Development and Application of Models for Landslide Hazards in Northern Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Development of Maps for Landslides and Influential Factors using GIS and Remote Sensing
2.3. Methodology for Landslide Hazard Zones
2.4. Validation of Models and Methodology
3. Results
3.1. Area Coverage of Influential Factors
3.2. Landslide Relationship with Classes of Influential Factors and Hazards of Classes
3.2.1. Landslide Relationship with LULC Area and Hazards of Classes
3.2.2. Landslide Relationship with Elevation and Hazards of Classes
3.2.3. Landslide Relationship with Slope and Hazards of Classes
3.2.4. Landslide Relationship with Slope Aspect and Hazards of Classes
3.2.5. Landslide Relationship with Rainfall and Hazards of Classes
3.2.6. Landslide Relationship with Buffered Drainage and Hazards of Classes
3.2.7. Landslide Relationship with Buffered Road and Hazards of Classes
3.2.8. Landslide Relationship with Surface Roughness Index and Hazards of Classes
3.2.9. Landslide Relationship with Topographic Index and Hazards of Classes
3.3. Landslide Hazard Zone Map and Hazards of Classes
4. Discussion
4.1. Influential Factors and Highest Percentage of Landslide Occurrence
4.2. Built-Up Area Occurrence in Hazard Zones
4.3. Bare Soil Occurrence in Hazard Zones
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SN | X | Y | Elevation |
---|---|---|---|
1 | 34.42 | 73.5 | 2083 |
2 | 34.44 | 73.51 | 1098 |
3 | 34.45 | 77.57 | 1146 |
4 | 34.4 | 73.51 | 1519 |
5 | 34.49 | 73.49 | 1530 |
6 | 34.37 | 73.48 | 1373 |
7 | 34.33 | 73.45 | 1439 |
8 | 34.39 | 73.45 | 1436 |
9 | 34.4 | 73.45 | 1531 |
10 | 34.47 | 73.5 | 1226 |
11 | 34.49 | 73.47 | 1364 |
12 | 34.44 | 73.57 | 1520 |
13 | 34.4 | 73.45 | 1269 |
14 | 34.33 | 73.44 | 1246 |
15 | 34.38 | 73.46 | 1710 |
16 | 34.44 | 73.51 | 1226 |
17 | 34.61 | 73.44 | 1139 |
References
- Van Westen, C.J. The modelling of landslide hazards using GIS. Surv. Geophy. 2000, 21, 241–255. [Google Scholar] [CrossRef]
- Zhuo, L.; Dai, Q.; Han, D.; Chen, N.; Zhao, B.; Berti, M. Evaluation of Remotely Sensed Soil Moisture for Landslide Hazard Assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 162–173. [Google Scholar] [CrossRef]
- El Bcharia, F.; Theilen-Willigeb, B.; Malek, H.A. Landslide hazard zonation assessment using GIS analysis at the coastal area of Safi (Morocco). In Proceedings of the 29th International Cartographic Conference, Tokyo, Japan, 10 July 2019; p. 2. [Google Scholar]
- Zhang, H.; Zhang, G.; Jia, Q. Integration of Analytical Hierarchy Process and Landslide Susceptibility Index Based Landslide Susceptibility Assessment of the Pearl River Delta Area, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4239–4251. [Google Scholar] [CrossRef]
- Soeters, R.; Van Westen, C. Slope instability recognition, analysis and zonation. Landslides Investig. Mitigat. 1996, 247, 129–177. [Google Scholar]
- Marsala, V.; Galli, A.; Paglia, G.; Miccadei, E. Landslide Susceptibility Assessment of Mauritius Island (Indian Ocean). Geosciences 2019, 9, 493. [Google Scholar] [CrossRef]
- Slam, B.; Maqsoom, A.; Khalil, U.; Ghorbanzadeh, O.; Blaschke, T.; Farooq, D.; Tufail, R.F.; Suhail, S.A.; Ghamisi, P. Evaluation of Different Landslide Susceptibility Models for a Local Scale in the Chitral District, Northern Pakistan. Sensors 2022, 22, 3107. [Google Scholar] [CrossRef]
- Mind’je, R.; Li, L.; Nsengiyumva, J.B.; Mupenzi, C.; Nyesheja, E.M.; Kayumba, P.M.; Gasirabo, A.; Hakorimana, E. Landslide susceptibility and influencing factors analysis in Rwanda. Environ. Dev. Sustain. 2020, 22, 7985–8012. [Google Scholar] [CrossRef]
- Zhu, A.X.; Wang, R.; Qiao, J.; Qin, C.Z.; Chen, Y.; Liu, J.; Zhu, T. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 2014, 214, 128–138. [Google Scholar] [CrossRef]
- Crosta, G.B. Introduction to the special issue on rainfall-triggered landslides and debris flows. Eng. Geol. 2004, 3, 191–192. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 2008, 94, 1–9. [Google Scholar] [CrossRef]
- Akbar, T.A.; Ha, S.R. Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—By integration of GPS, GIS, and remote sensing technology. Landslides 2011, 8, 527–540. [Google Scholar] [CrossRef]
- Skrzypczak, I.W.; Kokoszka, W.; Kogut, J. The impact of landslides on local infrastructure and the environment. In Proceedings of the International Conference on Environmental Engineering ICEE, Kobe, Japan, 12–18 November 2017; Vilnius Gediminas Technical University: Vilnius, Lithuania, 2017; pp. 27–28. [Google Scholar]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2007, 4, 33–41. [Google Scholar] [CrossRef]
- Winter, M.G.; Shearer, B.; Palmer, D.; Peeling, D.; Harmer, C.; Sharpe, J. The economic impact of landslides and floods on the road network. Procedia Engine 2016, 143, 1425–1434. [Google Scholar] [CrossRef]
- Erawati, I.; Hadmoko, D.S. Assessment of Economic Vulnerability and Community Resilience in Lanslide Prone Areas after a Landslide Event. Ph.D. Dissertation, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2013. [Google Scholar]
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Dhakal, S. DEM-based deterministic landslide hazard analysis in the Lesser Himalaya of Nepal. Georisk 2008, 2, 161–178. [Google Scholar] [CrossRef]
- Gattinoni, P. Parametrical landslide modelling for the hydrogeological susceptibility assessment: From the Crati Valley to the Cavallerizzo landslide (Southern Italy). Nat. Hazards 2009, 50, 161–178. [Google Scholar] [CrossRef]
- Grøneng, G.; Christiansen, H.H.; Nilsen, B.; Blikra, L.H. Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway. Landslides 2011, 8, 1–15. [Google Scholar] [CrossRef]
- Khattak, G.A.; Owen, L.A.; Kamp, U.; Harp, E.L. Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan. Geomorphology 2010, 115, 102–108. [Google Scholar] [CrossRef]
- Godschalk, D.R.; Brody, S.; Burby, R. Public participation in natural hazard mitigation policy formation: Challenges for comprehensive planning. J. Environ. Plan. Manag. 2003, 46, 733–754. [Google Scholar] [CrossRef]
- Saha, A.K.; Gupta, R.P.; Sarkar, I.; Arora, M.K.; Csaplovics, E. An approach for GIS-based statistical landslide susceptibility zonation—With a case study in the Himalayas. Landslides 2005, 2, 61–69. [Google Scholar] [CrossRef]
- Bera, A.; Mukhopadhyay, B.P.; Das, D. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: A case study from Eastern Himalayas, Namchi, South Sikkim. Nat. Hazards 2019, 96, 935–959. [Google Scholar] [CrossRef]
- Kanwal, S.; Atif, S.; Shafiq, M. GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins. Geo. Nat. Hazards Risk 2017, 8, 348–366. [Google Scholar] [CrossRef]
- Karantanellis, E.; Marinos, V.; Vassilakis, E. 3D hazard analysis and object-based characterization of landslide motion mechanism using UAV imagery. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, The Netherlands, 10–14 June 2019; pp. 425–430. [Google Scholar]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.; Nan, X.; Zhang, Z.; Lei, G. Post-earthquake landslides mapping from Landsat-8 data for the 2015 Nepal earthquake using a pixel-based change detection method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1758–1768. [Google Scholar] [CrossRef]
- Giordan, D.; Manconi, A.; Remondino, F.; Nex, F. Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geo. Nat. Hazards Risk 2017, 8, 1–4. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Shi, W.; Zhang, X.; Benediktsson, J.A. Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1520–1532. [Google Scholar] [CrossRef]
- Peyret, M.; Djamour, Y.; Rizza, M.; Ritz, J.F.; Hurtrez, J.E.; Goudarzi, M.A.; Uri, F. Monitoring of the large slow Kahrod landslide in Alborz Mountain range (Iran) by GPS and SAR interferometry. Eng. Geol. 2008, 100, 131–141. [Google Scholar] [CrossRef]
- Avtar, R.; Singh, G.; Verma, R.L.; Sawada, H.; Singh, C.K.; Mukherjee, S. Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken-Betwa River Link area, India. Bull. Eng. Geol. Environ. 2011, 70, 595–606. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Ahmed, B. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 2015, 12, 1077–1095. [Google Scholar] [CrossRef]
- Cárdenas, N.Y.; Mera, E.E. Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes. Nat. Hazards 2016, 81, 1829–1859. [Google Scholar] [CrossRef]
- Stanley, T.; Kirschbaum, D.B. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 2017, 87, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Mahdadi, F.; Boumezbeur, A.; Hadji, R.; Kanungo, D.P.; Zahri, F. GIS-based landslide susceptibility assessment using statistical models: A case study from Souk Ahras province, NE Algeria. Arab. J. Geosci. 2018, 11, 476. [Google Scholar] [CrossRef]
- Chau, K.T.; Sze, Y.L.; Fung, M.K.; Wong, W.Y.; Fong, E.L.; Chan, L.C.P. Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput. Geosci. 2004, 30, 429–443. [Google Scholar] [CrossRef]
- Jaedicke, C.; Van Den Eeckhaut, M.; Nadim, F.; Hervás, J.; Kalsnes, B.; Vangelsten, B.V.; Smebye, B. Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull. Eng. Geol. Environ. 2014, 73, 325–339. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Kumalasari, H.; Koestoer, R.; Hasibuan, H. Disaster Risk Mitigation of Landslide for Sustainability of Geothermal Production in Bandung Regency, West Java Province, Indonesia. In Proceedings of the 2nd International Conference on Environmental Resources Management in Global Region (ICERM 2018), Yogyakarta, Indonesia, 22–23 October 2018; Volume 256. [Google Scholar]
- Rahman, A.U.; Khan, A.N.; Collins, A.E. Analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan. Nat. Hazards 2014, 71, 803–821. [Google Scholar] [CrossRef]
- Malek, Z.; Zumpano, V.; Schröter, D.; Glade, T.; Balteanu, D.; Micu, M. Scenarios of land cover change and landslide susceptibility: An example from the Buzau Subcarpathians, Romania. Eng. Geol. Soc. Territ. 2015, 5, 743–746. [Google Scholar]
- Batool, M.; Ahmad, S.R.; Asif, M. An assessment of landslide hazards in Muzaffarabad-Azad Jammu & Kashmir using geospatial techniques. Pak. Geogr. Rev. 2021, 76, 164–173. [Google Scholar]
- Zeeshan, M.; Mirza, K. Landslide detection and susceptibility mapping using geological and remote sensing data: A case study of azad kashmir, nw sub-himalayas. Acta Geodyn. Et Geromaterialia 2021, 18, 29–45. [Google Scholar] [CrossRef]
- Ali, S.; Biermanns, P.; Haider, R.; Reicherter, K. Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat. Hazards Earth Syst. Sci. 2019, 19, 999–1022. [Google Scholar] [CrossRef]
- Lindsay, E.; Frauenfelder, R.; Rüther, D.; Nava, L.; Rubensdotter, L.; Strout, J.; Nordal, S. Multi-Temporal Satellite Image Composites in Google Earth Engine for Improved Landslide Visibility: A Case Study of a Glacial Landscape. Remote Sens. 2022, 14, 2301. [Google Scholar] [CrossRef]
- El Jazouli, A.; Barakat, A.; Khellouk, R. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron. Disasters 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Barredo, J.A.; Benavides, J.; Hervás, J.; Van Westen, C.J. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, gran Canaria Island, Spain. Int. J. Appl. Earth Obs. Geoinf. 2019, 2, 9–23. [Google Scholar] [CrossRef]
- Kamp, U.; Growley, B.J.; Khattak, G.A.; Owen, L.A. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 2008, 101, 631–642. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1980, 15, 234–281. [Google Scholar] [CrossRef]
- Yamagishi, H.; Bahndari, N.P.; Doshida, S.; Yamazaki, F. GIS analyses of shallow and deep-seated landslides in Japan. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2010, 38, 298–303. [Google Scholar]
- Basharat, M.; Shah, H.R.; Hameed, N. Landslide susceptibility mapping using GIS and weighted overlay method: A case study from NW Himalayas Pakistan. Arab. J. Geosci. 2016, 9, 292. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Chen, W.; Bai, H. GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. J. Earth Syst. Sci. 2015, 124, 1399–1415. [Google Scholar] [CrossRef]
- Wu, C.; Qiao, J. Relationship between landslides and lithology in the Three Gorges Reservoir area based on GIS and information value model. Front. For. Chin. 2009, 4, 165–170. [Google Scholar] [CrossRef]
- Reichenbach, P.; Mondini, A.; Rossi, M. The influence of land use change on landslide susceptibility zonation: The Briga catchment test site (Messina, Italy). Environ. Manag. 2014, 54, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Di Martire, D.; De Rosa, M.; Pesce, V.; Santangelo, M.A.; Calcaterra, D. Landslide hazard and land management in high-density urban areas of Campania region, Italy. Nat. Hazards Earth Syst. Sci. 2012, 12, 905–926. [Google Scholar] [CrossRef]
- Rybár, J. Increasing impact of anthropogenic activities upon natural slope stability. In Proceedings of the International Symposium on Engineering Geology and the Environment, Athens, Greece, 23 June 1997; pp. 23–27. [Google Scholar]
Class | LS | Area (%) | MH (%) |
---|---|---|---|
LULC | |||
Bare Soil | 32 | 91.43 | 14.16 |
Built-up | 1 | 2.86 | 2.86 |
Woody Savanna | 1 | 2.86 | 2.86 |
Grassland | 1 | 2.86 | 2.86 |
EGN Forest | 0 | 0.00 | 0.00 |
Mixed Forest | 0 | 0.00 | 0.00 |
Wet Land | 0 | 0.00 | 0.00 |
Crop Land | 0 | 0.00 | 0.00 |
Water Bodies | 0 | 0.00 | 0.00 |
Elevation (m) | |||
600–800 | 3 | 8.57 | 6.89 |
800–1000 | 15 | 42.86 | 4.87 |
1000–1200 | 6 | 17.14 | 6.46 |
1200–1400 | 7 | 20.00 | 6.65 |
1400–1600 | 4 | 11.43 | 5.20 |
Slope (°) | |||
20–25 | 3 | 8.57 | 4.82 |
25–30 | 1 | 2.86 | 2.86 |
30–35 | 13 | 37.14 | 6.00 |
35–40 | 14 | 40.00 | 4.57 |
40–50 | 3 | 8.57 | 4.42 |
Slope Aspect (°) | |||
N and NE | 6 | 17.14 | 4.59 |
E | 3 | 8.57 | 5.40 |
SE | 10 | 28.57 | 5.98 |
S and SW | 11 | 31.43 | 9.01 |
W and NW | 5 | 14.29 | 4.57 |
Rainfall (mm/yr.) | |||
1350–1405 | 15 | 42.86 | 9.03 |
1405–1460 | 4 | 11.43 | 3.73 |
1460–1515 | 3 | 8.57 | 1.52 |
1515–1570 | 2 | 5.71 | 4.13 |
1570–1625 | 1 | 2.86 | 1.28 |
Buffered drainage (m) | |||
0–40 | 0 | 0.00 | 0.00 |
40–80 | 8 | 22.86 | 12.83 |
80–120 | 5 | 14.29 | 5.45 |
120–160 | 7 | 20.00 | 11.54 |
160–200 | 4 | 11.43 | 8.85 |
Buffered road (m) | |||
0–40 | 3 | 8.57 | 5.31 |
40–80 | 9 | 25.71 | 12.48 |
80–120 | 8 | 22.86 | 8.74 |
120–160 | 3 | 8.57 | 10.00 |
160–200 | 4 | 11.43 | 6.11 |
Surface roughness index | |||
0–15 | 0 | 0.00 | 0.00 |
15–30 | 0 | 0.00 | 0.00 |
30–45 | 9 | 25.71 | 7.56 |
45–60 | 18 | 51.43 | 10.73 |
60–138 | 8 | 22.86 | 10.99 |
Topographic position index | |||
−32.75–−5.5 | 0 | 0.00 | 0.00 |
−5.49–−1.79 | 6 | 17.14 | 10.28 |
−1.74–−1.25 | 23 | 65.71 | 13.07 |
1.25–4.75 | 5 | 14.29 | 6.90 |
4.75–31 | 1 | 2.86 | 2.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, T.A.; Ullah, S.; Ullah, W.; Ullah, R.; Sajjad, R.U.; Mohamed, A.; Khalil, A.; Javed, M.F.; Din, A. Development and Application of Models for Landslide Hazards in Northern Pakistan. Sustainability 2022, 14, 10194. https://doi.org/10.3390/su141610194
Akbar TA, Ullah S, Ullah W, Ullah R, Sajjad RU, Mohamed A, Khalil A, Javed MF, Din A. Development and Application of Models for Landslide Hazards in Northern Pakistan. Sustainability. 2022; 14(16):10194. https://doi.org/10.3390/su141610194
Chicago/Turabian StyleAkbar, Tahir Ali, Siddique Ullah, Waheed Ullah, Rafi Ullah, Raja Umer Sajjad, Abdullah Mohamed, Alamgir Khalil, Muhammad Faisal Javed, and Anwarud Din. 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan" Sustainability 14, no. 16: 10194. https://doi.org/10.3390/su141610194