 (0.06) | 0.0 | M | O | ||||||||
P. chalcomus | 0.13 (2) | 2 (0.13) | 0.1 | S | O | ||||||||
Dolichus halensis | 2.66 (46) | 0.19 (3) | 0.34 (6) | 0.9 (15) | 0.67 (10) | 0.35 (6) | 7.65 (132) | 4.95 (76) | 0.27 (4) | 298 (17.98) | 10.1 | M | O |
Synuchus nitidus | 7.8 (135) | 3.8 (61) | 0.06 (1) | 26.07 (434) | 15.08 (224) | 2.87 (49) | 2.8 (43) | 0.27 (4) | 951 (58.75) | 32.2 | M | F | |
S. cycloderus | 0.29 (5) | 1.68 (28) | 0.23 (4) | 0.07 (1) | 38 (2.27) | 1.3 | M | F | |||||
S. melantho | 0.54 (9) | 9 (0.54) | 0.3 | M | F | ||||||||
S. dulcigradus | 1.5 (26) | 0.25 (4) | 24.86 (414) | 3.77 (56) | 3.86 (66) | 0.29 (5) | 1.89 (29) | 1.14 (17) | 617 (37.57) | 20.9 | S | F | |
S. arcuaticollis | 0.84 (14) | 0.4 (6) | 0.23 (4) | 0.2 (3) | 27 (1.68) | 0.9 | S | F | |||||
Amara congrua | 1.5 (26) | 0.28 (5) | 0.12 (2) | 0.34 (5) | 0.29 (5) | 0.64 (11) | 1.17 (18) | 0.2 (3) | 75 (4.54) | 2.5 | S | O | |
A. chalcites | 0.06 (1) | 0.07 (1) | 2 (0.13) | 0.1 | S | O | |||||||
A. nipponica | 0.12 (2) | 0.07 (1) | 3 (0.18) | 0.1 | S | O | |||||||
A. simplicidens | 0.12 (2) | 2 (0.12) | 0.1 | S | O | ||||||||
A. macronota | 0.06 (1) | 0.06 (1) | 0.12 (2) | 4 (0.23) | 0.1 | M | O | ||||||
A. gigantea | 0.06 (1) | 1 (0.06) | 0.0 | M | O | ||||||||
Anisodactylus signatus | 0.12 (2) | 0.06 (1) | 0.53 (9) | 0.06 (1) | 0.07 (1) | 14 (0.83) | 0.5 | M | O | ||||
A. sadoensis | 0.06 (1) | 0.18 (3) | 0.07 (1) | 0.06 (1) | 0.17 (3) | 0.52 (8) | 0.07 (1) | 18 (1.13) | 0.6 | M | O | ||
A. tricuspidatus | 0.12 (2) | 1.38 (23) | 0.2 (3) | 28 (1.69) | 0.9 | M | F | ||||||
Harpalus capito | 0.06 (1) | 0.12 (2) | 3 (0.18) | 0.1 | L | O | |||||||
H. griseus | 0.23 (4) | 1.17 (20) | 4.29 (74) | 0.72 (11) | 0.07 (1) | 110 (6.47) | 3.7 | M | O | ||||
H. eous | 0.25 (4) | 0.36 (6) | 0.06 (1) | 0.23 (4) | 0.2 (3) | 0.27 (4) | 22 (1.36) | 0.7 | M | O | |||
H. tridens | 0.17 (3) | 0.18 (3) | 0.06 (1) | 0.07 (1) | 0.07 (1) | 9 (0.54) | 0.3 | M | O | ||||
H. sinicus | 0.75 (13) | 0.06 (1) | 0.17 (3) | 0.36 (6) | 0.2 (3) | 0.88 (15) | 2.55 (44) | 5.8 (89) | 0.13 (2) | 176 (10.9) | 6.0 | M | O |
H. niigatanus | 1.1 (19) | 0.24 (4) | 0.07 (1) | 0.29 (5) | 0.17 (3) | 0.4 (6) | 38 (2.28) | 1.3 | M | O | |||
H. simplicidens | 0.23 (4) | 0.06 (1) | 0.06 (1) | 6 (0.35) | 0.2 | M | O | ||||||
H. chalcentus | 0.39 (6) | 6 (0.39) | 0.2 | M | O | ||||||||
H. tinctulus | 2.89 (50) | 0.19 (3) | 0.29 (5) | 1.24 (19) | 0.07 (1) | 78 (4.67) | 2.6 | S | O | ||||
Platymetopus flavilabris | 0.06 (1) | 1 (0.06) | 0.0 | S | O | ||||||||
Stenolophus fulvicornis | 0.06 (1) | 0.12 (2) | 3 (0.17) | 0.1 | S | O | |||||||
S. quinquepustulatus | 0.07 (1) | 1 (0.07) | 0.0 | S | O | ||||||||
Haplochlaenius costiger | 0.18 (3) | 0.12 (2) | 0.06 (1) | 0.2 (3) | 9 (0.56) | 0.3 | L | F | |||||
Chlaenius virgulifer | 0.12 (2) | 0.29 (5) | 0.17 (3) | 0.33 (5) | 0.07 (1) | 16 (0.98) | 0.5 | M | O | ||||
C. variicornis | 0.13 (2) | 2 (0.13) | 0.1 | M | O | ||||||||
C. pallipes | 0.06 (1) | 1 (0.06) | 0.0 | M | O | ||||||||
C. micans | 0.35 (6) | 6 (0.35) | 0.2 | M | O | ||||||||
C. naeviger | 0.23 (4) | 1.55 (23) | 27 (1.78) | 0.9 | M | F | |||||||
C. posticalis | 0.23 (4) | 4 (0.23) | 0.1 | M | O | ||||||||
Aephnidius adelioides | 0.06 (1) | 1.51 (26) | 27 (1.57) | 0.9 | S | O | |||||||
Galerita orientalis | 0.06 (1) | 0.07 (1) | 0.2 (3) | 5 (0.33) | 0.2 | L | F | ||||||
Brachinidae | |||||||||||||
Brachinus scotomedes | 0.18 (3) | 0.12 (2) | 0.07 (1) | 6 (0.36) | 0.2 | M | F | ||||||
Pheropsophus jessoensis | 0.12 (2) | 0.12 (2) | 0.66 (11) | 0.06 (1) | 5.04 (87) | 0.67 (10) | 113 (6.68) | 3.8 | M | O | |||
Species richness | 22 | 10 | 4 | 26 | 14 | 24 | 30 | 20 | 27 | 53 | |||
Abundance | 350 | 92 | 15 | 995 | 322 | 241 | 451 | 363 | 121 | 2950 | |||
Density | 20.23 | 5.73 | 0.84 | 59.76 | 21.68 | 14.09 | 26.14 | 23.65 | 8.15 | 20.00 | |||
Species diversity (H’) | 2.06 | 1.31 | 1.24 | 1.40 | 1.12 | 2.31 | 2.26 | 2.24 | 2.80 | 2.43 | |||
Species evenness (J’) | 0.67 | 0.57 | 0.89 | 0.43 | 0.42 | 0.73 | 0.66 | 0.75 | 0.85 | 0.62 |
Community Index | Area | One-Way ANOVA | |||
---|---|---|---|---|---|
Small Area (<5 ha) | Medium Area (>5 ha and <15 ha) | Large Area (>15 ha) | F2, 6 | p | |
Species richness | |||||
All species | 12.0 ± 5.29 | 21.3 ± 3.71 | 25.7 ± 2.96 | 2.90 | 0.132 |
Body size | |||||
Small | 4 ± 2.08 | 5.7 ± 1.20 | 7.0 ± 0.00 | 1.17 | 0.372 |
Medium | 8.0 ± 3.21 | 13.0 ± 3.51 | 15.0 ± 2.31 | 1.39 | 0.319 |
Large | 0.0 | 2.7 ± 1.33 | 3.7 ± 0.88 | 4.22 | 0.072 |
Habitat type | |||||
Forest species | 2.3 ± 0.88 | 7.3 ± 2.19 | 5.3 ± 2.40 | 1.68 | 0.264 |
Open land species | 9.7 ± 4.41 | 14.0 ± 1.53 | 20.3 ± 3.84 | 2.36 | 0.175 |
Density | |||||
All species | 8.93 ± 5.82 | 31.85 ± 14.13 | 19.31 ± 5.63 | 1.49 | 0.299 |
Body size | |||||
Small | 2.53 ± 1.87 | 11.99 ± 7.04 | 4.09 ± 1.59 | 1.39 | 0.320 |
Medium | 6.41 ± 3.97 | 18.94 ± 7.56 | 14.28 ± 5.36 | 1.19 | 0.368 |
Large | 0.00 | 0.92 ± 0.67 | 0.94 ± 0.50 | 1.26 | 0.350 |
Habitat type | |||||
Forest species | 4.61 ± 2.80 | 28.31 ± 14.10 | 3.40 ± 1.53 | 2.83 | 0.136 |
Open land species | 4.33 ± 3.11 | 3.53 ± 0.58 | 15.91 ± 6.66 | 2.65 | 0.150 |
Species diversity (H’) | 1.54 ± 0.26 | 1.61 ± 0.36 | 2.43 ± 0.18 | 3.21 | 0.113 |
Species evenness (J’) | 0.71 ± 0.09 | 0.53 ± 0.10 | 0.75 ± 0.05 | 1.95 | 0.223 |
Land Use Category | Paddy | Field | Park and Green Space | Forest | Urban Area | Road | Open Space | River and Pond | Sea | Others | Total | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Small area (<5 ha) | SU | ha | 3.9 | 5.9 | 3.0 | 2.0 | 81.9 | 13.0 | 6.4 | 0.2 | 0.0 | 0.0 | 116.4 |
% | 3.4 | 5.1 | 2.6 | 1.8 | 70.4 | 11.2 | 5.5 | 0.2 | 0.0 | 0.0 | 100.0 | ||
CH | ha | 0.0 | 0.4 | 9.0 | 13.4 | 73.1 | 22.2 | 4.2 | 0.7 | 0.0 | 0.0 | 123.0 | |
% | 0.0 | 0.4 | 7.3 | 10.9 | 59.4 | 18.0 | 3.4 | 0.6 | 0.0 | 0.0 | 100.0 | ||
TA | ha | 0.0 | 0.0 | 2.5 | 0.0 | 89.3 | 7.9 | 4.3 | 0.0 | 19.7 | 0.0 | 123.6 | |
% | 0.0 | 0.0 | 2.0 | 0.0 | 72.3 | 6.4 | 3.5 | 0.0 | 15.9 | 0.0 | 100.0 | ||
Medium area (>5 ha and <15 ha) | IZ | ha | 5.5 | 11.9 | 6.2 | 11.8 | 68.7 | 20.1 | 2.9 | 11.5 | 0.0 | 0.0 | 138.5 |
% | 4.0 | 8.6 | 4.5 | 8.5 | 49.6 | 14.5 | 2.1 | 8.3 | 0.0 | 0.0 | 100.0 | ||
NI | ha | 6.2 | 2.5 | 4.5 | 8.9 | 93.6 | 21.4 | 6.1 | 5.6 | 0.0 | 0.0 | 148.7 | |
% | 4.2 | 1.7 | 3.0 | 6.0 | 62.9 | 14.4 | 4.1 | 3.7 | 0.0 | 0.0 | 100.0 | ||
KU | ha | 15.5 | 16.1 | 10.6 | 28.4 | 49.2 | 4.7 | 7.3 | 7.6 | 0.0 | 11.8 | 151.2 | |
% | 10.3 | 10.6 | 7.0 | 18.8 | 32.5 | 3.1 | 4.8 | 5.0 | 0.0 | 7.8 | 100.0 | ||
Large area (>15 ha) | UM | ha | 0.0 | 0.0 | 0.0 | 0.0 | 2.6 | 0.0 | 61.6 | 0.0 | 115.2 | 0.0 | 179.3 |
% | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 34.3 | 0.0 | 64.2 | 0.0 | 100.0 | ||
KO | ha | 25.5 | 7.6 | 4.0 | 14.9 | 82.4 | 22.7 | 7.6 | 6.0 | 0.0 | 0.0 | 170.7 | |
% | 15.0 | 4.4 | 2.4 | 8.7 | 48.3 | 13.3 | 4.4 | 3.5 | 0.0 | 0.0 | 100.0 | ||
KM | ha | 16.5 | 19.6 | 22.3 | 43.8 | 167.4 | 29.2 | 23.4 | 12.9 | 0.0 | 0.0 | 335.0 | |
% | 4.9 | 5.8 | 6.7 | 13.1 | 50.0 | 8.7 | 7.0 | 3.9 | 0.0 | 0.0 | 100.0 |
Community Index | Year | Area (ha) | Paddy | Field | Park and Green Space | Forest | Urban Area | Road | Open Space | River and Pond |
---|---|---|---|---|---|---|---|---|---|---|
Species richness | ||||||||||
All species | 0.333 | 0.591 ** | 0.234 | 0.305 | −0.288 | 0.022 | −0.900 *** | −0.806 *** | 0.702 *** | 0.081 |
Body size | ||||||||||
Small | 0.639 *** | 0.379 | 0.017 | −0.235 | −0.700 *** | −0.490 * | −0.612 ** | −0.476 * | 0.707 *** | −0.321 |
Medium | 0.287 | 0.527 ** | 0.215 | 0.349 | −0.254 | 0.047 | −0.891 *** | −0.796 *** | 0.675 *** | 0.125 |
Large | 0.061 | 0.692 *** | 0.369 | 0.515 * | 0.085 | 0.374 | −0.791 *** | −0.774 *** | 0.479 * | 0.265 |
Habitat type | ||||||||||
Forest species | −0.654 *** | 0.172 | 0.641 *** | 0.960 *** | 0.700 *** | 0.841 *** | −0.055 | −0.077 | −0.358 | 0.831 *** |
Open land species | 0.644 *** | 0.562 ** | −0.026 | −0.089 | −0.615 ** | −0.342 | −0.946 *** | −0.836 *** | 0.913 *** | −0.274 |
Density | ||||||||||
All species | 0.127 | −0.476 | −0.061 | 0.262 | −0.306 | −0.231 | −0.127 | 0.175 | 0.040 | 0.568 ** |
Body size | ||||||||||
Small | −0.214 | −0.630 *** | 0.060 | 0.453 * | 0.032 | 0.033 | 0.195 | 0.442 * | −0.336 | 0.783 *** |
Medium | 0.399 | −0.362 | −0.196 | 0.024 | −0.567 ** | −0.467 * | −0.310 | 0.008 | 0.307 | 0.306 |
Large | −0.336 | 0.694 *** | 0.570 ** | 0.658 *** | 0.492 * | 0.721 *** | −0.493 ** | −0.628 ** | 0.139 | 0.283 |
Habitat type | ||||||||||
Forest species | −0.327 | −0.692 *** | 0.031 | 0.467 * | 0.181 | 0.123 | 0.353 | 0.570 ** | −0.490 * | 0.819 *** |
Open land species | 0.795 *** | 0.471 | −0.155 | −0.413 * | −0.822 *** | −0.597 ** | −0.841 *** | −0.742 *** | 0.947 *** | −0.550 ** |
Species diversity (H’) | 0.146 | 0.902 *** | 0.411 * | 0.219 | −0.020 | 0.256 | −0.749 *** | −0.874 *** | 0.580 ** | −0.222 |
Species evenness (J’) | 0.144 | 0.901 *** | 0.416 * | 0.223 | −0.020 | 0.258 | −0.751 *** | −0.874 *** | 0.579 ** | −0.216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-W.; Lee, C.M. Response of Ground Beetle (Coleoptera: Carabidae) Communities to Effect of Urbanization in Southern Osaka: An Analytical Approach Using GIS. Sustainability 2021, 13, 7134. https://doi.org/10.3390/su13137134
Park J-W, Lee CM. Response of Ground Beetle (Coleoptera: Carabidae) Communities to Effect of Urbanization in Southern Osaka: An Analytical Approach Using GIS. Sustainability. 2021; 13(13):7134. https://doi.org/10.3390/su13137134
Chicago/Turabian StylePark, Jin-Wook, and Cheol Min Lee. 2021. "Response of Ground Beetle (Coleoptera: Carabidae) Communities to Effect of Urbanization in Southern Osaka: An Analytical Approach Using GIS" Sustainability 13, no. 13: 7134. https://doi.org/10.3390/su13137134
APA StylePark, J.-W., & Lee, C. M. (2021). Response of Ground Beetle (Coleoptera: Carabidae) Communities to Effect of Urbanization in Southern Osaka: An Analytical Approach Using GIS. Sustainability, 13(13), 7134. https://doi.org/10.3390/su13137134