Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 2019, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi (RRL) Rapid Res. Lett. 2016, 10, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Chirila, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A.R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 2013, 12, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J. Photovolt. 2019, 9, 1863–1867. [Google Scholar] [CrossRef]
- Ginley, D.; Green, M.A.; Collins, R. Solar Energy Conversion Toward 1 Terawatt. MRS Bull. 2011, 33, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Butler, D. Thin Films: Ready for their close-up? Nature 2008, 454, 558–559. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, H.; Nishimura, M.; Onozawa, T.; Maruyama, S.; Fujita, M.; Sega, T.; Watanabe, T. Rare-metal free thin film solar cell. In Proceedings of the Power Conversion Conference, Nagaoka, Japan, 6 August 1997. [Google Scholar]
- Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Ohashi, J.; Yokota, T. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. Sol. Cells 1997, 49, 407–414. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Gunawan, O.; Todorov, T.K.; Wang, K.; Guha, S. The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 2011, 95, 1421–1436. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Aprillia, B.S.; Chen, W.-C.; Teng, Y.-C.; Chiu, C.-Y.; Chen, R.-S.; Hwang, J.-S.; Chen, K.-H.; Chen, L.-C. Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts. Nano Energy 2018, 51, 597–603. [Google Scholar] [CrossRef]
- Chen, W.-C.; Chen, C.-Y.; Tunuguntla, V.; Lu, S.H.; Su, C.; Lee, C.-H.; Chen, K.-H.; Chen, L.-C. Enhanced solar cell performance of Cu2ZnSn(S,Se)4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization. Nano Energy 2016, 30, 762–770. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4, 1301465. [Google Scholar] [CrossRef]
- Scragg, J.J.; Watjen, J.T.; Edoff, M.; Ericson, T.; Kubart, T.; Platzer-Bjorkman, C. A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells. J. Am. Chem. Soc. 2012, 134, 19330–19333. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Bojarczuk, N.A.; Guha, S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Appl. Phys. Lett. 2013, 102, 091907. [Google Scholar] [CrossRef] [Green Version]
- Scragg, J.J.; Ericson, T.; Kubart, T.; Edoff, M.; Platzer-Björkman, C. Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing. Chem. Mater. 2011, 23, 4625–4633. [Google Scholar] [CrossRef]
- Nishiwaki, S.; Kohara, N.; Negami, T.; Wada, T. MoSe2 layer formation at Cu(In,Ga)Se2/Mo Interfaces in High Efficiency Cu(In1-xGax)Se2 Solar Cells. Jpn. J. Appl. Phys. 1998, 37, 71–73. [Google Scholar] [CrossRef]
- Shin, B.; Zhu, Y.; Bojarczuk, N.A.; Jay Chey, S.; Guha, S. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Appl. Phys. Lett. 2012, 101, 053903. [Google Scholar] [CrossRef]
- Walsh, A.; Chen, S.; Wei, S.-H.; Gong, X.-G. Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Adv. Energy Mater. 2012, 2, 400–409. [Google Scholar] [CrossRef]
- Scragg, J.J.; Kubart, T.; Wätjen, J.T.; Ericson, T.; Linnarsson, M.K.; Platzer-Björkman, C. Effects of Back Contact Instability on Cu2ZnSnS4 Devices and Processes. Chem. Mater. 2013, 25, 3162–3171. [Google Scholar] [CrossRef]
- Liu, F.; Sun, K.; Li, W.; Yan, C.; Cui, H.; Jiang, L.; Hao, X.; Green, M.A. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl. Phys. Lett. 2014, 104, 051105. [Google Scholar] [CrossRef]
- Zhou, F.; Zeng, F.; Liu, X.; Liu, F.; Song, N.; Yan, C.; Pu, A.; Park, J.; Sun, K.; Hao, X. Improvement of Jsc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface. ACS Appl. Mater. Interfaces 2015, 7, 22868–22873. [Google Scholar] [CrossRef]
- López-Marino, S.; Placidi, M.; Pérez-Tomás, A.; Llobet, J.; Izquierdo-Roca, V.; Fontané, X.; Fairbrother, A.; Espíndola-Rodríguez, M.; Sylla, D.; Pérez-Rodríguez, A.; et al. Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: The role of a ZnO intermediate nanolayer. J. Mater. Chem. A 2013, 1, 8338–8343. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, X.; Cai, Y.; Chen, J.; Wong, J.I.; Tay, Y.Y.; Chai, J.; Wu, J.; Zeng, Z.; Zheng, B.; et al. Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. Angew. Chem. 2014, 53, 12560–12565. [Google Scholar] [CrossRef]
- Qin, P.; Fang, G.; Ke, W.; Cheng, F.; Zheng, Q.; Wan, J.; Lei, H.; Zhao, X. In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell. J. Mater. Chem. A 2014, 2, 2742–2756. [Google Scholar] [CrossRef]
- McDonnell, S.; Azcatl, A.; Addou, R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R.M. Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry and Band Alignments. ACS Nano 2014, 8, 6265–6272. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.M.; Noh, Y.J.; Lee, C.H.; Na, S.I.; Lee, S.; Jo, S.M.; Joh, H.I.; Kim, D.Y. Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells. Small 2014, 10, 2319–2324. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J.S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R.M.; et al. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Jiang, Z.; Wu, L.; Ao, J.; Zeng, Y.; Sun, Y.; Zhang, Y. Interfaces of high-efficiency kesterite Cu2ZnSnS(e)
4 thin film solar cells. Chin. Phys. B 2018, 27, 018803. [Google Scholar] [CrossRef] [Green Version] - Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Lin, Y.-R.; Tunuguntla, V.; Wei, S.-Y.; Chen, W.-C.; Wong, D.; Lai, C.-H.; Liu, L.-K.; Chen, L.-C.; Chen, K.-H. Bifacial sodium-incorporated treatments: Tailoring deep traps and enhancing carrier transport properties in Cu2ZnSnS4 solar cells. Nano Energy 2015, 16, 438–445. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Chanhassen, MN, USA, 1995. [Google Scholar]
- Zhou, D.; Zhu, H.; Liang, X.; Zhang, C.; Li, Z.; Xu, Y.; Chen, J.; Zhang, L.; Mai, Y. Sputtered molybdenum thin films and the application in CIGS solar cells. Appl. Surf. Sci. 2016, 362, 202–209. [Google Scholar] [CrossRef]
- Chen, W.-C.; Tunuguntla, V.; Li, H.-W.; Chen, C.-Y.; Li, S.-S.; Hwang, J.-S.; Lee, C.-H.; Chen, L.-C.; Chen, K.-H. Fabrication of Cu2ZnSnSe4 solar cells through multi-step selenization of layered metallic precursor film. Thin Solid Film. 2016, 618, 42–49. [Google Scholar] [CrossRef]
- Gürel, T.; Sevik, C.; Çağın, T. Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys. Rev. B 2011, 84, 205201. [Google Scholar] [CrossRef]
- Evans, B.L.; Young, P.A. Optical absorption and dispersion in molybdenum disulphide. Proc. R. Soc. Lond. A 1965, 284, 402–422. [Google Scholar] [CrossRef]
- Hu, S.Y.; Liang, C.H.; Tiong, K.K.; Lee, Y.C.; Huang, Y.S. Preparation and characterization of large niobium-doped MoSe2 single crystals. J. Cryst. Growth 2005, 285, 408–414. [Google Scholar] [CrossRef]
- Laursen, A.B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—Efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577. [Google Scholar] [CrossRef]
- Kong, D.; Wang, H.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347. [Google Scholar] [CrossRef]
- Kimerling, L.C. Influence of deep traps on the measurement of free-carrier distributions in semiconductors by junction capacitance techniques. J. Appl. Phys. 1974, 45, 1839–1845. [Google Scholar] [CrossRef]
- Duan, H.-S.; Yang, W.; Bob, B.; Hsu, C.-J.; Lei, B.; Yang, Y. The Role of Sulfur in Solution-Processed Cu2ZnSn(S,Se)4 and its Effect on Defect Properties. Adv. Funct. Mater. 2013, 23, 1466–1471. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PCE (%) | JSC (mA/cm2) | VOC (mV) | FF (%) | RS (Ω·cm2) | RSH (Ω·cm2) | |
---|---|---|---|---|---|---|
Pristine | 5.21 ± 0.66 | 25.86 ± 2.26 | 450 ± 15 | 42.67 ± 1.5 | 1.83 ± 0.44 | 133 ± 45 |
5 nm MoO3 | 6.80 ± 0.85 | 27.33 ± 2.20 | 473 ± 5 | 52.12 ± 3.0 | 1.54 ± 0.23 | 153 ± 68 |
10 nm MoO3 | 6.49 ± 0.55 | 26.30 ± 1.57 | 474 ± 7 | 50.69 ± 1.5 | 1.77 ± 0.26 | 252 ± 63 |
Best cell (5 nm MoO3) | 7.78 | 28.84 | 480 | 55.83 | 1.68 | 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Kholimatussadiah, S.; Chen, W.-C.; Lin, Y.-R.; Lin, J.-W.; Chen, P.-T.; Chen, R.-S.; Chen, K.-H.; Chen, L.-C. Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers. Sustainability 2022, 14, 9511. https://doi.org/10.3390/su14159511
Chen C-Y, Kholimatussadiah S, Chen W-C, Lin Y-R, Lin J-W, Chen P-T, Chen R-S, Chen K-H, Chen L-C. Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers. Sustainability. 2022; 14(15):9511. https://doi.org/10.3390/su14159511
Chicago/Turabian StyleChen, Cheng-Ying, Septia Kholimatussadiah, Wei-Chao Chen, Yi-Rung Lin, Jia-Wei Lin, Po-Tuan Chen, Ruei-San Chen, Kuei-Hsien Chen, and Li-Chyong Chen. 2022. "Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers" Sustainability 14, no. 15: 9511. https://doi.org/10.3390/su14159511
APA StyleChen, C. -Y., Kholimatussadiah, S., Chen, W. -C., Lin, Y. -R., Lin, J. -W., Chen, P. -T., Chen, R. -S., Chen, K. -H., & Chen, L. -C. (2022). Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers. Sustainability, 14(15), 9511. https://doi.org/10.3390/su14159511