Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Analysis of the Historical Context
2.3. GIS Analysis—Identification of the Current Elements of the Ventilation Systems
2.4. Local Case Studies—Design Recommendation
3. Results
4. Discussion and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 30 June 2022).
- Tan, X.; Han, L.; Zhang, X.; Zhou, W.; Li, W.; Qian, Y. A review of current air quality indexes and improvements under the multi-contaminant air pollution exposure. J. Environ. Manag. 2021, 279, 111681. [Google Scholar] [CrossRef]
- European Environment Agency. Exceedance of Air Quality Standards in Europe. Available online: https://www.eea.europa.eu/ims/exceedance-of-air-quality-standards (accessed on 20 November 2021).
- Court of Justice of the European Union. Judgement in Case C-336/16; Court of Justice of the European Union: Luxembourg, 2018. [Google Scholar]
- Mirzaei, P.A.; Haghighat, F. A procedure to quantify the impact of mitigation techniques on the urban ventilation. Build. Environ. 2012, 47, 410–420. [Google Scholar] [CrossRef]
- Ren, C.; Yang, R.; Cheng, C.; Xing, P.; Fang, X.; Zhang, S.; Wang, H.; Shi, Y.; Zhang, X.; Kwok, Y.T.; et al. Creating breathing cities by adopting urban ventilation assessment and wind corridor plan—The implementation in Chinese cities. J. Wind Eng. Ind. Aerodyn. 2018, 182, 170–188. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Badach, J.; Voordeckers, D.; Nyka, L.; Van Acker, M. A framework for Air Quality Management Zones-useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk. Build. Environ. 2020, 174, 106743. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [Google Scholar] [CrossRef]
- Kurppa, M.; Hellsten, A.; Auvinen, M.; Raasch, S.; Vesala, T.; Järvi, L. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere 2018, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Badach, J.; Dymnicka, M.; Załęcki, J.; Brosz, M.; Voordeckers, D.; Van Acker, M. Exploring the Institutional and Bottom-Up Actions for Urban Air Quality Improvement: Case Studies in Antwerp and Gdańsk. Sustainability 2021, 13, 11790. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, H.; Fan, Y.; Zhu, P.; Wang, S.; Lu, X.; Jin, Y. Detection and evaluation of a ventilation path in a mountainous city for a sea breeze: The case of Dalian. Build. Environ. 2018, 145, 177–195. [Google Scholar] [CrossRef]
- Lou, B.; Barbieri, D.M.; Passavanti, M.; Hui, C.; Gupta, A.; Hoff, I.; Lessa, D.A.; Sikka, G.; Chang, K.; Fang, K.; et al. Air pollution perception in ten countries during the COVID-19 pandemic. Ambio 2021, 51, 531–545. [Google Scholar] [CrossRef]
- Wang, W.; Yang, T.; Li, Y.; Xu, Y.; Chang, M.; Wang, X. Identification of pedestrian-level ventilation corridors in downtown Beijing using large-eddy simulations. Build. Environ. 2020, 182, 107169. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.E.; To, P.H.; Wang, J. A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Build. Environ. 2010, 45, 1880–1889. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, G.; Gao, H.; Yang, Y. Urban ventilation planning and its associated benefits based on numerical experiments: A case study in beijing, China. Build. Environ. 2022, 222, 109383. [Google Scholar] [CrossRef]
- Azizi, M.M.; Javanmardi, K. The Effects of Urban Block Forms on the Patterns of Wind and Natural Ventilation. Procedia Eng. 2017, 180, 541–549. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z. Air quality by urban design. Nat. Geosci. 2013, 6, 506. [Google Scholar] [CrossRef]
- Chen, L.; Hang, J.; Sandberg, M.; Claesson, L.; Di Sabatino, S.; Wigo, H. The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models. Build. Environ. 2017, 118, 344–361. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; Di Sabatino, S. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build. Environ. 2012, 56, 346–360. [Google Scholar] [CrossRef]
- Lee, R.X.; Jusuf, S.K.; Wong, N.H. The study of height variation on outdoor ventilation for Singapore’s high-rise residential housing estates. Int. J. Low-Carbon Technol. 2015, 10, 15–33. [Google Scholar] [CrossRef]
- Liao, W.; Hong, T.; Heo, Y. The effect of spatial heterogeneity in urban morphology on surface urban heat islands. Energy Build. 2021, 244, 111027. [Google Scholar] [CrossRef]
- Maing, M. Superblock transformation in Seoul Megacity: Effects of block densification on urban ventilation patterns. Landsc. Urban Plan. 2022, 222, 104401. [Google Scholar] [CrossRef]
- Mei, S.J.; Hu, J.T.; Liu, D.; Zhao, F.Y.; Li, Y.; Wang, Y.; Wang, H.Q. Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy Build. 2017, 155, 324–338. [Google Scholar] [CrossRef]
- Ramponi, R.; Blocken, B.; de Coo, L.B.; Janssen, W.D. CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build. Environ. 2015, 92, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Trindade da Silva, F.; Reis, N.C.; Santos, J.M.; Goulart, E.V.; Engel de Alvarez, C. The impact of urban block typology on pollutant dispersion. J. Wind Eng. Ind. Aerodyn. 2021, 210, 104524. [Google Scholar] [CrossRef]
- Wen, H.; Malki-Epshtein, L. A parametric study of the effect of roof height and morphology on air pollution dispersion in street canyons. J. Wind Eng. Ind. Aerodyn. 2018, 175, 328–341. [Google Scholar] [CrossRef]
- Ng, E. (Ed.) Designing High-Density Cities For Social and Environmental Sustainability, 2nd ed.; Routledge: Hong Kong, China, 2015. [Google Scholar]
- Xu, F.; Gao, Z.; Zhang, J.; Hu, Y.; Ding, W. Influence of typical street-side public building morphologies on the ventilation performance of streets and squares. Build. Environ. 2022, 221, 109331. [Google Scholar] [CrossRef]
- Faehnle, M.; Söderman, T.; Schulman, H.; Lehvävirta, S. Scale-sensitive integration of ecosystem services in urban planning. GeoJournal 2015, 80, 411–425. [Google Scholar] [CrossRef]
- Li, F.; Hu, D.; Liu, X.; Wang, R.; Yang, W.; Paulussen, J. Comprehensive urban planning and management at multiple scales based on ecological principles: A case study in Beijing, China. Int. J. Sustain. Dev. World Ecol. 2008, 15, 524–533. [Google Scholar] [CrossRef]
- Lim, T.K.; Ignatius, M.; Miguel, M.; Wong, N.H.; Juang, H.-M.H. Multi-scale urban system modeling for sustainable planning and design. Energy Build. 2017, 157, 78–91. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.; Shao, G. Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial–Temporal Scales. Sustainability 2020, 12, 6850. [Google Scholar] [CrossRef]
- AlKhaled, S.; Coseo, P.; Brazel, A.; Cheng, C.; Sailor, D. Between aspiration and actuality: A systematic review of morphological heat mitigation strategies in hot urban deserts. Urban Clim. 2020, 31, 100570. [Google Scholar] [CrossRef]
- Ngarambe, J.; Nganyiyimana, J.; Kim, I.; Santamouris, M.; Yun, G.Y. Synergies between urban heat island and heat waves in Seoul: The role of wind speed and land use characteristics. PLoS ONE 2020, 15, e0243571. [Google Scholar] [CrossRef] [PubMed]
- Gaffin, S.R.; Rosenzweig, C.; Khanbilvardi, R.; Parshall, L.; Mahani, S.; Glickman, H.; Goldberg, R.; Blake, R.; Slosberg, R.B.; Hillel, D. Variations in New York city’s urban heat island strength over time and space. Theor. Appl. Climatol. 2008, 94, 1–11. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Urban ventilation and its potential for local warming mitigation: A field experiment in an open low-rise gridiron precinct. Sustain. Cities Soc. 2020, 55, 102028. [Google Scholar] [CrossRef]
- Ptak-Wojciechowska, A.; Januchta-Szostak, A.; Gawlak, A.; Matuszewska, M. The Importance of Water and Climate-Related Aspects in the Quality of Urban Life Assessment. Sustainability 2021, 13, 6573. [Google Scholar] [CrossRef]
- Rynska, E.D.; Solarek, K. Adaptive Urban Transformation: Cities in Changing Health and Wellbeing Conditions. In Sustainable Development and Planning X; Passerini, G., Marchettini, N., Eds.; WIT Transactions on Ecology and the Environment; WIT Press: Rome, Italy, 2018; pp. 247–256. [Google Scholar]
- Nyka, L. From Structures to Landscapes–towards Re-Conceptualization of The Urban Condition. In Architectural Research Addressing Societal Challenges; CRC Press: Boca Raton, FL, USA, 2017; pp. 509–515. [Google Scholar]
- Christiaanse, K. Urban development as landscape. In Changing Places, Contemporary German Landscape Architecture; BDLA, Ed.; Birkhauser: Basel, Switzerland; Berlin, Germany; Boston, MA, USA, 2005; pp. 51–58. [Google Scholar]
- Statistics Poland. Category K1 Territorrial Division. Group G441 Geodetic Area (Data of the Head Office Of Geodesy and Cartography). Subgroup P1410 Area. Available online: https://bdl.stat.gov.pl/bdl/metadane/cechy/1410 (accessed on 14 June 2022).
- Statistics Poland. Category K3 Population. Group G7 Population. Subgroup P2462. Available online: https://bdl.stat.gov.pl/bdl/metadane/cechy/2462 (accessed on 14 June 2022).
- Althoff, H. Siedlungsarbeit in der Freien Stadt Danzig 1920–1930, H. 2. 1930. Available online: https://pbc.gda.pl/dlibra/publication/2817/edition/3460?language=pl (accessed on 14 June 2022).
- Lorens, P. Rozwój Urbanistyczny Gdańska w Latach 1918–1945 [Urban Development of Gdańsk in the Years 1918–1945]. In 100 Lat Nowoczesnej Urbanistyki w Gdańsku [100 Years of Modern Urban Planning in Gdańsk]; Postawka, M., Lorens, P., Eds.; Politechnika Gdańska: Gdańsk, Poland, 2009; pp. 72–104. [Google Scholar]
- Pawłowski, K.K. Początki polskiej nowoczesnej myśli urbanistycznej [The beginnings of Polish modern urban thought]. In Sztuka około 1900 [Art around 1900]; Białostocki, J., Ed.; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1969; pp. 13–25. [Google Scholar]
- Rudnicki, C. Regulacja Warszawy w okresie wieku XIX i początku XX [Regulation of Warsaw in the nineteenth and early twentieth centuries]. Archit. I Bud. 1928, 11, 404–409. [Google Scholar]
- Różański, S.; Filipkowski, S.; Buckiewiczówna, M. Plan ogólny Wielkiej Warszawy [The general plan of the Great Warsaw]. Archit. I Bud. 1928, 11–12, 410–438. [Google Scholar]
- Buckiewiczówna, M. Higjena urbanistyczna [Urban hygiene]. Archit. I Bud. 1928, 11, 433–438. [Google Scholar]
- Myślińska, A.; Szczepański, J.; Dłubakowski, W. The Impact of Decommissioning Cemeteries on the Urban Ecosystem. Sustainability 2021, 13, 9303. [Google Scholar] [CrossRef]
- Kodym-Kozaczko, G. Urbanistyka Poznania w XX wieku [Town Planning of Poznań in the 20th Century]; Wydział Architektury Politechniki Poznańskiej: Poznań, Poland, 2017. [Google Scholar]
- Macias, A.; Dryjer, M. Forest cover dynamics in the city of Poznań from 1830 to 2004. Quaest. Geogr. 2010, 29, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Urbański, P.; Szpakowska, B.; Raszeja, E. Walory rekreacyjne zieleni Poznania [Recreational value of the city of Poznań]. Nauk. Przyr. Technol. 2008, 2, 27. [Google Scholar]
- Fuchs, M.; Behrendt, F. Die Stadt Breslau und die Eingemeindung ihres Erweiterungs Gebietes; Friedrichdruck Grass, Barth & Comp.: Breslau, Poland, 1925. [Google Scholar]
- Kononowicz, W. Accomplishments of urbanist and architect Ernst May in Wrocław in the years 1919–1925—A stage in the process towards functional Frankfurt. Kwart. Archit. I Urban. 2010, 55, 3–38. [Google Scholar]
- Masztalski, R.; Kryczka, P. The Wrocław urban planning from general plans to studies on land use planning. Teka Kom. Archit. Urban. I Stud. Kraj. 1970, 14, 119–136. [Google Scholar] [CrossRef]
- Czarnecki, W. Planowanie Miast i Osiedli [Planning Cities and Urban Settlements]; Państwowe Wydawnictwo Naukowe: Warszawa/Poznań, Poland, 1961. [Google Scholar]
- Dymnicka, M.; Szczepański, J. Dilemmas of Identity in Contemporary Cities. The City of Gdansk as an Example. Procedia Eng. 2016, 161, 1225–1229. [Google Scholar] [CrossRef] [Green Version]
- Osińska-Skotak, K.; Zawalich, J. Analysis of land use changes of urban ventilation corridors in warsaw in 1992–2015. Geogr. Pol. 2016, 89, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Bogucka, E.P. The use of GIS tools in the study of ventilation corridors in Warsaw—The example of frontal area index method. The case of Mokotowski Ventilation Corridor. In Proceedings of the EARSeL 34th Symposium, Warsaw, Poland, 16–20 June 2014. [Google Scholar]
- Główny Urząd Geodezji i Kartografii [Head Office of Geodesy and Cartography] Geoportal. Available online: https://geoportal.gov.pl/ (accessed on 1 May 2022).
- Ptaszycka, A. Przestrzenie Zielone w Miastach [Green Spaces in Cities]; Ludowa Spółdzielnia Wydawnicza: Warsaw, Poland, 1950. [Google Scholar]
- ARMAAG Foundation. Available online: http://armaag.gda.pl/en/index.htm (accessed on 1 May 2022).
- WIOŚ Poznań Air Quality Monitoring System. Available online: https://powietrze.poznan.wios.gov.pl/ (accessed on 1 May 2022).
- WIOŚ Wrocław Air Quality Monitoring System. Available online: https://www.wroclaw.pios.gov.pl/ (accessed on 1 May 2022).
- WIOŚ Warszawa Air Quality Monitoring System. Available online: http://wios.warszawa.pl/ (accessed on 1 May 2022).
- Czernecki, B.; Półrolniczak, M.; Kolendowicz, L.; Marosz, M.; Kendzierski, S.; Pilguj, N. Influence of the atmospheric conditions on PM10 concentrations in Poznań, Poland. J. Atmos. Chem. 2017, 74, 115–139. [Google Scholar] [CrossRef] [Green Version]
- Holnicki, P.; Nahorski, Z. Air quality modeling in Warsaw Metropolitan Area. J. Theor. Appl. Comput. Sci. 2013, 7, 56–69. [Google Scholar]
- Majewski, J.G.; Przewoźniczuk, W. Study of particulate matter pollution in Warsaw area. Pol. J. Environ. Stud. 2009, 18, 293–300. [Google Scholar]
- Yilmaz, I.; Gullu, M. Georeferencing of Historical Maps Using Back Propagation Artificial Neural Network. Exp. Tech. 2012, 36, 15–19. [Google Scholar] [CrossRef]
- Baiocchi, V.; Lelo, K.; Milone, M.V.; Mormile, M. Accuracy of different georeferencing strategies on historical maps of Rome. Geogr. Tech. 2013, 1, 10–16. [Google Scholar]
- Brigante, R.; Radicioni, F. Georeferencing of historical maps: Gis technology for urban analysis. Geogr. Tech. 2014, 9, 10–19. [Google Scholar]
- Rumsey, D.; Williams, M. Historical maps in GIS. In Past Time, Past Place: GIS for History; ESRI Press: Redlands, CA, USA, 2002; pp. 1–18. [Google Scholar]
- Antoniou, N.; Montazeri, H.; Wigo, H.; Neophytou, M.K.A.K.-A.; Blocken, B.; Sandberg, M. CFD and wind-tunnel analysis of outdoor ventilation in a real compact heterogeneous urban area: Evaluation using “air delay”. Build. Environ. 2017, 126, 355–372. [Google Scholar] [CrossRef]
- Janssen, W.D.; Blocken, B.; van Hooff, T. Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study. Build. Environ. 2013, 59, 547–562. [Google Scholar] [CrossRef]
- Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmos. Environ. 2014, 97, 121–129. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover change in U.S. cities. Urban For. Urban Green. 2012, 11, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Shi, Y.; Xie, X.; Fung, J.C.H.; Ng, E. Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring. Build. Environ. 2018, 128, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Miura, M.; Tominaga, Y.; Mochida, A. Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods. Build. Environ. 2008, 43, 1699–1708. [Google Scholar] [CrossRef]
- Peng, Y.; Gao, Z.; Ding, W. An Approach on the Correlation between Urban Morphological Parameters and Ventilation Performance. Energy Procedia 2017, 142, 2884–2891. [Google Scholar] [CrossRef]
- Jhaldiyal, A. Automatic estimation of Urban Roughness Parameters for Microclimatic Analysis. Master’s Thesis, Indian Institute of Remote Sensing, ISRO, Dehradun, Uttarakhand, India, 2015. [Google Scholar]
- Wong, M.S.; Nichol, J.E.; Ng, E.Y.Y.; Guilbert, E.; Hei, K.; Kwokl, P.H.T.; Wang, J.Z.; Kwok, K.H.; To, P.H.; Wang, J.Z. GIS techniques for mapping urban ventilation, using frontal area index and least cost path analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2002, 38, 586–591. [Google Scholar]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Burian, S.J.; Brown, M.J.; Linger, S.P. Morphological Analyses Using 3D Building Databases: Los Angeles, California. LA-UR-02-0781; Los Alamos National Laboratory: Los Alamos, NM, USA, 2002. [Google Scholar]
- Xie, P.; Liu, D.; Liu, Y.Y.; Liu, Y.Y. A Least Cumulative Ventilation Cost Method for Urban Ventilation Environment Analysis. Complexity 2020, 2020, 9015923. [Google Scholar] [CrossRef]
- Jhaldiyal, A.; Gupta, K.; Gupta, P.K.; Thakur, P.; Kumar, P. Urban Morphology Extractor: A spatial tool for characterizing urban morphology. Urban Clim. 2018, 24, 237–246. [Google Scholar] [CrossRef]
- Burghardt, R. Development of an ArcGIS Extension to Model Urban Climate Factors. A Method of Automatic and Interactive Analysis to Capture the Influencing Factors on Urban Climate; University of Kassel: Kassel, Germany, 2014. [Google Scholar]
- Wong, M.S.; Nichol, J.E. Spatial variability of frontal area index and its relationship with urban heat island intensity. Int. J. Remote Sens. 2013, 34, 885–896. [Google Scholar] [CrossRef]
- Architectural Institute of Japan (Ed.) AIJ Benchmarks for Validation of CFD Simulations Applied to Pedestrian Wind Environment around Buildings; Architectural Institute of Japan: Tokyo, Japan, 2016; ISBN 978-4-8189-5001-6. [Google Scholar]
- Blocken, B.; Tominaga, Y.; Stathopoulos, T. CFD simulation of micro-scale pollutant dispersion in the built environment. Build. Environ. 2013, 64, 225–230. [Google Scholar] [CrossRef]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities-air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- City of London Wind Microclimate Guidelines for Developments in the City of London. Available online: https://www.cityoflondon.gov.uk/services/planning/microclimate-guidelines (accessed on 14 June 2022).
- Referat Prasowy Urzędu Miejskiego w Gdańsku [Press Office of the Gdańsk Municipal Office] Zielona Polityka Gdańska [Gdańsk Green Policy]. Available online: https://media.gdansk.pl/komunikaty/689663/zielona-polityka-gdanska (accessed on 20 May 2022).
- Biuro Architektury i Planowania Przestrzennego m.st. Warszawy [Architecture and Spatial Planning Office of the Capital City of Warsaw]. Miejscowy Plan Ogólny Zagospodarowania Przestrzennego m.st. Warszawy [General Spatial Development Plan for the Capital City of Warsaw]. Available online: https://architektura.um.warszawa.pl/-/plan1992 (accessed on 20 May 2022).
- Wicht, M.; Wicht, A.; Osińska-Skotak, K. Detection of ventilation corridors using a spatio-temporal approach aided by remote sensing data. Eur. J. Remote Sens. 2017, 50, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Wicht, M.; Wicht, A. LiDAR-Based Approach for Urban Ventilation Corridors Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2742–2751. [Google Scholar] [CrossRef]
- Urząd Miasta Stołecznego Warszawy [Office of the Capital City of Warsaw]; Biuro Naczelnego Architekta Miasta [Office of the Chief Architect of Warsaw]; Miejska Pracowania Planowania Przestrzennego i Strategii Rozwoju [Municipal Department of Spatial Plann Opracowanie]. Ekofizjograficzne do Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego m.st. Warszawy [Eco-Physiographic Study for the Study on Conditions and Spatial Development Directions for Warsaw]. Available online: https://architektura.um.warszawa.pl/-/opracowanie-ekofizjograficzne-do-studium-2006- (accessed on 20 May 2022).
- Miejska Pracownia Urbanistyczna [Poznań Municipal Urban Planning Office]. Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Poznania [The Study on Conditions and Spatial Development Directions for Poznań]. Available online: http://sip.geopoz.pl/sip/studium/pliki/id_rap/39 (accessed on 20 May 2022).
- Dymek, D.; Wilkaniec, A.; Bednorz, L.; Szczepańska, M. Significance of Allotment Gardens in Urban Green Space Systems and Their Classification for Spatial Planning Purposes: A Case Study of Poznań, Poland. Sustainability 2021, 13, 11044. [Google Scholar] [CrossRef]
- Biuro Rozwoju Wrocławia [Wrocław City Development Office]. Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Wrocławia [The Study of the Conditions and Directions of the Spatial Development of the City of Wrocław]. Available online: http://gis.um.wroc.pl/www/pliki/studium-2017/studium_wroclawia (accessed on 20 May 2022).
- Suder, A.; Szymanowski, M. Determination of Ventilation Channels In Urban Area: A Case Study of Wrocław (Poland). Pure Appl. Geophys. 2014, 171, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Burda, I.M.; Nyka, L. Providing Public Space Continuities in Post-Industrial Areas through Remodelling Land/Water Connections. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 082037. [Google Scholar] [CrossRef]
- Alexandra, J. The city as nature and the nature of the city-climate adaptation using living infrastructure: Governance and integration challenges. Australas. J. Water Resour. 2017, 21, 63–76. [Google Scholar] [CrossRef]
- Burda, I.; Nyka, L. Re-Shaping the Land and Water Connections and its Role in Achieving Landscape and Ecological Systems’ Continuity on The Post-Industrial Territories. In Proceedings of the International Multidisciplinary Scientific Conferences on Social Sciences and Arts, Albena, Bulgaria, 24–30 August 2016; pp. 533–537. [Google Scholar]
- Lan, H.; Lau, K.K.-L.; Shi, Y.; Ren, C. Improved urban heat island mitigation using bioclimatic redevelopment along an urban waterfront at Victoria Dockside, Hong Kong. Sustain. Cities Soc. 2021, 74, 103172. [Google Scholar] [CrossRef]
- Badach, J.; Dymnicka, M.; Baranowski, A. Urban vegetation in air quality management: A review and policy framework. Sustainability 2020, 12, 1258. [Google Scholar] [CrossRef] [Green Version]
- Vos, P.E.J.; Maiheu, B.; Vankerkom, J.; Janssen, S. Improving local air quality in cities: To tree or not to tree? Environ. Pollut. 2013, 183, 113–122. [Google Scholar] [CrossRef]
- Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green infrastructure for air quality improvement in street canyons. Environ. Int. 2021, 146, 106288. [Google Scholar] [CrossRef]
- Chen, H.-S.; Lin, Y.-C.; Chiueh, P.-T. High-resolution spatial analysis for the air quality regulation service from urban vegetation: A case study of Taipei City. Sustain. Cities Soc. 2022, 83, 103976. [Google Scholar] [CrossRef]
Category | Indicator | Definition | Ref. |
---|---|---|---|
Land use | Dominant land use (lU) (-) | - the dominant land use in the grid cell (that use occupying the largest area) from the land use categories defined in the municipal database: LU1—built-up land, LU2—transport infrastructure (combined road network areas, urban squares, and railway network and airport areas feature classes), LU3—woodland and land covered with high greenery, LU4—land covered with shrubs, LU5—grassland and agricultural land, LU6—surface water, LU7—municipal landfill, LU8—unutilised land, LU9—undeveloped land, LU10—excavation and heap land | [75,76] |
Vegetation system | Biologically active cover area density (λBA) (%) | λBA = ABA/Ac where ABA is the total footprint area of all biologically active areas (woodland and land covered with high greenery, land covered with shrubs, grassland and agricultural land) in each grid cell, and where Ac is the area of the grid cell | [8,77,78] |
Built-up intensity | Plan area density (λP) (%) | λP = Ap/Ac where Ap is the total footprint area of all buildings in each grid cell, and where Ac is the area of the grid cell | [8,19,24,79] |
Gross floor area ratio (λGFA) (-) | λGFA = AGFA/Ac where AGFA is the total building gross floor area in each grid cell, and where Ac is the area of the grid cell | [8,80,81] | |
Height structure | Height variability (σH) (m) | - calculated as the standard deviation of the buildings’ height in the grid cell | [8,19,79] |
Average height (μH) (m) | - calculated as the average buildings’ height in the grid cell (area weighted) | ||
Urban structure porosity | Frontal area index (λFAI) (-) | λFAI = AFA/Ac where AFA is the area of the buildings’ façades facing the given wind direction in each grid cell, and where Ac is the area of the grid cell—the λFAI was calculated for the cardinal wind directions (North–South and East–West) and averaged for each grid cell | [15,79,82,83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badach, J.; Szczepański, J.; Bonenberg, W.; Gębicki, J.; Nyka, L. Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management. Sustainability 2022, 14, 9688. https://doi.org/10.3390/su14159688
Badach J, Szczepański J, Bonenberg W, Gębicki J, Nyka L. Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management. Sustainability. 2022; 14(15):9688. https://doi.org/10.3390/su14159688
Chicago/Turabian StyleBadach, Joanna, Jakub Szczepański, Wojciech Bonenberg, Jacek Gębicki, and Lucyna Nyka. 2022. "Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management" Sustainability 14, no. 15: 9688. https://doi.org/10.3390/su14159688