Blue and Green Water Footprint of Agro-Industrial Avocado Production in Central Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Calculating Blue and Green Water Footprint Indicators
2.2.1. Crop Water Requirement
2.2.2. Crop Water Use
2.2.3. Green CWU
2.2.4. Blue CWU
2.2.5. Total Water Footprint of a Crop
2.2.6. Blue Water Footprint Water Stress Index
2.3. Data Requirement
2.3.1. Weather Data
2.3.2. Crop and Soil Parameters
2.3.3. Avocado Production, Planted Surface, and Yield Data
3. Results
3.1. General Features of the Climate in Uruapan
3.2. Crop Water Requirements
3.3. Crop Production
3.4. Crop Water Use
3.5. Avocado Water Footprint (WF)
3.6. Blue Water Footprint, Water Availability, and Water Stress
4. Discussion
4.1. Crop Production and Crop Water Requirements
4.2. Avocado Water Footprint
Reference | Agricultural Crop | Green Water Footprint (m3 ton−1) | Blue Water Footprint (m3 ton−1) | Total Water Footprint (m3 ton−1) |
[31] | Watermelons | 147.0 | 25.0 | 172.0 |
Tomatoes | 108.0 | 63.0 | 171.0 | |
Strawberries | 201.0 | 109.0 | 310.0 | |
Lemons | 432.0 | 152.0 | 584.0 | |
Oranges | 401.0 | 110.0 | 511.0 | |
Mangoes | 1314.0 | 362.0 | 1676.0 | |
Olives | 2470.0 | 499.0 | 2969.0 | |
Avocado | ||||
Reference | Location, Country | Green Water Footprint (m3 ton−1) | Blue Water Footprint | Total Water Footprint (m3 ton−1) |
[66] | Chepén, La Libertad, Chile | - | - | 416.8 |
[31] | Mexico (mean) | 746.0 | 266.0 | 1012.0 |
[67] | Chile | 787.3 | 225.9 | 1013.3 |
[32] | World (mean) | 849.0 | 237.0 | 1086.0 |
[68] | Cachapoal, Chile | - | - | 1480.0 |
[31] | World (mean) | - | - | 1981.0 |
[70] | Chile | - | - | 2000.0 |
[27] | Chile | - | - | 2900.0 |
[71] | Barbas-Bremen, Quindío, Colombia | 3630.0 | 0 | 3630.0 |
Present study (rainfed) | Uruapan, Michoacan, Mexico | 417.0 | 0 | 417.1 |
Present study (irrigated) | Uruapan, Michoacan, Mexico | 790.0 | 280.0 | 1071.4 |
Present study (mean) | Uruapan, Michoacan, Mexico | 603.5 | 280.0 | 744.2 |
4.3. Blue Water Footprint, Water Availability, and Scarcity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef]
- Huang, Z.; Hejazi, M.; Tang, Q.; Vernon, C.R.; Liu, Y.; Chen, M.; Calvin, K. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 2019, 574, 242–256. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.S.; Bunn, E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Bakker, K. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK; Earthscan: London, UK, 2011; ISBN 978-1-84971.279-8. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Chico, D.; Aldaya, M.M.; Garrido, A. A water footprint assessment of a pair of jeans: The influence of agricultural policies on the sustainability of consumer products. J. Clean. Prod. 2013, 57, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Agualimpia, O.N.G. Manual de Aplicación de Evaluación de Huella Hídrica Acorde A la Norma ISO 14046. 2016, ALICIA, CONCYTEC. Available online: https://repositorio.ana.gob.pe/handle/20.500.12543/3829 (accessed on 20 February 2022).
- Ramírez, A.A.; Carmona, L.G.; Romero, S.A. Análisis de ciclo de vida en el sector agrícola: El caso del municipio de Viotá, Cundinamarca (Colombia). Ambiente Desarro. 2014, 18, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Rodés, R.R.; Robaina, F.G.; Puebla, J.H. Eficiencia en el uso del agua de riego en el cultivo de la papa (Solanum tuberosum L.) en el occidente de Cuba. Rev. Ing. Agrícola 2013, 3, 3–7. [Google Scholar]
- Le Roux, B.; van Der Laan, M.; Vahrmeijer, T.; Bristow, K.L.; Annandale, J.G. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress. Sci. Total Environ. 2017, 599–600, 1119–1129. [Google Scholar] [CrossRef]
- Lamastra, L.; Miglietta, P.P.; Toma, P.; De Leo, F.; Massari, S. Virtual water trade of agri-food products: Evidence from Italian-Chinese relations. Sci. Total Environ. 2017, 599, 474–482. [Google Scholar] [CrossRef]
- Seckler, D.; Amarasinghe, U.; Molden, D.; De Silva, R.; Barker, R.W. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues; International Water Management Institute: Colombo, Sri Lanka, 1988; ISBN 92-9090-354-6. [Google Scholar]
- Vanham, D.; Mekonnen, M.M. The scarcity-weighted water footprint provides unreliable water sustainability scoring. Sci. Total Environ. 2021, 756, 143992. [Google Scholar] [CrossRef]
- Oswald Spring, U. Water Resources in Mexico: Scarcity, Degradation, Stress, Conflicts, Management, and Policy; Springer Science & Business Media: London, UK; New York, NY, USA, 2011; ISBN 978-3-642-05431-0. [Google Scholar]
- Ramírez-Mejía, D.; Levers, C.; Mas, J.F. Spatial patterns and determinants of avocado frontier dynamics in Mexico. Reg. Environ. Change 2022, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- FAOSTATS (Food and Agriculture Organization of the United Nations). Food and Agriculture Data. 2022. Available online: https://www.fao.org/faostat/en/#search/Avocado (accessed on 18 January 2022).
- Arima, E.Y.; Denvir, A.; Young, K.R.; González-Rodríguez, A.; García-Oliva, F. Modelling avocado-driven deforestation in Michoacán, Mexico. Environ. Res. Lett. 2022, 17, 034015. [Google Scholar] [CrossRef]
- De la Vega-Rivera, D.; Merino-Pérez, L. Socio-Environmental Impacts of the Avocado Boom in the Meseta Purépecha, Michoacán, Mexico. Sustainability 2021, 13, 7247. [Google Scholar] [CrossRef]
- Servicio de Información Agroalimentaria y Pesquera. 2022. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 30 January 2022).
- Cho, K.; Goldstein, B.; Gounaridis, D.; Newell, J.P. Where does your guacamole come from? Detecting deforestation associated with the export of avocados from Mexico to the United States. J. Environ. Manag. 2021, 278, 22–28. [Google Scholar] [CrossRef]
- Morales-Manilla, L.M.; Reyes González, A.; Cuevas García, G.; Ramuco, M.O. Inventario 2011 del Cultivo Del Aguacate Y Evaluación Del Impacto Ambiental Forestal en el Estado de Michoacán; Centro de Investigaciones en Geografía Ambiental, UNAM–COFUPRO: Morelia, Mexico, 2012.
- Budds, J. La demanda, evaluación y asignación del agua en el contexto de escasez: Un análisis del ciclo hidrosocial del valle del río La Ligua, Chile. Rev. De Geogr. Norte Gd. 2012, 52, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Jepson, W.; Budds, J.; Eichelberger, L.; Harris, L.; Norman, E.; O’Reilly, K.; Young, S. Advancing human capabilities for water security: A relational approach. Water Secur. 2017, 1, 46–52. [Google Scholar] [CrossRef]
- Holmqvist, J.Å. Sustainable Water Footprint of Avocado Imported to norway from Chile: Norwegian Retailer’s Information and Influence on Water Management. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2020. [Google Scholar]
- Tapia, V.L.M.; Bravo, M.E. Consumo de agua. In Impactos Ambientales Y Socioeconómicos Del Cambio De Uso Del Suelo Forestal A Huertos De Aguacate En Michoacán; Bravo Espinoza, M., Ed.; Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP): Mexico City, Mexico, 2009; pp. 25–27. [Google Scholar]
- Potter, H.K.; Lundmark, L.; Röös, E. Environmental Impact of Plant-Based Foods; Report 112; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2020; ISBN 978-91-576-9789-9. [Google Scholar]
- Poggio, C. The Avocado is not Responsible for the Drought in Chile. Fresh Plaza, 5 July 2018. Available online: https://www.freshplaza.com/article/2197726/the-avocado-is-not-responsible-for-the-drought-inchile/ (accessed on 12 December 2021).
- Redacción Récord. La APEAM Desarrolló Una Agenda Verde Con Estrategias Para el Cuidado De Recursos Naturales. 8 December 2018. Available online: https://www.record.com.mx/contra/depende-aguacate-de-michoacan-del-90-de-agua-de-lluvia (accessed on 12 December 2021).
- Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and gray water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Sommaruga, R.; Eldridge, H.M. Avocado Production: Water Footprint and Socio-economic Implications. EuroChoices 2021, 20, 48–53. [Google Scholar] [CrossRef]
- Ortiz-García, S.; Saynes-Santillán, V.; Bunge Vivier, V.; Anglés-Hernández, M.; Pérez, M.E.; Prado, B. Soil governance and sustainable agriculture in Mexico. Soil Secur. 2022, 7, 100059. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía (INEGI). Áreas Geoestadísticas Municipales, escala 1:250,000. 1 June 2018. Available online: http://www.conabio.gob.mx/informacion/metadata/gis/muni_2018gw.xml?_httpcache%20=%20yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent%20=%20no (accessed on 12 December 2021).
- Eguiarte, A.F.; Centeno, R.R.; Hidalgo, J.Z. Methodologies used in the digital climatic atlas of Mexico for generating high-resolution maps. Geoacta 2014, 39, 165–173. [Google Scholar]
- García, E. Modificaciones al Sistema De Clasificación Climática De Köppen; Serie Libros, No 6.; Instituto de Geografía, Universidad Nacional Autónoma de México: Mexico City, Mexico, 2004; 90p, Available online: http://www.librosoa.unam.mx/handle/123456789/1372 (accessed on 14 December 2019).
- Instituto Nacional de Estadística y Geografía (INEGI). Climatología 1:250,000. Available online: https://www.inegi.org.mx/temas/climatologia/#Descargas. (accessed on 18 January 2022).
- Instituto Nacional de Estadisística y geografía (INEGI). Carta edafológica escala 1:250,000, Cartas Colima (E13-3) y Morelia (E14-1). 2013. Available online: https://inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/geografia/tematicas/Edafologia_hist/1_250_000/702825235147.pdf (accessed on 18 January 2022).
- Barajas-Alcalá, A.G. Capacidad de Sostenibilidad Ambiental, Social y Económica del Cultivo de Aguacate en Uruapan, Michoacán, México. Suelos Ecuat. 2021, 51, 1–13. [Google Scholar]
- Blum, W.E.H.; Schad, P.; Nortcliff, S. Essentials of Soil Science: Soil Formation, Functions, Use and Classification (World Reference Base, WRB); Borntraeger Science Plublishers: Stuttgart, Germany, 2018; ISBN 978-344-30-1090-4. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products (Value of Water Research Report Series No 13); UNESCO-IHE: Delft, The Netherlands, 2003; Available online: https://www.waterfootprint.org/media/downloads/Report13.pdf (accessed on 15 November 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. D05109. [Google Scholar]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water footprint of wheat in Iraq. Water 2019, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Dastane, N.G. Effective Rainfall in Irrigated Agriculture; FAO Irrigation and drainage paper 25; Food and Agriculture Organization of the United Nations: Rome, Italy, 1978; Available online: https://www.fao.org/3/x5560e/x5560e00.htm#Contents (accessed on 15 October 2021).
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning Management (No. 46).; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1992; Available online: https://books.google.it/books?id=p9tB2ht47NAC&pg=PP1&source=kp_read_button&redir_esc=y#v=onepage&q&f=false (accessed on 10 October 2021).
- Fuerte-Velázquez, D.J. Evaluación de la huella hídrica en la producción de aguacate y fresa en municipios de la Subcuenca de Cointzio. Un Análisis de Vulnerabilidad Hídrica. Ph.D. Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, 2022. [Google Scholar]
- REDPA (Registro Público de Derechos de Agua). Database of the Public Registers of Water Rights, National Water Commision (México), Uruapan Municipality. 2022. Available online: https://app.conagua.gob.mx/consultarepda.aspx (accessed on 30 April 2022).
- Asociación de Productores y Empacadores Exportadores de Aguacate en México (APEAM). Daily Weather Records. 2018. Available online: http://www.apeamclima.org/index.html?fbclid=IwAR3POX_hvYXrh3FuVdG0UEoDg7-CkUXA2kwhB0FFfWhbsk6quDhOgnR279E (accessed on 10 December 2019).
- Rocha-Arroyo, J.L.; Salazar-García, S.; Bárcenas-Ortega, A.E. Determinación irreversible de la floración del aguacate ‘Hass’ en Michoacán. Rev. Mex. De Cienc. Agrícolas 2010, 1, 469–478. [Google Scholar]
- Rocha-Arroyo, J.L.; Salazar-García, S.; Bárcenas-Ortega, A.E.; González-Durán, I.J.; Cossio-Vargas, L.E. Fenología del aguacate ‘Hass’ en Michoacán. Rev. Mex. De Cienc. Agrícolas 2011, 2, 303–316. [Google Scholar]
- Servicio Meteorológico Nacional. Registros meteorológicos diarios Uruapan, Michoacán Est. 16165. 2020. 6 April 2020. Available online: https://smn.conagua.gob.mx/tools/RESOURCES/Diarios/16165.txt (accessed on 18 January 2022).
- Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Barsimantov, J.; Navia, J.A. Forest cover change and land tenure change in Mexico’s avocado region: Is community forestry related to reduced deforestation for high-value crops? Appl. Geogr. 2012, 32, 844–853. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of avocado (Persea americana Mill.). Exp. Agric. 2013, 49, 256–278. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef] [Green Version]
- Milne, N. Chile’s Booming Avocado Business Blamed for Water Shortages. Global Citeizen/Thomson and Reuters Foundation. 3 June 2019. Available online: https://www.globalcitizen.org/en/content/chile-avocado-business-water-shortages/ (accessed on 20 January 2022).
- DW Documental. Los Aguacates De Portugal: ¿Oro Verde o Riesgo Para el Medioambiente? 2021. Available online: https://youtu.be/l_0KqQp20kU (accessed on 20 January 2022).
- Maldonado Aranda, S. Stories of drug trafficking in rural Mexico: Territories, drugs and cartels in Michoacán. European Rev. Eur. De Estud. Latinoam. Y Del Caribe 2013, 94, 43–66. [Google Scholar] [CrossRef] [Green Version]
- Vilar, V.; Gohari, A.; Montel, N.; Roussel, V. Envoyé Spécial, Les Avocats Du Diable. 21 September 2017. Available online: https://bit.ly/35zfv9D (accessed on 25 January 2022).
- Curtis, P.G.; Slay, C.M.; Harris, N.L.V.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Vega-Agavo, M.I.; Suazo-Ortuño, I.; Lopez-Toledo, L.; Gómez-Tagle, A.; Sillero, N.; Pineda-López, R.; Alvarado-Díaz, J. Influence of avocado orchard landscapes on amphibians and reptiles in the trans-Mexican volcanic belt. Biotropica 2021, 53, 1631–1645. [Google Scholar] [CrossRef]
- BirdLife International. What are Key Biodiversity Areas? 2017. Available online: http://datazone.birdlife.org/sowb/casestudy/what-are-key-biodiversity-areas (accessed on 25 March 2021).
- Rivera-Hernández, J.E.; Blanco-Orozco, N.V.; Alcántara-Salinas, G.; Houbron, E.P.; Pérez-Sato, J.A. ¿Desarrollo sostenible o sustentable? La controversia de un concepto. Rev. Soc. Y Posgrado 2017, 15, 57–67. [Google Scholar] [CrossRef]
- Foladori, G. Ch. 7. La economía ecológica. In Sustentabilidad Desacuerdos Sobre el Desarrollo Sustentable; Guillermo Foladori, G., Pierri, N., Eds.; Miguel Ángel Porrúa: Mexico City, Mexico, 2001; pp. 189–195. ISBN 970-701-610-8. Available online: http://visitas.reduaz.mx/coleccion_desarrollo_migracion/sustentabilidad/Sustentabilidad10.pdf (accessed on 16 April 2022).
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability of the blue water footprint of crops. Adv. Water Resour. 2020, 143, 103679. [Google Scholar] [CrossRef]
- Rojas Falconi, C.L. Huella Hídrica en la Obtención De Palta (Persea Americana) Variedad Hass Para Exportación. Ph.D. Thesis, Universidad Nacional de Trujillo, Trujillo, Peru, 2019. [Google Scholar]
- Donoso, G.; Franco, E.G.; Blanco, J.L. Water footprints and agricultural growth: The case of Chile. Int. J. Water Resour. Dev. 2014, 32, 738–748. [Google Scholar] [CrossRef]
- Pineda, H.R.; Naranjo, J.F. Huella hídrica del cultivo de aguacate cv. Hass (Persea americana Mill.), en el Distrito de Conservación de Suelos Barbas-Bremen, Quindío, Colombia. Entre Cienc. E Ing. 2021, 15, 63–70. [Google Scholar]
- Richards, S.J.; Warneke, J.E.; Bingham, F.T. Avocado tree growth response to irrigation. Calif. Avocado Soc. Yearb. 1962, 46, 83–87. [Google Scholar]
- Caro, D.; Alessandrini, A.; Sporchia, F.; Borghesi, S. Global virtual water trade of avocado. J. Clean. Prod. 2021, 285, 124917. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade; Report No. 11; IHE: Delft, The Netherlands, 2002; Available online: https://www.waterfootprint.org/media/downloads/Report11.pdf (accessed on 15 February 2022).
- Richards, S.J.; Moore, P.W.; Bingham, F.T.; Embleton, T.W.; Labanauskas, C.K. Avocado irrigation and nitrogen fertilization plots at the Citrus Experiment Station. Calif. Avocado Soc. Yearb. 1958, 42, 25–29. [Google Scholar]
- Lahav, E.; Kalmar, D. Water requirements of avocado in Israel. II.* Influence on yield, fruit growth and oil content. Aust. J. Agric. Res. 1977, 28, 869–877. [Google Scholar] [CrossRef]
- Torres, F. Comuneros de Villa Madero Combaten daños ambientales de aguacateros. El Sol de Morelia Online, 1 February 2022. Available online: https://www.elsoldemorelia.com.mx/local/municipios/comuneros-de-villa-madero-combaten-danos-ambientales-de-aguacateros-7806067.html (accessed on 10 February 2022).
- Aguacate, Inicia la Batalla por el Agua. La Voz de Michoacán, 2 February 2022. Available online: https://youtu.be/J6U0LRMa_cc (accessed on 18 April 2022).
Soil | ||||
Total Available Soil Moisture (mm/m) | 150 | |||
Maximum rain infiltration rate (mm/day) | 300 | |||
Maximum rooting depth (cm) | 120 | |||
Initial Soil Moisture Depletion (as % of TAM) | 20 | |||
Initial available Soil moisture (mm/m) | 110 | |||
Crop | ||||
Planting date | 14 January * | |||
Harvest date | 31 October | |||
Crop height (m) | 7.5 | |||
Crop Stages | Days | Kc values | Critical depletion factor | Rooting depth (cm) |
Initial | 30 | 0.6 | 0.25 | 80 |
Development | 50 | - | - | - |
Mid-season | 180 | 0.85 | 0.25 | 80 |
Late-season | 20 | 0.75 | 0.25 | 80 |
Total | 290 | - | - | - |
Year | Total Rainfall (mm) | ETc (mm) | Effective Rainfall (mm) | IR (mm) |
---|---|---|---|---|
2012 | 1599.4 | 913.0 | 783.5 | 346.3 |
2013 | 1680.7 | 936.5 | 770.9 | 388.3 |
2014 | 1677.0 | 937.2 | 895.3 | 312.9 |
2015 | 2296.6 | 906.3 | 1123.3 | 154.2 |
2016 | 1531.4 | 972.4 | 813.1 | 360.6 |
2017 | 1725.0 | 977.8 | 761.4 | 446.1 |
Mean | 1757.0 | 933.1 | 877.2 | 312.5 |
Year | Rainfed Plantations | Irrigated Plantations | ||||
---|---|---|---|---|---|---|
Planted Surface (ha) | Production Volume (tons) | Crop Yield (ton ha−1 year−1) | Planted Surface (ha) | Production Volume (tons) | Crop Yield (ton ha−1 year−1) | |
2012 | 3738 | 37,249.2 | 9.97 | 8721 | 89,826.3 | 10.30 |
2013 | 4733 | 47,330.0 | 10.00 | 8810 | 88,100.0 | 10.00 |
2014 | 4960 | 49,500.8 | 9.98 | 9070 | 91,607.0 | 10.10 |
2015 | 5000 | 49,750.0 | 9.95 | 9300 | 94,860.0 | 10.20 |
2016 | 5116 | 50,992.0 | 9.97 | 9980 | 103,504.0 | 10.37 |
2017 | 5501 | 51,804.0 | 9.42 | 9600 | 101,701.4 | 10.59 |
Mean | 4709.4 | 46,964.4 | 9.88 | 9176.2 | 93,579.5 | 10.26 |
Year | Rainfed Plantations | Irrigated Plantations | |||
---|---|---|---|---|---|
Rainfall (Mm3) | Rainfall (Mm3) | Irrigation (Mm3) | Total (Mm3) | Total Rainfed and Irrigated Plantations (Mm3) | |
2012 | 29.3 | 68.3 | 30.2 | 98.5 | 127.8 |
2013 | 36.5 | 67.9 | 34.2 | 102.1 | 138.6 |
2014 | 44.4 | 81.2 | 28.4 | 109.6 | 154.0 |
2015 | 56.2 | 104.5 | 14.3 | 118.8 | 175.0 |
2016 | 41.6 | 81.1 | 36.0 | 117.1 | 158.7 |
2017 | 41.9 | 73.1 | 42.8 | 115.9 | 157.8 |
Mean | 41.6 | 79.4 | 31.0 | 110.4 | 152.0 |
Year | Rainfed Plantations | Irrigated Plantations | |||
---|---|---|---|---|---|
Green WF (m3 ton−1) | Green WF (m3 ton−1) | Blue WF (m3 ton−1) | Total WF (m3 ton−1) | Mean Total WF for Rainfed and Irrigated Plantations (m3 ton−1) | |
2012 | 293.9 | 663.4 | 293.2 | 956.6 | 625.3 |
2013 | 364.9 | 679.2 | 342.1 | 1021.3 | 693.1 |
2014 | 445.0 | 804.0 | 281.0 | 1085.0 | 765.0 |
2015 | 564.5 | 1024.2 | 140.6 | 1164.8 | 864.6 |
2016 | 417.4 | 782.4 | 347.0 | 1129.4 | 773.4 |
2017 | 444.8 | 690.0 | 404.2 | 1094.2 | 769.5 |
Mean | 417.1 | 790.6 | 280.8 | 1071.4 | 744.3 |
Year | Total Blue WF (Mm3) | Surface Water Concession for Agricultural Use (Mm3) | Groundwater Concession for Agricultural Use (Mm3) | Total Concession Water for Agricultural Use (Mm3) | Appropriation of Concessioned Water by Irrigated Avocado Production (%) |
---|---|---|---|---|---|
2012 | 30.20 | 22.94 | 10.67 | 33.61 | 89.86 |
2013 | 34.21 | 22.94 | 11.04 | 33.97 | 100.69 |
2014 | 28.38 | 22.94 | 11.24 | 34.17 | 85.05 |
2015 | 14.34 | 22.94 | 11.89 | 34.82 | 41.18 |
2016 | 35.99 | 22.94 | 12.22 | 35.16 | 102.38 |
2017 | 42.84 | 23.10 | 12.55 | 35.65 | 120.17 |
Mean | 30.99 | 22.97 | 11.60 | 34.56 | 89.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Tagle, A.F.; Gómez-Tagle, A.; Fuerte-Velázquez, D.J.; Barajas-Alcalá, A.G.; Quiroz-Rivera, F.; Alarcón-Chaires, P.E.; Guerrero-García-Rojas, H. Blue and Green Water Footprint of Agro-Industrial Avocado Production in Central Mexico. Sustainability 2022, 14, 9664. https://doi.org/10.3390/su14159664
Gómez-Tagle AF, Gómez-Tagle A, Fuerte-Velázquez DJ, Barajas-Alcalá AG, Quiroz-Rivera F, Alarcón-Chaires PE, Guerrero-García-Rojas H. Blue and Green Water Footprint of Agro-Industrial Avocado Production in Central Mexico. Sustainability. 2022; 14(15):9664. https://doi.org/10.3390/su14159664
Chicago/Turabian StyleGómez-Tagle, Alberto F., Alberto Gómez-Tagle, Diana J. Fuerte-Velázquez, Alma G. Barajas-Alcalá, Fernando Quiroz-Rivera, Pablo E. Alarcón-Chaires, and Hilda Guerrero-García-Rojas. 2022. "Blue and Green Water Footprint of Agro-Industrial Avocado Production in Central Mexico" Sustainability 14, no. 15: 9664. https://doi.org/10.3390/su14159664