Agronomic Performance of Heterogeneous Spring Barley Populations Compared with Mixtures of Their Parents and Homogeneous Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barley Material
2.2. Experimental Sites and Crop Management
2.3. Meteorological Conditions
2.4. Assessments and Measurements
2.5. Data Analysis
3. Results
3.1. Yield
3.2. Yield Stability/Adaptability
3.3. Protein and 1000-Grain Weight (TGW)
3.4. Nitrogen Use Efficiency (NUE)
3.5. Ability to Suppress Weeds
3.6. Disease Severity
4. Discussion
4.1. Heterogeneous Material Versus Homogenous Check Varieties
4.2. Populations Versus Mixtures
4.3. NUE of Heterogeneous Populations in Organic Crop Management System: Novelty of Our Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Østergård, H.; Finckh, M.R.; Fontaine, L.; Goldringer, I.; Hoad, S.P.; Kristensen, K.; Lammerts van Bueren, E.T.; Mascher, F.; Munk, L.; Wolfe, M.S. Time for a shift in crop production: Embracing complexity through diversity at all levels. J. Sci. Food Agric. 2009, 89, 1439–1445. [Google Scholar] [CrossRef]
- Newton, A.C.; Akar, T.; Baresel, J.P.; Bebeli, P.J.; Bettencourt, E.; Bladenopoulos, K.V.; Czembor, J.H.; Fasoula, D.A.; Katsiotis, A.; Koutis, K.; et al. Cereal Landraces for Sustainable Agriculture. In Sustainable Agriculture; Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 2, pp. 147–186. [Google Scholar] [CrossRef]
- Rauf, S.; da Silva, J.; Khan, A.; Naveed, A. Consequences of Plant Breeding on Genetic Diversity. Int. J. Plant Breed. 2010, 4. Available online: http://www.globalsciencebooks.info/Online/GSBOnline/images/2010/IJPB_4(1)/IJPB_4(1)1-21o.pdf (accessed on 5 August 2022).
- Ceccarelli, S. Evolution, plant breeding and biodiversity. J. Agric. Environ. Int. Dev. 2011, 103, 131–145. [Google Scholar] [CrossRef]
- Dawson, J.C.; Goldringer, I. Breeding for genetically diverse populations: Variety mixtures and evolutionary populations. Org. Crop Breed. 2012, 77–98. [Google Scholar]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Østergård, H.; Lammerts Van Bueren, E.T. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.L.; Wolfe, M.S. Evolutionary plant breeding for low input systems. J. Agric. Sci. 2005, 143, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Döring, T.F.; Annicchiarico, P.; Clarke, S.; Haigh, Z.; Jones, H.E.; Pearce, H.; Snape, J.; Zhan, J.; Wolfe, M.S. Comparative analysis of performance and stability among composite cross populations, variety mixtures and pure lines of winter wheat in organic and conventional cropping systems. Field Crop. Res. 2015, 183, 235–245. [Google Scholar] [CrossRef]
- Harlan, H.V.; Martini, M.L. A Composite Hybrid Mixture1. Agron. J. 1929, 21, 487–490. [Google Scholar] [CrossRef] [Green Version]
- Suneson, C.A. An Evolutionary Plant Breeding Method 1. Agron. J. 1956, 48, 188–191. [Google Scholar] [CrossRef]
- Hockett, E.A.; Eslick, R.F.; Qualset, C.O.; Dubbs, A.L.; Stewart, V.R. Effects of Natural Selection in Advanced Generations of Barley Composite Cross II 1. Crop Sci. 1983, 23, 752–756. [Google Scholar] [CrossRef]
- Jackson, L.F. Conservation of Scald Resistance in Barley Composite Cross Populations. Phytopathology 1978, 68, 645. [Google Scholar] [CrossRef]
- Soliman, K.M.; Allard, R.W. Grain Yield of Composite Cross Populations of Barley: Effects of Natural Selection. Crop Sci. 1991, 31, 705–708. [Google Scholar] [CrossRef]
- Danquah, E.Y.; Barrett, J.A. Grain yield in Composite Cross Five of barley: Effects of natural selection. J. Agric. Sci. 2002, 138, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Vijaya, V.B.; Weedon, O.D.; Finckh, M.R. Exploring the differences between organic and conventional breeding in early vigour traits of winter wheat. Eur. J. Agron. 2019, 105, 86–95. [Google Scholar] [CrossRef]
- Brumlop, S.; Pfeiffer, T.; Finckh, M.R. Evolutionary Effects on Morphology and Agronomic Performance of Three Winter Wheat Composite Cross Populations Maintained for Six Years under Organic and Conventional Conditions. Org. Farming 2017, 3, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Brumlop, S.; Weedon, O.; Link, W.; Finckh, M.R. Effective population size (Ne) of organically and conventionally grown composite cross winter wheat populations depending on generation. Eur. J. Agron. 2019, 109, 125922. [Google Scholar] [CrossRef]
- Knapp, S.; Döring, T.F.; Jones, H.E.; Snape, J.; Wingen, L.U.; Wolfe, M.S.; Leverington-Waite, M.; Griffiths, S. Natural Selection Towards Wild-Type in Composite Cross Populations of Winter Wheat. Front. Plant Sci. 2020, 10, 1757. [Google Scholar] [CrossRef] [Green Version]
- Tremmel-Bede, K.; Mikó, P.; Megyeri, M.; Kovács, G.; Howlett, S.; Pearce, B.; Wolfe, M.; Löschenberger, F.; Lorentz, B.; Láng, L.; et al. Stability analysis of wheat populations and mixtures based on the physical, compositional and processing properties of the seeds. Cereal Res. Commun. 2016, 44, 694–705. [Google Scholar] [CrossRef] [Green Version]
- Vijaya, V.B.; Baresel, J.P.; Weedon, O.; Finckh, M.R. Effects of ten years organic and conventional farming on early seedling traits of evolving winter wheat composite cross populations. Sci. Rep. 2019, 9, 9053. [Google Scholar] [CrossRef]
- Bertholdsson, N.O.; Weedon, O.; Brumlop, S.; Finckh, M.R. Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Eur. J. Agron. 2016, 79, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Bocci, R.; Bussi, B.; Petitti, M.; Franciolini, R.; Altavilla, V.; Galluzzi, G.; Di Luzio, P.; Migliorini, P.; Spagnolo, S.; Floriddia, R.; et al. Yield, yield stability and farmers’ preferences of evolutionary populations of bread wheat: A dynamic solution to climate change. Eur. J. Agron. 2020, 121, 126156. [Google Scholar] [CrossRef]
- Goldringer, I.; van Frank, G.; D’Yvoire, C.B.; Forst, E.; Galic, N.; Garnault, M.; Locqueville, J.; Pin, S.; Bailly, J.; Baltassat, R.; et al. Agronomic evaluation of bread wheat varieties from participatory breeding: A combination of performance and robustness. Sustainability 2020, 12, 128. [Google Scholar] [CrossRef] [Green Version]
- Raggi, L.; Ciancaleoni, S.; Torricelli, R.; Terzi, V.; Ceccarelli, S.; Negri, V. Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crop. Res. 2017, 204, 76–88. [Google Scholar] [CrossRef]
- Merrick, L.F.; Lyon, S.R.; Balow, K.A.; Murphy, K.M.; Jones, S.S.; Carter, A.H. Utilization of evolutionary plant breeding increases stability and adaptation of winter wheat across diverse precipitation zones. Sustainability 2020, 12, 9728. [Google Scholar] [CrossRef]
- van Frank, G.; Rivière, P.; Pin, S.; Baltassat, R.; Berthellot, J.F.; Caizergues, F.; Dalmasso, C.; Gascuel, J.S.; Hyacinthe, A.; Mercier, F.; et al. Genetic diversity and stability of performance of wheat population varieties developed by participatory breeding. Sustainability 2020, 12, 384. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, J.; Dawson, J.C.; Paillard, S.; Rhoné, B.; Rousselle, Y.; Thomas, M.; Goldringer, I. Dynamic management of crop diversity: From an experimental approach to on-farm conservation. Comptes Rendus Biol. 2011, 334, 458–468. [Google Scholar] [CrossRef]
- Raggi, L.; Ceccarelli, S.; Negri, V. Evolution of a barley composite cross-derived population: An insight gained by molecular markers. J. Agric. Sci. 2016, 154, 23–39. [Google Scholar] [CrossRef]
- Šķipars, V.; Ruņģis, D.; Ločmele, I.; Seile, S.; Mežaka, I.; Legzdiņa, L. Evaluation of morphological traits, genetic diversity and major resistance genes in barley subpopulations cultivated under organic and conventional farming systems. Agron. Res. 2021, 19, 1981–1998. [Google Scholar] [CrossRef]
- Mežaka, I.; Ločmele, I.; Ruņģis, D.; Legzdiņa, L. Response of bi-parental spring barley populations to cultivation in organic and conventional farming systems. Zemdirbyste 2017, 104, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Raggi, L.; Negri, V.; Ceccarelli, S. Morphological diversity in a barley composite cross-derived population evolved under low-input conditions and its relationship with molecular diversity: Indications for breeding. J. Agric. Sci. 2016, 154, 943–959. [Google Scholar] [CrossRef]
- Weedon, O.D.; Finckh, M.R. Heterogeneous Winter Wheat Populations Differ in Yield Stability Depending on their Genetic Background and Management System. Sustainability 2019, 11, 6172. [Google Scholar] [CrossRef] [Green Version]
- Commission Delegated Regulation (EU) 2021/1189 of 7 May 2021 supplementing Regulation (EU) 2018/848 of the European Parliament and of the Council as regards the production and marketing of plant reproductive material of organic heterogeneous material of organic heterogeneous material of particular genera or species. Off. J. Eur. Union 2021, 64. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R1189 (accessed on 4 August 2022).
- Falk, D.E.; Kasha, K.J. Registration of a Shrunken Endosperm, Male-Sterile Germplasm to Facilitate Hybridization in Barley1 (Reg. No. GP 59). Crop Sci. 1982, 22, 450. [Google Scholar] [CrossRef]
- Hoad, S.; Topp, C.; Davies, K. Selection of cereals for weed suppression in organic agriculture: A method based on cultivar sensitivity to weed growth. Euphytica 2008, 163, 355–366. [Google Scholar] [CrossRef]
- Piliksere, D.; Strazdin, V.; Vicupe, Z.; Jansone, Z.; Legzdina, L.; Beinaroviča, I.; Kronberga, A. Cereal breeding for organic farming: Crop traits related with competitiveness against weeds. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 272–276. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Manske, G.G.B.; van Ginkel, M. Nitrogen and Phosphorous Use Efficiency. In Application of Physiology in Wheat Breeding; Reynolds, M.P., Ortiz Monasterio, J.I., McNab, A., Mexico, D.F., Eds.; CIMMYT: Mexico City, Mexico, 2001; pp. 200–208. [Google Scholar]
- Tratwal, A.; Law, J.; Philpott, H. the Possibilities of Reduction of Winter Barley Chemical Protection By Growing Variety Mixtures. Part I. Effect on Powdery. J. Plant Prot. Res. 2007, 47, 65–77. [Google Scholar]
- Eberhart, S.A.; Russell, W.A. Stability Parameters for Comparing Varieties1. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Ločmele, I.; Legzdiņa, L.; Piliksere, D.; Gaile, Z.; Kronberga, A. Assessment of spring barley populations in comparison to homogenous varieties. Res. Rural Dev. 2019, 2, 21–28. [Google Scholar] [CrossRef]
- Ločmele, I. Estimation of the Advantages of Barley Genotype Mixtures and Populations for Organic Farming System. Ph.D. Thesis, Latvia University of Life Science and Technologies, Jelgava, Latvia, 14 May 2021. [Google Scholar]
- Kiær, L.P.; Skovgaard, I.M.; Østergård, H. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field Crop. Res. 2009, 114, 361–373. [Google Scholar] [CrossRef]
- Creissen, H.E.; Jorgensen, T.H.; Brown, J.K.M. Stabilization of yield in plant genotype mixtures through compensation rather than complementation. Ann. Bot. 2013, 112, 1439–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allard, R.W. Relationship Between Genetic Diversity and Consistency of Performance in Different Environments. Crop Sci. 1961, 1, 127–133. [Google Scholar] [CrossRef]
- Patel, J.D.; Reinbergs, E.; Mather, D.E.; Choo, T.M.; Sterling, J.D.E. Natural Selection in a Doubled-Haploid Mixture and a Composite Cross of Barley. Crop Sci. 1987, 27, 474–479. [Google Scholar] [CrossRef]
- Mălinaş, A.; Vidican, R.; Rotar, I.; Mălinaş, C.; Moldovan, C.M.; Proorocu, M. Current Status and Future Prospective for Nitrogen Use Efficiency in Wheat (Triticum aestivum L.). Plants 2022, 11, 217. [Google Scholar] [CrossRef]
- Kubota, H.; Iqbal, M.; Quideau, S.; Dyck, M.; Spaner, D. Agronomic and physiological aspects of nitrogen use efficiency in conventional and organic cereal-based production systems. Renew. Agric. Food Syst. 2018, 33, 443–466. [Google Scholar] [CrossRef]
- Monostori, I.; Szira, F.; Tondelli, A.; Arendas, T.; Gierczik, K.; Cattivelli, L.; Galiba, G.; Vagujfalvi, A. Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L.) collection. PLoS ONE 2017, 12, e0189265. [Google Scholar] [CrossRef]
- Brumlop, S.; Finckh, M.R. N-uptake in winter wheat pure line varieties and winter wheat composite cross populations in the F11. In Breeding for Nutrient Efficiency-Conference Booklet-Joint Meeting of EUCARPIA Section Organic & Low-Input Agriculture and EU NUE-CROPS Project; Becker, H.C., Lammerts van Bueren, E.T., Leifert, C., Thorup-Kristensen, K., Eds.; Georg August University of Göttingen: Göttingen, Germany, 2013; p. 21. [Google Scholar]
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Döring, T.F.; Knapp, S.; Kovacs, G.; Murphy, K.; Wolfe, M.S. Evolutionary plant breeding in cereals-into a new era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Wong, J.; Su, T.; Beatty, P.H.; Good, A.G. Identification of nitrogen use efficiency genes in barley: Searching for QTLs controlling complex physiological traits. Front. Plant Sci. 2016, 7, 1587. [Google Scholar] [CrossRef] [Green Version]
- Hawkesford, M.J.; Riche, A.B. Impacts of G x E x M on Nitrogen Use Efficiency in Wheat and Future Prospects. Front. Plant Sci. 2020, 11, 1157. [Google Scholar] [CrossRef]
- Ivić, M.; Grljušić, S.; Plavšin, I.; Dvojković, K.; Lovrić, A.; Rajković, B.; Maričević, M.; Černe, M.; Popović, B.; Lončarić, Z.; et al. Variation for Nitrogen Use Efficiency Traits in Wheat Under Contrasting Nitrogen Treatments in South-Eastern Europe. Front. Plant Sci. 2021, 12, 682333. [Google Scholar] [CrossRef] [PubMed]
Grain Type | Type of Material | Country of Origin | Number of Accessions | Number of Parents | Generation (2019) |
---|---|---|---|---|---|
Covered (CB) | population | Latvia | 6 | 10–32 | F3–F7 |
Denmark | 1 | ||||
check variety | Latvia | 3 | |||
Denmark | 1 | ||||
mixture of parents | 6 | ||||
Hulless (HB) | population | Latvia | 4 | 10–32 | F4–F7 |
Denmark | 1 | ||||
check variety | Latvia | 1 | |||
mixture of parents | 1 |
Diversity Groups | Yield, t ha−1 | NUE, kg kg−1 | NUpE, kg kg−1 | NUtE, kg kg−1 | Protein, % | TGW, g | ||||
---|---|---|---|---|---|---|---|---|---|---|
O+C | O | C | O | O | O | O+C | C | O | O+C | |
Heterogeneous vs. Homogeneous (CB) | 0.221 | 0.765 | 0.039 | 0.071 | 0.365 | 0.003 | 0.001 | 0.001 | 0.012 | 0.021 |
Heterogeneous CB | 2.72 | 4.03 | 2.28 a | 54.77 | 1.40 | 38.79 a | 12.9 a | 14.0 a | 12.5 a | 46.3 a |
Homogeneous CB | 2.58 | 4.09 | 2.08 b | 50.34 | 1.35 | 36.69 b | 12.5 b | 13.4 b | 12.2 b | 45.6 b |
CCP vs. MIX vs. checks (CB) | 0.419 | 0.955 | 0.093 | 0.128 | 0.444 | 0.010 | 0.004 | 0.002 | 0.021 | 0.022 |
CCPs CB | 2.74 | 4.03 | 2.31 a | 55.77 | 1.42 | 38.94 a | 12.8 a | 14.1 a | 12.4 a | 46.5 a |
Mixtures CB | 2.69 | 4.02 | 2.25 ab | 53.59 | 1.37 | 38.62 a | 12.9 a | 13.8 a | 12.6 a | 46.1 ab |
Checks CB | 2.58 | 4.09 | 2.08 b | 50.34 | 1.35 | 36.69 b | 12.5 b | 13.4 b | 12.2 b | 45.6 b |
CCP vs. MIX vs. checks (HB) | 0.198 | 0.128 | 0.318 | 0.029 | 0.143 | 0.023 | < 0.001 | 0.001 | < 0.001 | < 0.001 |
CCPs HB | 1.87 | 2.99 | 1.49 | 42.13 ab | 1.31 | 31.97 ab | 14.6 a | 16.3 a | 14.0 a | 41.1 a |
Mixture HB | 1.81 | 3.15 | 1.36 | 39.23 b | 1.30 | 29.68 b | 15.0 a | 15.9 a | 14.7 a | 39.6 b |
Check HB | 2.18 | 3.78 | 1.64 | 51.14 a | 1.48 | 34.08 a | 13.4 b | 14.9 b | 12.9 b | 38.4 b |
CCP vs. MIX (pairs) | 0.654 | 0.953 | 0.536 | 0.752 | 0.672 | 0.913 | 0.570 | 0.013 | 0.601 | 0.019 |
CCPs | 2.61 | 3.91 | 2.18 | 52.26 | 1.38 | 37.26 | 13.2 | 14.6 a | 12.8 | 45.9 a |
Mixtures | 2.56 | 3.90 | 2.12 | 51.54 | 1.36 | 37.34 | 13.2 | 14.1 b | 12.9 | 45.1 b |
Subjects | Yield | b ** | s2dj | Yield | b ** | s2dj | Yield | b | p-Value | TOP | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
O+C | O | C | O+C | O | C | |||||||
n = 12 | n = 9 | n = 3 | n = 12 | n = 9 | n = 3 | |||||||
CCP-Mirga | 2.92 | 1.08 | 0.05 | 2.44 | 1.18 ^ | 0.04 | 4.35 | 0.91 | 0.04 | 10 | 7 | 3 |
MIX Mirga | 2.88 | 1.07 ^ | 0.02 | 2.45 | 1.15 ^ | 0.02 | 4.17 | 1.06 | 0.03 | 11 | 8 | 3 |
CCP-3 | 2.59 | 0.94 | 0.05 | 2.15 | 0.92 | 0.04 | 3.90 | 0.90 | >0.05 | 4 | 3 | 1 |
MIX 3 | 2.72 | 1.02 | 0.03 | 2.30 | 1.04 | 0.02 | 3.96 | 1.13 | 0.04 | 8 | 7 | 1 |
CCP-4 | 2.86 | 1.06 | 0.04 | 2.41 | 1.14 | 0.04 | 4.22 | 0.97 | >0.05 | 9 | 7 | 2 |
MIX 4 | 2.74 | 1.11 ^ | 0.02 | 2.26 | 1.19 ^ | 0.02 | 4.16 | 1.03 | 0.02 | 8 | 5 | 3 |
CCP-5 | 2.78 | 0.96 | 0.06 | 2.39 | 1.06 | 0.07 | 3.94 | 0.90 | 0.02 | 6 | 5 | 1 |
MIX 5 | 2.50 | 0.96 | 0.04 | 2.07 | 0.98 | 0.03 | 3.77 | 0.94 | >0.05 | 1 | 1 | 0 |
CCP-6 | 2.67 | 1.03 | 0.02 | 2.19 | 0.99 | 0.02 | 4.09 | 1.01 | 0.01 | 6 | 4 | 2 |
MIX 6 | 2.71 | 1.13 ^ | 0.02 | 2.23 | 1.13 ^ | 0.03 | 4.17 | 1.16 | >0.05 | 6 | 4 | 2 |
CCP-7 | 2.70 | 0.87 * | 0.04 | 2.31 | 0.92 | 0.05 | 3.86 | 0.76 | 0.05 | 5 | 4 | 1 |
MIX 7 | 2.60 | 1.03 | 0.05 | 2.17 | 1.20 ^ | 0.01 | 3.88 | 0.82 | >0.05 | 5 | 4 | 1 |
MIX DK | 2.69 | 1.01 | 0.09 | 2.31 | 1.22^ | 0.05 | 3.85 | 0.87 | 0.04 | 6 | 6 | 0 |
Rubiola | 2.80 | 1.20 ^ | 0.06 | 2.25 | 1.09 | 0.05 | 4.46 | 1.29 | >0.05 | 5 | 3 | 2 |
Rasa | 2.38 | 1.02 | 0.06 | 2.01 | 1.13 | 0.04 | 3.51 | 1.12 | >0.05 | 1 | 1 | 0 |
Abava | 2.45 | 0.98 | 0.04 | 1.97 | 0.86 * | 0.03 | 3.87 | 1.02 | >0.05 | 2 | 2 | 0 |
Anakin | 2.69 | 1.29 ^ | 0.12 | 2.08 | 1.15 ^ | 0.04 | 4.52 | 1.37 | >0.05 | 3 | 1 | 2 |
CCP-2HB | 1.76 | 0.89 * | 0.02 | 1.35 | 0.86 * | 0.03 | 2.98 | 0.90 | 0.02 | 0 | 0 | 0 |
MIX 2 | 1.81 | 0.90 | 0.05 | 1.36 | 0.73 * | 0.02 | 3.15 | 1.01 | >0.05 | 0 | 0 | 0 |
CCP-3HB | 2.08 | 0.93 | 0.05 | 1.63 | 0.79 * | 0.01 | 3.43 | 1.00 | >0.05 | 0 | 0 | 0 |
CCP-5HB | 1.80 | 0.81 * | 0.05 | 1.47 | 0.79 * | 0.04 | 2.81 | 0.91 | >0.05 | 0 | 0 | 0 |
CCP-7HB | 1.86 | 0.73 * | 0.06 | 1.55 | 0.75 * | 0.08 | 2.77 | 0.78 | >0.05 | 0 | 0 | 0 |
MIX DK HB | 1.84 | 0.81 * | 0.05 | 1.47 | 0.71 * | 0.05 | 2.94 | 0.92 | 0.02 | 0 | 0 | 0 |
Irbe | 2.18 | 1.14 ^ | 0.10 | 1.64 | 1.02 | 0.11 | 3.78 | 1.22 | 0.03 | 0 | 0 | 0 |
Diversity Groups | Crop Ground Cover, % | Weed Suppression Ability, % | Net Blotch, AUDPC | Powdery Mildew, AUDPC | Loose Smut, Plants Per m2 | Covered Smut, Plants Per m2 | |||
---|---|---|---|---|---|---|---|---|---|
GS 25–29 | GS 29–31 | GS 31–39 | GS 59–65 | GS 87–92 | |||||
Heterogeneous vs. Homogeneous | 0.540 | 0.588 | 0.486 | 0.367 | 0.407 | <0.001 | 0.062 | 0.523 | <0.001 |
Heterogeneous CB | 40.3 | 54.5 | 37.6 | 46.1 | 50.0 | 4.0 a | 20.2 | 0.32 | 0.10 b |
Homogeneous CB | 39.3 | 53.4 | 35.8 | 43.4 | 47.7 | 75.4 b | 15.1 | 0.35 | 0.01 a |
CCP vs. MIX vs. checks (CB) | 0.445 | 0.650 | 0.728 | 0.663 | 0.679 | <0.001 | 0.173 | 0.078 | <0.001 |
CCPs CB | 41.2 | 55.2 | 38.1 | 46.2 | 49.6 | 42.1 a | 20.1 | 0.37 | 0.05 a |
Mixtures CB | 39.3 | 53.7 | 37.1 | 45.9 | 50.4 | 39.7 a | 20.5 | 0.26 | 0.16 b |
Checks CB | 39.3 | 53.4 | 35.8 | 43.4 | 47.7 | 75.4 b | 15.1 | 0.35 | 0.01 a |
CCP vs. MIX vs. checks (HB) | 0.580 | 0.662 | 0.767 | 0.925 | 0.904 | 0.376 | 0.032 | 0.129 | <0.001 |
CCPs HB | 34.3 | 48.6 | 32.2 | 41.9 | 44.0 | 38.8 | 19.3 b | 0.30 | 2.82 b |
Mixture HB | 32.3 | 47.1 | 28.8 | 39.8 | 41.8 | 42.6 | 13.5 ab | 0.18 | 2.72 b |
Check HB | 31.0 | 44.9 | 32.6 | 42.0 | 43.0 | 44.9 | 6.9 a | 0.27 | 0.01 a |
CCP vs. MIX (pairs) | 0.378 | 0.421 | 0.555 | 0.780 | 0.807 | 0.317 | 0.721 | 0.215 | 0.452 |
CCPs | 39.7 | 54.3 | 37.4 | 45.8 | 48.6 | 37.9 | 20.33 | 0.29 | 0.65 |
Mixtures | 38.3 | 52.7 | 35.9 | 45.1 | 49.2 | 40.1 | 19.47 | 0.25 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legzdiņa, L.; Bleidere, M.; Piliksere, D.; Ločmele, I. Agronomic Performance of Heterogeneous Spring Barley Populations Compared with Mixtures of Their Parents and Homogeneous Varieties. Sustainability 2022, 14, 9697. https://doi.org/10.3390/su14159697
Legzdiņa L, Bleidere M, Piliksere D, Ločmele I. Agronomic Performance of Heterogeneous Spring Barley Populations Compared with Mixtures of Their Parents and Homogeneous Varieties. Sustainability. 2022; 14(15):9697. https://doi.org/10.3390/su14159697
Chicago/Turabian StyleLegzdiņa, Linda, Māra Bleidere, Dace Piliksere, and Indra Ločmele. 2022. "Agronomic Performance of Heterogeneous Spring Barley Populations Compared with Mixtures of Their Parents and Homogeneous Varieties" Sustainability 14, no. 15: 9697. https://doi.org/10.3390/su14159697