Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Preparation
3.2. Data Analysis
4. Result and Discussion
4.1. Cross-Correlation Function
4.2. Spatial Survey
4.3. Seismo-Climatic Index
4.4. Upper-Air Vertical Profile
4.5. Volcanic Activity
4.6. Cross-Correlation Function Test
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.; Davidenko, D.V. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. 2015, 55, 521–538. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Remote Sensing of Atmospheric and Ionospheric Signals Prior to the Mw 8.3 Illapel Earthquake, Chile 2015. Pure Appl. Geophys. 2017, 174, 11–45. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Khosravi, M.; Tavousi, T. Seismic triggering of atmospheric variables prior to the major earthquakes in the Middle East within a 12-year time-period of 2002–2013. Nat. Hazards 2014, 74, 1539–1553. [Google Scholar] [CrossRef]
- Pundhir, D.; Singh, B.; Singh, O.P. Anomalous TEC variations associated with the strong Pakistan-Iran border region earthquake of 16 April 2013 at a low latitude station Agra, India. Adv. Space Res. 2014, 53, 226–232. [Google Scholar] [CrossRef]
- Ondoh, T. Investigation of precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes of M > 6.5. Adv. Space Res. 2009, 43, 214–223. [Google Scholar] [CrossRef]
- Fan, W.; McGuire, J.J.; de Groot-Hedlin, C.D.; Hedlin, M.A.H.; Coats, S.; Fiedler, J.W. Stormquakes. Geophys. Res. Lett. 2019, 46, 12909–12918. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.; Davidenko, D.V. Lithosphere-atmosphere-ionosphere-magnetosphere coupling—A concept for pre-earthquake signals generation. In Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies; American Geophysical Union: Washington, DC, USA; John Wiley& Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 79–98. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Liu, J.Y.; Hattori, K.; Han, P. Multiparameter Assessment of Pre-Earthquake Atmospheric Signals. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, D., Hattori, K., Taylor, P., Eds.; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 339–359. [Google Scholar]
- Shah, M.; Jin, S. Pre-seismic ionospheric anomalies of the 2013 Mw = 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Examination of a relationship between atmospheric blocking and seismic events in the Middle East using a new seismo-climatic index. Swiss J. Geosci. 2019, 112, 435–451. [Google Scholar] [CrossRef]
- Tariq, M.A.; Shah, M.; Pajares, M.H.; Iqbal, T. Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv. Space Res. 2019, 63, 2088–2099. [Google Scholar] [CrossRef]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw > 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Şentürk, E.; Inyurt, S.; Sertçelik, İ. Ionospheric anomalies associated with Mw 7.3 Iran-Iraq border earthquake and a moderate magnetic storm. Ann. Geophys. Discuss. 2020, 38, 1031–1043. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Survey of a relationship between precipitation and major earthquakes along the Peru-Chilean trench (2000–2015). Eur. Phys. J. Spec. Top. 2021, 230, 335–351. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Tavousi, T.; Khosravi, M. Atmospheric blocking anomalies as the synoptic precursors prior to the induced earthquakes; A new climatic conceptual model. Int. J. Environ. Sci. Technol. 2015, 12, 1705–1718. [Google Scholar] [CrossRef]
- Hainzl, S.; Kraft, T.; Wassermann, J.; Igel, H.; Schmedes, E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Kraft, T.; Wassermann, J.; Schmedes, E.; Igel, H. Meteorological triggering of earthquake swarms at Mt. Hochstaufen, SE-Germany. Tectonophysics 2006, 424, 245–258. [Google Scholar] [CrossRef]
- Husen, S.; Bachmann, C.; Diardini, D. Locally triggered seismicity in the central Swiss Alps following the large rainfall event of August 2005. Geophys. J. Int. 2007, 171, 1126–1134. [Google Scholar] [CrossRef]
- Miller, S.A. Note on rain-triggered earthquakes and their dependence on karst geology. Geophys. J. Int. 2008, 173, 334–338. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Romanov, A.; Romanov, A.; Tsybulya, K.; Davidenko, D.; Kafatos, M.; Taylor, P. Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by joined satellite and ground observations: Preliminary results. Earthq. Sci. 2011, 24, 557–564. [Google Scholar] [CrossRef]
- Wakita, K. Geology and tectonics of Japanese islands: A review—The key to understanding the geology of Asia. J. Asian Earth Sci. 2013, 72, 75–87. [Google Scholar] [CrossRef]
- Arai, N.; Iwakuni, M.; Watada, S.; Imanishi, Y.; Murayama, T.; Nogami, M. Atmospheric boundary waves excited by the tsunami generation related to the 2011 great Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L00G18. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L17312. [Google Scholar] [CrossRef]
- Kakinami, Y.; Kamogawa, M.; Tanioka, Y.; Watanabe, S.; Gusman, A.R.; Liu, J.Y.; Watanabe, Y.; Mogi, T. Tsunamigenic ionospheric hole. Geophys. Res. Lett. 2012, 39, L00G27. [Google Scholar] [CrossRef]
- Ohta, K.; Izutsu, J.; Schekotov, A.; Hayakawa, M. The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake. Radio Sci. 2013, 48, 589–596. [Google Scholar] [CrossRef]
- Hayakawa, M. Seismo-ionospheric perturbations, and the precursors to the 2011 Japan earthquake. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility, Tokyo (EMC’14/Tokyo), Tokyo, Japan, 13–16 May 2014; pp. 155–158. [Google Scholar]
- Hayakawa, M. Earthquake Precursor Studies in Japan. In Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ouzounov, D.; Liu, D.; Chunli, K.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophys 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Jiao, Z.H.; Zhao, J.; Shan, X. Pre-seismic anomalies from optical satellite observations: A review. Nat. Hazards Earth Syst. Sci. 2018, 18, 1013–1036. [Google Scholar] [CrossRef]
- Freund, F.T.; Kulahci, I.G.; Cyr, G.; Ling, J.; Winnick, M.; Tregloan-Reed, J.; Freund, M.M. Air ionization at rock surfaces and pre-earthquake signals. J. Atmos. Sol. Terr. Phys. 2009, 71, 1824–1834. [Google Scholar] [CrossRef]
- Freund, F.T. Earthquake Forewarning—A Multidisciplinary Challenge from the Ground up to Space. Acta Geophys. 2013, 61, 775–807. [Google Scholar] [CrossRef]
- Qin, K.; Zheng, S.; Wu, L.; Wang, Y. Quasi-synchronous multi-parameter anomalies before Wenchuan and Yushu earthquakes in China. Eur. Phys. J. Spec. Top. 2021, 230, 263–274. [Google Scholar] [CrossRef]
- Costain, J.K.; Bollinger, G.A.; Speer, J.A. Hydroseismicity—A hypothesis for the role of water in the generation of intraplate seismicity. Geology 1987, 15, 618–621. [Google Scholar] [CrossRef]
- Costain, J.K. Groundwater recharge as the trigger of naturally occurring intraplate earthquakes. Geol. Soc. Spec. Publ. 2017, 432, 91–118. [Google Scholar] [CrossRef]
- Kodaira, S.; Iidaka, T.; Kato, A.; Park, J.O.; Iwasaki, T.; Kaneda, Y. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 2004, 304, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Prejean, S.G.; Hill, D.P.; Brodsky, E.E.; Hough, S.E.; Johnston, M.J.S.; Malone, S.D.; Oppenheimer, D.H.; Pitt, A.M.; Richards-Dinger, K.B. Remotely triggered seismicity on the United States west coast following the Mw 7.9 Denali Fault earthquake. Bull. Seismol. Soc. Am. 2014, 94, S348–S359. [Google Scholar] [CrossRef]
- Farquharson, J.I.; Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 2020, 580, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Parrot, M.; Tramutoli, V.; Liu, T.J.Y.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Freund, F.T.; Freund, M.M. Paradox of Peroxy Defects and Positive Holes in Rocks Part I: Effect of Temperature. J. Asian Earth Sci. 2015, 114, 373–383. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- USGS. Earthquake Archive Data. Online Catalog of United States Geological Survey. Available online: https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes (accessed on 15 December 2019).
- Marchitelli, V.; Harabaglia, P.; Troise, C.; De Natale, G. On the correlation between solar activity and large earthquakes worldwide. Sci. Rep. 2020, 10, 11495. [Google Scholar] [CrossRef]
- Rhea, S.; Tarr, A.C.; Hayes, G.; Villaseñor, A.; Benz, H. Seismicity of the Earth 1900–2007, Japan and Vicinity; Open-File Report 2010–1083-D; U.S. Geological Survey: Reston, VA, USA, 2010.
- Galway, J.G. The lifted index as a predictor of latent instability. Bull. Am. Meteorol. Soc. 1956, 37, 528–529. [Google Scholar] [CrossRef]
- Showalter, A.K. A stability index for thunderstorm forecasting. Bull. Am. Meteorol. Soc. 1953, 34, 250–252. [Google Scholar] [CrossRef]
- Bidner, A. The Air Force Global Weather Central severe weather threat (SWEAT) index—A preliminary report. Air Weather Serv. Sci. Rev. 1970, 3, 105–162. [Google Scholar]
- Miller, R.C. Notes on the Analysis of Severe Storm Forecasting Procedures of The Air Force Global Weather Center; AFGWC Technical Report 200 (Rev.); Air Weather Service, Scott AFB: St. Clair, IL, USA, 1972. [Google Scholar]
- Sioutas, M.V.; Flocas, H.A. Hailstorms in Northern Greece: Synoptic patterns and thermodynamic environment. Theor. Appl. Climatol. 2003, 75, 189–202. [Google Scholar] [CrossRef]
- University of Wyoming. Upper-Atmosphere Sounding Database. Available online: https://weather.uwyo.edu/upperair/sounding.html (accessed on 15 December 2019).
- JMA. Radiosonde Network in Japan Archived by Japan Meteorological Agency. Available online: https://www.jma.go.jp/jma/en/Activities/upper/upper.html (accessed on 15 December 2019).
- APDRC. Tropical Rainfall Measurement Mission (TRMM) Project Archived by Asia Pacific Data Research Center. Available online: https://apdrc.soest.hawaii.edu/las/getUI.do (accessed on 15 December 2019).
- GIOVANNI. Precipitation Data Archived by the 4th Version of the Geospatial Interactive Online Visualization and Analysis Infrastructure Program. Available online: https://giovanni.gsfc.nasa.gov/giovanni (accessed on 20 January 2020).
- NOAA. Daily Reanalysis Database of NOAA/Physical Science Laboratory. Available online: https://www.esrl.noaa.gov/psd/data/composites/day (accessed on 20 January 2020).
- NMNH. Volcanic Eruptions Data Archived by National Museum of Natural History in New York. Available online: https://volcano.si.edu/search_eruption.cfm (accessed on 10 April 2020).
- JMA. National Catalog of Active Volcanoes in Japan. Edited by Japan Meteorological Agency and Volcanological Society of Japan. Available online: https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/menu.htm (accessed on 10 April 2020).
- Straile, D.; Eckmann, R.; Juengling, T.; Thomas, G.; Loeffler, H. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 2007, 151, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Greenstreet, S.P.R.; Rogers, S.I.; Rice, J.C.; Piet, G.J.; Guirey, E.J.; Fraser, H.M.; Fryer, R.J. Development of the EcoQO for the North Sea fish community. ICES J. Mar. Sci. 2011, 68, 1–11. [Google Scholar] [CrossRef]
- Gröger, J.P.; Fogarty, M.J. Broad-scale climate influences on cod (Gadus morhua) recruitment on Georges Bank. ICES J. Mar. Sci. 2011, 68, 592–602. [Google Scholar] [CrossRef][Green Version]
- Shephard, S.; Reid, D.G.; Greenstreet, S.P.R. Interpreting the large fish indicator for the Celtic Sea. ICES J. Mar. Sci. 2011, 68, 1963–1972. [Google Scholar] [CrossRef]
- Probst, W.N.; Stelzenmüller, V.; Ove Fock, H. Using cross-correlations to assess the relationship between time-lagged pressure and state indicators: An exemplary analysis of North Sea fish population indicators. ICES J. Mar. Sci. 2012, 69, 670–681. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Z.; Zhou, B.; Zhou, S. Lightning potential forecast over Nanjing with denoised sounding-derived indices based on SSA and CS-BP neural network. Atmos. Res. 2014, 137, 245–256. [Google Scholar] [CrossRef]
- Bauman, W.H.; Wheeler, M.M.; Short, D.A. Severe weather forecast decision aid. In NASA Technical Reports Server; NASA/CR-2005-212563; US Government: Washington, DC, USA, 2005. [Google Scholar]
- Mahmoudzadeh, A.; Daneshvar, M.R.M. Verification of Increased Intensity and Frequency of Earthquakes after the Climatic Anomalies in Jan 2020; Technical Report; Shakhes Pajouh Research Institute: Isfahan, Iran, 2020; (In Persian). [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Marchetti, D. Developing a fuzzy inference system based on multi-sensor data to predict powerful earthquake parameters. Remote. Sens. 2022, 14, 3203. [Google Scholar] [CrossRef]
- Siedlecki, M. Selected instability indices in Europe. Theor. Appl. Climatol. 2009, 96, 85–94. [Google Scholar] [CrossRef]
- Wasula, A.C.; Bosart, L.F.; Lapenta, K.D. The Influence of Terrain on the severe weather distribution across interior eastern New York and Western New England. Water. Forecast. 2002, 17, 1277–1289. [Google Scholar] [CrossRef]
- Derubertis, D. Recent trends in four common stability indices derived from U.S. radiosonde observations. J. Clim. 2006, 19, 309–323. [Google Scholar] [CrossRef]
- Miller, P.W.; Mote, T.L. Characterizing severe weather potential in synoptically weakly forced thunderstorm environments. Nat. Hazards Earth Syst. Sci. 2018, 18, 1261–1277. [Google Scholar] [CrossRef]
- Abshaev, M.T.; Abshaev, A.M.; Mikhailovskiy, Y.P.; Sinkevich, A.A.; Popov, V.B.; Adzhiev, A.K. Characteristics of the Supercell Cb Thunderstorm and Electrical Discharges on 19 August 2015, North Caucasus: A Case Study. 2019. Available online: https://www.preprints.org/manuscript/201912.0033/v1 (accessed on 30 June 2022).
- Gregori, G.; Poscolieri, M.; Paparo, G.; De Simone, S.; Rafanelli, C.; Ventrice, G. Storms of crustal stress and AE earthquake precursors. Nat. Hazards Earth Syst. Sci. 2010, 10, 319–337. [Google Scholar] [CrossRef]
- Takeuchi, A.; Lau, B.W.S.; Freund, F.T. Current and surface potential induced by stress-activated positive holes in igneous rocks. Phys. Chem. Earth A B C 2006, 31, 240–247. [Google Scholar] [CrossRef]
- Takeuchi, A.; Nagao, T. Activation of hole charge carriers and generation of electromotive force in gabbro blocks subjected to nonuniform loading. J. Geophys. Res. Solid. Earth 2013, 118, 915–925. [Google Scholar] [CrossRef]
- Freund, F.T.; Hoenig, S.A.; Braun, A.; Dahlgren, R.P.; Momayez, M.; Chu, J.J. Softening Rocks with Stress-Activated Electric Current. 5th International Symposium on In-Situ Rock Stress (ISRSV); Francis and Taylor Publ.: Abingdon, UK, 2010; pp. 838–843. [Google Scholar]
- Iaffaldano, G.; Husson, L.; Bunge, H.P. Monsoon speeds up Indian plate motion. Earth Planet. Sci. Lett. 2011, 304, 503–510. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. Lithosphere-atmosphere-ionosphere coupling (LAIC) model: An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.V.; Boyarchuk, K.A.; Pokhmelnykh, L.A. The physical nature of thermal anomalies observed before strong earthquakes. Phys. Chem. Earth 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Namgaladze, A.; Klimenko, M.V.V.; Klimenko, V.; Zakharenkova, I.E. Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content. Geomagn. Aeron. 2009, 49, 252–262. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.S.; Solovieva, M.; Hobara, Y. Multi-parameter observations of seismogenic phenomena related to the Tokyo earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- Kelly, M.C. (Ed.) Atmospheric electricity. In The Earth’s Electric Field; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 29–52. [Google Scholar]
- Freund, F.T.; Ouillon, G.; Scoville, J.; Sornette, D. Earthquake precursors in the light of peroxy defects theory: Critical review of systematic observations. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Satti, M.S.; Ehsan, M.; Abbas, A.; Shah, M.; de Oliveira-Júnior, J.F.; Naqvi, N.A. Atmospheric and ionospheric precursors associated with Mw ≥ 6.5 earthquakes from multiple satellites. J. Atmos. Sol. Terr. Phys. 2022, 227, 105802. [Google Scholar] [CrossRef]
- Pulinets, S.A. The synergy of earthquake precursors. Earthq. Sci. 2011, 24, 535–548. [Google Scholar] [CrossRef]
- Liperovsky, V.A.; Meister, C.V.; Liperovskaya, E.V.; Davidov, V.F.; Bogdanov, V.V. On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2005, 5, 783–789. [Google Scholar] [CrossRef]
- Zhang, K.; Feichter, J.; Kazil, J.; Wan, H.; Zhuo, W.; Griffiths, A.D.; Sartorius, H.; Zahorowski, W.; Ramonet, M.; Schmidt, M.; et al. Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions. Atmos. Chem. Phys. 2011, 11, 7817–7838. [Google Scholar] [CrossRef]
- Brothelande, E.; Amelung, F.; Yunjun, Z.; Wdowinski, S. Geodetic evidence for interconnectivity between Aira and Kirishima magmatic systems, Japan. Sci. Rep. 2018, 8, 9811. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Yamasato, H. The 2011 eruptive activity of Shinmoedake volcano, Kirishimayama, Kyushu, Japan—Overview of activity and Volcanic Alert Level of the Japan Meteorological Agency. Earth Planets Space 2013, 65, 489–504. [Google Scholar] [CrossRef]
- Shinohara, M.; Ichihara, M.; Sakai, S.; Yamada, T.; Takeo, M.; Sugioka, H.; Nagaoka, Y.; Takagi, A.; Morishita, T.; Ono, T.; et al. Continuous seismic monitoring of Nishinoshima volcano, Izu-Ogasawara, by using long-term ocean bottom seismometers. Earth Planets Space 2017, 69, 159. [Google Scholar] [CrossRef]
- Maeno, F.; Nakada, S.; Kaneko, T. Morphological evolution of a new volcanic islet sustained by compound lava flows. Geology 2016, 44, 259–262. [Google Scholar] [CrossRef]
- Kaneko, T.; Maeno, F.; Yasuda, A.; Takeo, M.; Takasaki, K. The 2017 Nishinoshima eruption: Combined analysis using Himawari-8 and multiple high-resolution satellite images. Earth Planets Space 2019, 71, 140. [Google Scholar] [CrossRef]
No. | Earthquake Date | Location Name | M | Latitude and Longitude | 1° × 1° Pixel of Spatial Coordination |
---|---|---|---|---|---|
1 | 9 May 2017 | Hirara | 6.0 | 24.450° N, 126.317° E | 24–25° N, 126–127° E |
2 | 26 July 2017 | Naze | 6.0 | 26.898° N, 130.184° E | 26–27° N, 130–131° E |
3 | 7 September 2017 | Chichi-Shima | 6.1 | 27.783° N, 139.804° E | 27–28° N, 139–140° E |
4 | 20 September 2017 | Kamaishi | 6.1 | 37.981° N, 144.660° E | 37–38° N, 144–145° E |
5 | 6 October 2017 | Ishinomaki | 6.2 | 37.503° N, 144.020° E | 37–38° N, 144–145° E |
6 | 9 November 2017 | Hachijo-Jima | 6.0 | 32.521° N, 141.438° E | 32–33° N, 141–142° E |
No. | Earthquake Date | Selected Storm Episode (Date) | Preceding Time Interval (Day) | Seismicity before Storm Event | Seismicity after Storm Event | Seismo-Climatic Index | ||||
---|---|---|---|---|---|---|---|---|---|---|
Earthquake Frequency | Mean Magnitude | Max. Magnitude | Earthquake Frequency | Mean Magnitude | Max. Magnitude | |||||
1 | 9 May 2017 | 25–26 April 2017 | 13–14 | 29 | 4.54 | 5.2 | 43 | 4.52 | 6 | 1.70 |
2 | 26 July 2017 | 18–19 July 2017 | 7–8 | 28 | 4.37 | 5.2 | 33 | 4.59 | 6 | 1.43 |
3 | 7 September 2017 | 30–31 August 2017 | 7–8 | 16 | 4.47 | 4.8 | 31 | 4.64 | 6.1 | 2.56 |
4 | 20 September 2017 | 16–17 September 2017 | 3–4 | 7 | 4.3 | 4.6 | 18 | 4.68 | 6.1 | 3.71 |
5 | 6 October 2017 | 27–28 September 2017 | 7–8 | 26 | 4.48 | 5.8 | 33 | 4.64 | 6.2 | 1.41 |
6 | 9 November 2017 | 28–29 October 2017 | 13–14 | 39 | 4.54 | 5.9 | 46 | 4.55 | 6 | 1.20 |
- | Mean | - | 24 | 4.45 | 5.3 | 34 | 4.60 | 6.1 | 2.00 |
No. | Selected Storm Episode (Date) | Variables before Storm Event | Variables after Storm Event | Gradient Values (Δ) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Accumulated Precipitation (mm) | SWEAT Index (Unit-Less) | Wind Speed (Knot) | Accumulated Precipitation (mm) | SWEAT Index (Unit-Less) | Wind Speed (Knot) | Accumulated Precipitation (%) | SWEAT Index (%) | Wind Speed (%) | ||
1 | 25–26 April 2017 | 41.4 | 117 | 9.6 | 60.3 | 143 | 10.9 | 46 | 22 | 14 |
2 | 18–19 July 2017 | 10.7 | 211 | 6.7 | 31.4 | 241 | 7.3 | 193 | 14 | 9 |
3 | 30–31 August 2017 | 13.6 | 220 | 8.5 | 104.3 | 267 | 11.9 | 667 | 21 | 40 |
4 | 16–17 September 2017 | 19.4 | 202 | 11.8 | 67.1 | 295 | 14.4 | 246 | 46 | 22 |
5 | 27–28 September 2017 | 18.7 | 185 | 9.4 | 21.1 | 263 | 9.9 | 13 | 42 | 5 |
6 | 28–29 October 2017 | 98.7 | 186 | 12.1 | 111.2 | 188 | 13.1 | 13 | 1 | 8 |
- | Mean | 33.8 | 187 | 9.7 | 65.9 | 233 | 11.3 | 95 | 25 | 16 |
Date (Month) | SWEAT Index | Accumulated Precipitation (mm) | EQ Freq. | EQ Max. | ||
---|---|---|---|---|---|---|
Hachijojima | Kagoshima | Hachijojima | Kagoshima | |||
Jan | 160 | 157 | 125 | 72 | 84 | 5.4 |
Feb | 175 | 152 | 88 | 67 | 85 | 5.7 |
Mar | 155 | 149 | 153 | 178 | 91 | 5.7 |
Apr | 145 | 193 | 140 | 195 | 77 | 5.7 |
May | 138 | 140 | 72 | 79 | 78 | 6.0 |
Jun | 230 | 220 | 121 | 217 | 96 | 5.5 |
Jul | 198 | 254 | 46 | 55 | 117 | 6.0 |
Aug | 224 | 256 | 127 | 188 | 79 | 5.7 |
Sep | 251 | 246 | 228 | 250 | 94 | 6.1 |
Oct | 243 | 227 | 276 | 192 | 95 | 6.2 |
Nov | 195 | 159 | 122 | 136 | 93 | 6.0 |
Dec | 157 | 158 | 53 | 51 | 100 | 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freund, F.T.; Mansouri Daneshvar, M.R.; Ebrahimi, M. Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region. Sustainability 2022, 14, 10241. https://doi.org/10.3390/su141610241
Freund FT, Mansouri Daneshvar MR, Ebrahimi M. Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region. Sustainability. 2022; 14(16):10241. https://doi.org/10.3390/su141610241
Chicago/Turabian StyleFreund, Friedemann T., Mohammad Reza Mansouri Daneshvar, and Majid Ebrahimi. 2022. "Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region" Sustainability 14, no. 16: 10241. https://doi.org/10.3390/su141610241
APA StyleFreund, F. T., Mansouri Daneshvar, M. R., & Ebrahimi, M. (2022). Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region. Sustainability, 14(16), 10241. https://doi.org/10.3390/su141610241