Students’ Emotions and Engagement in the Emerging Hybrid Learning Environment during the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. Academic Emotions, Engagement, and Self-Efficacy
1.2. Related Work
Self-Efficacy and Its Relationship with Emotions and Academic Engagement
2. Materials and Methods
2.1. Data Collection
2.2. Instruments
2.3. Analysis
3. Results
3.1. Descriptive Statistics, Reliability, and Validity
3.2. Causal Model or Structural Model
4. Discussion
5. Conclusions, Limitations, and Future Research
5.1. Conclusions
5.2. Limitations of the Research
5.3. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Byrne, W.I.; Pytash, K.E. Hybrid and Blended Learning: Modifying Pedagogy across Path, Pace, Time, and Place. J. Adolesc. Adult Lit. 2015, 59, 137–140. [Google Scholar] [CrossRef]
- Hodges, C.B.; Moore, S.; Lockee, B.B.; Trust, T.; Bond, M.A. The Difference between Emergency Remote Teaching and Online Learning. 2020. Available online: http://hdl.handle.net/10919/104648 (accessed on 5 May 2022).
- Benítez-Amado, A. Las Universidades Como Organizaciones Adaptativas: El Contexto de la COVID 19 Como Revulsivo. Available online: https://www.universidadsi.es/las-universidades-como-organizaciones-adaptativas-el-contexto-de-la-covid-19-como-revulsivo/ (accessed on 7 May 2022).
- Tavangarian, D. Is E-Learning the Solution for Individual Learning? Electron. J. E-Learn. 2004, 2, 265–272. [Google Scholar]
- Alvarez, S.M. El Desafío de Repensar La Universidad En La Era Digital. Cuad. Univ. 2020, 13, 09–26. [Google Scholar] [CrossRef]
- Kecojevic, A.; Basch, C.H.; Sullivan, M.; Davi, N.K. The Impact of the COVID-19 Epidemic on Mental Health of Undergraduate Students in New Jersey, Cross-Sectional Study. PLoS ONE 2020, 15, e0239696. [Google Scholar] [CrossRef]
- Besser, A.; Flett, G.L.; Zeigler-Hill, V. Adaptability to a Sudden Transition to Online Learning during the COVID-19 Pandemic: Understanding the Challenges for Students. Scholarsh. Teach. Learn. Psychol. 2022, 8, 85–105. [Google Scholar] [CrossRef]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The Psychological Impact of the COVID-19 Epidemic on College Students in China. Psychiatry Res. 2020, 287, 112934. [Google Scholar] [CrossRef]
- del Arco, I.; Flores, Ò.; Ramos-Pla, A. Structural Model to Determine the Factors That Affect the Quality of Emergency Teaching, According to the Perception of the Student of the First University Courses. Sustainability 2021, 13, 2945. [Google Scholar] [CrossRef]
- López, E.P.; Atochero, A.V.; Rivero, S.C. Educación a distancia en tiempos de COVID-19: Análisis desde la perspectiva de los estudiantes universitarios. RIED Rev. Iberoam. De Educ. A Distancia 2021, 24, 331–350. [Google Scholar] [CrossRef]
- Alvárez, M. COVID-19 y Educación Superior: De Los Efectos Inmediatos al Día Después. Análisis de Impactos, Respuestas Políticas y Recomendaciones. Rev. Argent. De Educ. Super. 2020, 20, 156–158. [Google Scholar]
- Giannini, S. COVID-19 y Educación Superior: De Los Efectos Inmediatos al Día Después. Rev. Latinoam. Educ. Comp. RELEC 2020, 11, 1–57. [Google Scholar]
- Pekrun, R.; Goetz, T.; Titz, W.; Perry, R.P. Academic Emotions in Students’ Self-Regulated Learning and Achievement: A Program of Qualitative and Quantitative Research. Educ. Psychol. 2002, 37, 91–105. [Google Scholar] [CrossRef]
- Pekrun, R.; Goetz, T.; Frenzel, A.C.; Barchfeld, P.; Perry, R.P. Measuring Emotions in Students’ Learning and Performance: The Achievement Emotions Questionnaire (AEQ). Contemp. Educ. Psychol. 2011, 36, 36–48. [Google Scholar] [CrossRef]
- Marchand, G.C.; Gutierrez, A.P. The Role of Emotion in the Learning Process: Comparisons between Online and Face-to-Face Learning Settings. Internet High. Educ. 2012, 15, 150–160. [Google Scholar] [CrossRef]
- Daniels, L.M.; Tze, V.M.C.; Goetz, T. Examining Boredom: Different Causes for Different Coping Profiles. Learn. Individ. Differ. 2015, 37, 255–261. [Google Scholar] [CrossRef]
- Chatzistamatiou, M.; Dermitzaki, I.; Efklides, A.; Leondari, A. Motivational and Affective Determinants of Self-Regulatory Strategy Use in Elementary School Mathematics. Educ. Psychol. 2015, 35, 835–850. [Google Scholar] [CrossRef]
- Skinner, E.; Furrer, C.; Marchand, G.; Kindermann, T. Engagement and Disaffection in the Classroom: Part of a Larger Motivational Dynamic? J. Educ. Psychol. 2008, 100, 765–781. [Google Scholar] [CrossRef]
- Pekrun, R. The Control-Value Theory of Achievement Emotions: Assumptions, Corollaries, and Implications for Educational Research and Practice. Educ. Psychol. Rev. 2006, 18, 315–341. [Google Scholar] [CrossRef]
- Eccles, J. Expectancies, Values and Academic Behaviors. In Achievement and Achievement Motives; Spence, J.T., Ed.; Freeman: San Franciso, CA, USA, 1983; pp. 75–146. [Google Scholar]
- Pintrich, P.R. A Process-Oriented View of Student Motivation and Cognition. New Dir. Inst. Res. 1988, 1988, 65–79. [Google Scholar] [CrossRef]
- Pons, F.; Rosnay, M.D.; Cuisinier, F. Cognition and Emotion. In Learning and Cognition in Education; Aukrust, V.G., Ed.; Elsevier: Oxford, UK, 2011; pp. 78–84. [Google Scholar]
- Skinner, E.A.; Belmont, M.J. Motivation in the Classroom: Reciprocal Effects of Teacher Behavior and Student Engagement across the School Year. J. Educ. Psychol. 1993, 85, 571–581. [Google Scholar] [CrossRef]
- Fredricks, J.A.; Blumenfeld, P.C.; Paris, A.H. School Engagement: Potential of the Concept, State of the Evidence. Rev. Educ. Res. 2004, 74, 59–109. [Google Scholar] [CrossRef]
- Reschly, A.L.; Christenson, S.L. Jingle, Jangle, and Conceptual Haziness: Evolution and Future Directions of the Engagement Construct. In Handbook of Research on Student Engagement; Christenson, S.L., Reschly, A.L., Wylie, C., Eds.; Springer US: Boston, MA, USA, 2012; pp. 3–19. ISBN 978-1-4614-2018-7. [Google Scholar]
- González, A.; Rodríguez, Y.; Faílde, J.M.; Carrera, M.V. Anxiety in the Statistics Class: Structural Relations with Self-Concept, Intrinsic Value, and Engagement in Two Samples of Undergraduates. Learn. Individ. Differ. 2016, 45, 214–221. [Google Scholar] [CrossRef]
- Reschly, A.L. Interventions to Enhance Academic Engagement. In Student Engagement: Effective Academic, Behavioral, Cognitive, and Affective Interventions at School; Reschly, A.L., Pohl, A.J., Christenson, S.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 91–108. ISBN 978-3-030-37285-9. [Google Scholar]
- Sinatra, G.M.; Broughton, S.H.; Lombardi, D. Emotions in Science Education. In International Handbook of Emotions in Education; Pekrun, R., Linnembrink-García, L., Eds.; Routledge: New York, NY, USA, 2014; pp. 415–436. [Google Scholar]
- Ramirez-Arellano, A.; Acosta-Gonzaga, E.; Bory-Reyes, J.; Hernández-Simón, L.M. Factors Affecting Student Learning Performance: A Causal Model in Higher Blended Education. J. Comput. Assist. Learn. 2018, 34, 807–815. [Google Scholar] [CrossRef]
- Greene, B.A. Measuring Cognitive Engagement With Self-Report Scales: Reflections From Over 20 Years of Research. Educ. Psychol. 2015, 50, 14–30. [Google Scholar] [CrossRef]
- Martin, A.J.; Yu, K.; Papworth, B.; Ginns, P.; Collie, R.J. Motivation and Engagement in the United States, Canada, United Kingdom, Australia, and China: Testing a Multi-Dimensional Framework. J. Psychoeduc. Assess. 2015, 33, 103–114. [Google Scholar] [CrossRef]
- Sinatra, G.M.; Heddy, B.C.; Lombardi, D. The Challenges of Defining and Measuring Student Engagement in Science. Educ. Psychol. 2015, 50, 1–13. [Google Scholar] [CrossRef]
- Wang, M.-T.; Eccles, J.S. School Context, Achievement Motivation, and Academic Engagement: A Longitudinal Study of School Engagement Using a Multidimensional Perspective. Learn. Instr. 2013, 28, 12–23. [Google Scholar] [CrossRef]
- Pintrich, P.R.; de Groot, E.V. Motivational and Self-Regulated Learning Components of Classroom Academic Performance. J. Educ. Psychol. 1990, 82, 33–40. [Google Scholar] [CrossRef]
- Sun, Z.; Xie, K.; Anderman, L.H. The Role of Self-Regulated Learning in Students’ Success in Flipped Undergraduate Math Courses. Internet High. Educ. 2018, 36, 41–53. [Google Scholar] [CrossRef]
- Pérez, M.C.; Molero, M. del M.; Barragán, A.B.; Martínez, Á.M.; Simón, M. del M.; Linares, J.J.G. Autoeficacia y Engagement en estudiantes de Ciencias de la Salud y su relación con la autoestima. Publicaciones 2018, 48, 161–172. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy Mechanism in Human Agency. Am. Psychol. 1982, 37, 122–147. [Google Scholar] [CrossRef]
- Griffiths, A.-J.; Sharkey, J.D.; Furlong, M.J. Student Engagement and Positive School Adaptation. In Handbook of Positive Psychology in Schools; Routledge/Taylor & Francis Group: New York, NY, US, 2009; pp. 197–211. ISBN 978-0-8058-6362-8. [Google Scholar]
- Heo, H.; Bonk, C.J.; Doo, M.Y. Influences of Depression, Self-Efficacy, and Resource Management on Learning Engagement in Blended Learning during COVID-19. Internet High. Educ. 2022, 54, 100856. [Google Scholar] [CrossRef] [PubMed]
- Pekrun, R.; Perry, R.P. Control-Value Theory of Achievement Emotions. In International Handbook of Emotions in Education; Educational psychology handbook series; Routledge/Taylor & Francis Group: New York, NY, USA, 2014; pp. 120–141. ISBN 978-0-415-89501-9. [Google Scholar]
- Acosta-Gonzaga, E.; Walet, N.R. The Role of Attitudinal Factors in Mathematical On-Line Assessments: A Study of Undergraduate STEM Students. Assess. Eval. High. Educ. 2018, 43, 710–726. [Google Scholar] [CrossRef]
- Reschly, A.L.; Huebner, E.S.; Appleton, J.J.; Antaramian, S. Engagement as Flourishing: The Contribution of Positive Emotions and Coping to Adolescents’ Engagement at School and with Learning. Psychol. Sch. 2008, 45, 419–431. [Google Scholar] [CrossRef]
- Carmona-Halty, M.; Salanova, M.; Llorens, S.; Schaufeli, W.B. Linking Positive Emotions and Academic Performance: The Mediated Role of Academic Psychological Capital and Academic Engagement. Curr. Psychol. 2021, 40, 2938–2947. [Google Scholar] [CrossRef]
- Mega, C.; Ronconi, L.; De Beni, R. What Makes a Good Student? How Emotions, Self-Regulated Learning, and Motivation Contribute to Academic Achievement. J. Educ. Psychol. 2014, 106, 121–131. [Google Scholar] [CrossRef]
- Tze, V.M.C.; Klassen, R.M.; Daniels, L.M. Patterns of Boredom and Its Relationship with Perceived Autonomy Support and Engagement. Contemp. Educ. Psychol. 2014, 39, 175–187. [Google Scholar] [CrossRef]
- Putwain, D.; Sander, P.; Larkin, D. Academic Self-Efficacy in Study-Related Skills and Behaviours: Relations with Learning-Related Emotions and Academic Success. Br. J. Educ. Psychol. 2013, 83, 633–650. [Google Scholar] [CrossRef]
- Salmela-Aro, K.; Upadyaya, K. School Burnout and Engagement in the Context of Demands–Resources Model. Br. J. Educ. Psychol. 2014, 84, 137–151. [Google Scholar] [CrossRef]
- King, R.B.; McInerney, D.M.; Ganotice, F.A.; Villarosa, J.B. Positive Affect Catalyzes Academic Engagement: Cross-Sectional, Longitudinal, and Experimental Evidence. Learn. Individ. Differ. 2015, 39, 64–72. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, S.; Xu, Y.; Cao, W.; Goetz, T.; Parks-Stamm, E.J. Adaptability Promotes Student Engagement Under COVID-19: The Multiple Mediating Effects of Academic Emotion. Front. Psychol. 2021, 11, 633265. [Google Scholar] [CrossRef]
- Putwain, D.W.; Pekrun, R.; Nicholson, L.J.; Symes, W.; Becker, S.; Marsh, H.W. Control-Value Appraisals, Enjoyment, and Boredom in Mathematics: A Longitudinal Latent Interaction Analysis. Am. Educ. Res. J. 2018, 55, 1339–1368. [Google Scholar] [CrossRef]
- Pellas, N. The Influence of Computer Self-Efficacy, Metacognitive Self-Regulation and Self-Esteem on Student Engagement in Online Learning Programs: Evidence from the Virtual World of Second Life. Comput. Hum. Behav. 2014, 35, 157–170. [Google Scholar] [CrossRef]
- Diseth, Å.; Meland, E.; Breidablik, H.J. Self-Beliefs among Students: Grade Level and Gender Differences in Self-Esteem, Self-Efficacy and Implicit Theories of Intelligence. Learn. Individ. Differ. 2014, 35, 1–8. [Google Scholar] [CrossRef]
- Borrachero, A.B.; Brígido, M.; Mellado, L.; Costillo, E.; Mellado, V. Emotions in Prospective Secondary Teachers When Teaching Science Content, Distinguishing by Gender. Res. Sci. Technol. Educ. 2014, 32, 182–215. [Google Scholar] [CrossRef]
- British Educational Research Association, [BERA] Ethical Guidelines for Educational Research, Fourth Edition (2018). Available online: https://www.bera.ac.uk/publication/ethical-guidelines-for-educational-research-2018-online (accessed on 15 October 2020).
- Wang, J.; Wang, X. Structural Equation Modeling: Applications Using Mplus; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-35631-9. [Google Scholar]
- Pintrich, P.R. A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ); University of Michigan: Ann Arbor, MI, USA; Dept. of Education. Office of Educational Research and Improvement.Educational Resources Information Center: Washinton, DC, USA, 1991. [Google Scholar]
- Acosta-Gonzaga, E.; Ramirez-Arellano, A. Estudio comparativo de técnicas de analítica del aprendizaje para predecir el rendimiento académico de los estudiantes de educación superior. CienciaUAT 2020, 15, 63–74. [Google Scholar] [CrossRef]
- Acosta-Gonzaga, E.; Ramirez-Arellano, A. The Influence of Motivation, Emotions, Cognition, and Metacognition on Students’ Learning Performance: A Comparative Study in Higher Education in Blended and Traditional Contexts. SAGE Open 2021, 11, 21582440211027560. [Google Scholar] [CrossRef]
- Schreiner, L.A.; Louis, M.C. The Engaged Learning Index: Implications for Faculty Development. J. Excell. Coll. Teach. 2011, 22, 5–28. [Google Scholar]
- Ennos, R.; Johnson, M. Statistical And Data Handling Skills in Biology; Pearson: London, UK, 2018; ISBN 1-292-13311-2. [Google Scholar]
- Terzis, V.; Economides, A.A. The Acceptance and Use of Computer Based Assessment. Comput. Educ. 2011, 56, 1032–1044. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage publications: Thousand Oaks, CA, USA, 2021; ISBN 1-5443-9633-3. [Google Scholar]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley Series in Probability and Mathematical Statistics; Applied Probability and Statistics Section; 1a; Wiley: Hoboken, NJ, USA, 1989; ISBN 978-0-471-01171-2. [Google Scholar]
- Götz, O.; Liehr-Gobbers, K.; Krafft, M. Evaluation of Structural Equation Models Using the Partial Least Squares (PLS) Approach. In Handbook of Partial Least Squares; Springer Handbooks of Computational Statistics; Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 691–711. ISBN 978-3-540-32825-4. [Google Scholar]
- Bonett, D.G.; Wright, T.A. Cronbach’s Alpha Reliability: Interval Estimation, Hypothesis Testing, and Sample Size Planning. J. Organ. Behav. 2015, 36, 3–15. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006; Volume 5. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hulland, J. Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Garson, G.D. Partial Least Squares: Regression and Structural Equation Models; Statistical Associates Publishers: Asheboro, NC, USA, 2016; p. 63. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2014; ISBN 978-1-4833-1097-8. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Pieper, T.M.; Ringle, C.M. The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Plan. 2012, 45, 320–340. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer; Methodological issues and strategies in clinical research, 4th ed.; American Psychological Association: Washington, DC, USA, 2016; p. 284. ISBN 978-1-4338-2091-5. [Google Scholar]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Geisser, S. A Predictive Approach to the Random Effect Model. Biometrika 1974, 61, 101–107. [Google Scholar] [CrossRef]
- Chin, W.W. The Partial Least Squares Approach for Structural Equation Modeling. In Modern Methods for Business Research; Methodology for Business and Management; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; pp. 295–336. ISBN 0-8058-2677-7. [Google Scholar]
- Kim, C.; Park, S.W.; Cozart, J.; Lee, H. From Motivation to Engagement: The Role of Effort Regulation of Virtual High School Students in Mathematics Courses. J. Educ. Technol. Soc. 2015, 18, 261–272. [Google Scholar]
- Butz, N.T.; Stupnisky, R.H.; Pekrun, R. Students’ Emotions for Achievement and Technology Use in Synchronous Hybrid Graduate Programmes: A Control-Value Approach. Res. Learn. Technol. 2015, 23, 26097. [Google Scholar] [CrossRef]
- Sinatra, G.M.; Taasoobshirazi, G. The Self-Regulation of Learning and Conceptual Change in Science: Research, Theory, and Educational Applications. In Handbook of Self-Regulation of Learning and Performance, 2nd ed.; Educational psychology handbook series; Routledge/Taylor & Francis Group: New York, NY, USA, 2018; pp. 153–165. ISBN 978-1-138-90319-7. [Google Scholar]
- Wang, M.-T.; Chow, A.; Hofkens, T.; Salmela-Aro, K. The Trajectories of Student Emotional Engagement and School Burnout with Academic and Psychological Development: Findings from Finnish Adolescents. Learn. Instr. 2015, 36, 57–65. [Google Scholar] [CrossRef]
- Li, Y.; Lerner, R.M. Trajectories of School Engagement during Adolescence: Implications for Grades, Depression, Delinquency, and Substance Use. Dev. Psychol. 2011, 47, 233–247. [Google Scholar] [CrossRef]
- Skinner, E.A.; Kindermann, T.A.; Furrer, C.J. A Motivational Perspective on Engagement and Disaffection: Conceptualization and Assessment of Children’s Behavioral and Emotional Participation in Academic Activities in the Classroom. Educ. Psychol. Meas. 2009, 69, 493–525. [Google Scholar] [CrossRef]
- Jeong, J.S.; González-Gómez, D.; Cañada-Cañada, F.; Gallego-Picó, A.; Bravo, J.C. Effects of Active Learning Methodologies on the Students’ Emotions, Self-Efficacy Beliefs and Learning Outcomes in a Science Distance Learning Course. J. Technol. Sci. Educ. 2019, 9, 217–227. [Google Scholar] [CrossRef]
- del Arco, I.; Silva, P.; Flores, O. University Teaching in Times of Confinement: The Light and Shadows of Compulsory Online Learning. Sustainability 2021, 13, 375. [Google Scholar] [CrossRef]
Construct | A | CR | AVE | Observed Variable | Factor Loadings |
---|---|---|---|---|---|
Self-Efficacy (SE) | 0.908 | 0.926 | 0.611 | SE1 | 0.742 |
SE2 | 0.809 | ||||
SE3 | 0.814 | ||||
SE4 | 0.696 | ||||
SE5 | 0.820 | ||||
SE6 | 0.688 | ||||
SE7 | 0.849 | ||||
SE8 | 0.819 | ||||
Positive Emotions (PE) | 0.779 | 0.894 | 0.532 | PE1 | 0.517 |
PE2 | 0.690 | ||||
PE3 | 0.787 | ||||
PE4 | 0.841 | ||||
PE5 | 0.769 | ||||
Negative Emotions (NE) | 0.865 | 0.894 | 0.517 | NE1 | 0.793 |
NE2 | 0.814 | ||||
NE3 | 0.634 | ||||
NE4 | 0.621 | ||||
NE5 | 0.823 | ||||
NE6 | 0.754 | ||||
NE7 | 0.619 | ||||
NE8 | 0.658 | ||||
Learning Engagement (LE) | 0.761 | 0.842 | 0.521 | LE1 | 0.749 |
LE2 | 0.511 | ||||
LE3 | 0.814 | ||||
LE4 | 0.696 | ||||
LE5 | 0.797 |
Self-Efficacy | Positive Emotions | Negative Emotions | Learning Engagement | |
---|---|---|---|---|
Self-Efficacy | 0.782 | −0.441 | 0.506 | 0.456 |
Positive Emotions | 0.729 | −0.483 | −0.609 | |
Negative Emotions | 0.719 | 0.697 | ||
Learning Engagement | 0.722 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Gonzaga, E.; Ruiz-Ledesma, E.F. Students’ Emotions and Engagement in the Emerging Hybrid Learning Environment during the COVID-19 Pandemic. Sustainability 2022, 14, 10236. https://doi.org/10.3390/su141610236
Acosta-Gonzaga E, Ruiz-Ledesma EF. Students’ Emotions and Engagement in the Emerging Hybrid Learning Environment during the COVID-19 Pandemic. Sustainability. 2022; 14(16):10236. https://doi.org/10.3390/su141610236
Chicago/Turabian StyleAcosta-Gonzaga, Elizabeth, and Elena Fabiola Ruiz-Ledesma. 2022. "Students’ Emotions and Engagement in the Emerging Hybrid Learning Environment during the COVID-19 Pandemic" Sustainability 14, no. 16: 10236. https://doi.org/10.3390/su141610236