Influence/Effect of Deep-Level Defect of Absorber Layer and n/i Interface on the Performance of Antimony Triselenide Solar Cells by Numerical Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modelling
2.2. Numerical Modelling
3. Results and Discussion
3.1. Effect of Sb2Se3 Absorption Layer Thickness on the PSC Performance
3.2. Effect of Defect Density of the Absorption Layer on the PSC Performance
3.3. Effect of the Interface Defect Density on the PSC Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Maurya, K.K.; Singh, V.N. Enhancing the Performance of an Sb2Se3-Based Solar Cell by Dual Buffer Layer. Sustainability 2021, 13, 12320. [Google Scholar]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Roy, P.; Raoui, Y.; Khare, A. Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: Theoretical insights. Opt. Mater. 2022, 125, 112057. [Google Scholar] [CrossRef]
- Green, M.L.; Choi, C.; Hattrick-Simpers, J.; Joshi, A.; Takeuchi, I.; Barron, S.; Campo, E.; Chiang, T.; Empedocles, S.; Gregoire, J. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 2017, 4, 011105. [Google Scholar] [CrossRef] [Green Version]
- Mavlonov, A.; Razykov, T.; Raziq, F.; Gan, J.; Chantana, J.; Kawano, Y.; Nishimura, T.; Wei, H.; Zakutayev, A.; Minemoto, T. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 2020, 201, 227–246. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.-B.; Li, K.; Chen, C.; Deng, H.-X.; Gao, L.; Zhao, Y.; Jiang, F.; Li, L.; Huang, F. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2017, 2, 17046. [Google Scholar] [CrossRef]
- Zhou, Y.; Leng, M.; Xia, Z.; Zhong, J.; Song, H.; Liu, X.; Yang, B.; Zhang, J.; Chen, J.; Zhou, K. Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 2014, 4, 1301846. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Gao, L.; Nam, D.; Li, D.; Li, K.; Zhao, Y.; Ge, C.; Cheong, H.; Liu, H. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2017, 2, 2125–2132. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 2019, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, X.; Chen, G.; Yao, L.; Huang, X.; Chen, T.; Zhu, C.; Chen, S.; Huang, Z.; Zhang, Y. Over 6% certified Sb2(S,Se)3 solar cells fabricated via in situ hydrothermal growth and postselenization. Adv. Electron. Mater. 2019, 5, 1800683. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, X.; Guo, Y.; Pan, X.; Zhao, F.; Weng, G.; Tao, J.; Zhao, C.; Jiang, J.; Chen, S. Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth. Adv. Funct. Mater. 2021, 31, 2101476. [Google Scholar] [CrossRef]
- Reza, K.M.; Mabrouk, S.; Qiao, Q. A review on tailoring PEDOT: PSS layer for improved performance of perovskite solar cells. Proc. Nat. Res. Soc. 2018, 2, 02004. [Google Scholar] [CrossRef]
- Du, T.; Xu, W.; Daboczi, M.; Kim, J.; Xu, S.; Lin, C.-T.; Kang, H.; Lee, K.; Heeney, M.J.; Kim, J.-S. p-Doping of organic hole transport layers in p–i–n perovskite solar cells: Correlating open-circuit voltage and photoluminescence quenching. J. Mater. Chem. A 2019, 7, 18971–18979. [Google Scholar] [CrossRef]
- Daboczi, M.; Hamilton, I.; Xu, S.; Luke, J.; Limbu, S.; Lee, J.; McLachlan, M.A.; Lee, K.; Durrant, J.R.; Baikie, I.D. Origin of open-circuit voltage losses in perovskite solar cells investigated by surface photovoltage measurement. ACS Appl. Mater. Interfaces 2019, 11, 46808–46817. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, K.-X.; Chang, J.-J.; Jiang, Y.-Y.; Xiao, Q.-S.; Li, Y. Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT: PSS as a hole extraction layer. J. Mater. Chem. A 2017, 5, 13817–13822. [Google Scholar] [CrossRef]
- Chin, Y.-C.; Daboczi, M.; Henderson, C.; Luke, J.; Kim, J.-S. Suppressing PEDOT: PSS Doping-Induced Interfacial Recombination Loss in Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 560–568. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Song, J.; Zheng, E.; Wang, X.-F.; Tian, W.; Miyasaka, T. Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 144, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Ke, S.; Chen, C.; Fu, N.; Zhou, H.; Ye, M.; Lin, P.; Yuan, W.; Zeng, X.; Chen, L.; Huang, H. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices. ACS Appl. Mater. Interfaces 2016, 8, 28406–28411. [Google Scholar] [CrossRef]
- Qin, M.; Ma, J.; Ke, W.; Qin, P.; Lei, H.; Tao, H.; Zheng, X.; Xiong, L.; Liu, Q.; Chen, Z. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers. ACS Appl. Mater. Interfaces 2016, 8, 8460–8466. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, D.H.; Lee, Y.-Y.; Shin, H.-W.; Han, G.S.; Hong, J.S.; Mahmood, K.; Ahn, T.K.; Joo, Y.-C.; Hong, K.S. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ. Sci. 2015, 8, 916–921. [Google Scholar] [CrossRef]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.S.; Yeom, E.J.; Yang, W.S.; Hur, S.; Kim, M.G.; Im, J.; Seo, J.; Noh, J.H.; Seok, S.I. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 2017, 356, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dandeneau, C.S.; Zhou, X.; Cao, G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108. [Google Scholar] [CrossRef]
- Ke, W.; Stoumpos, C.C.; Logsdon, J.L.; Wasielewski, M.R.; Yan, Y.; Fang, G.; Kanatzidis, M.G. TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 14998–15003. [Google Scholar] [CrossRef]
- Xu, G.; Ji, S.; Miao, C.; Liu, G.; Ye, C. Effect of ZnS and CdS coating on the photovoltaic properties of CuInS 2-sensitized photoelectrodes. J. Mater. Chem. 2012, 22, 4890–4896. [Google Scholar] [CrossRef]
- Zheng, E.; Wang, Y.; Song, J.; Wang, X.-F.; Tian, W.; Chen, G.; Miyasaka, T. ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells. J. Energy Chem. 2018, 27, 1461–1467. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, T.; Cao, D.H.; Stoumpos, C.C.; Song, T.-B.; Sato, Y.; Aramaki, S.; Kanatzidis, M.G. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J. Phys. Chem. Lett. 2016, 7, 776–782. [Google Scholar] [CrossRef]
- Marc Burgelman, K.D.; Niemegeers, A.; Verschraegen, J.; Degrave, S. SCAPS Manua. Available online: https://scaps.elis.ugent.be/ (accessed on 20 April 2022).
- Mostefaoui, M.; Mazari, H.; Khelifi, S.; Bouraiou, A.; Dabou, R. Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 2015, 74, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Sunny, A.; Ahmed, S.R.A. Numerical simulation and performance evaluation of highly efficient Sb2Se3 solar cell with tin sulfide as hole transport layer. Phys. Status Solidi 2021, 258, 2000630. [Google Scholar] [CrossRef]
- Yin, B.; Liu, Q.; Yang, L.; Wu, X.; Liu, Z.; Hua, Y.; Yin, S.; Chen, Y. Buffer layer of PEDOT: PSS/graphene composite for polymer solar cells. J. Nanosci. Nanotechnol. 2010, 10, 1934–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Bobela, D.C.; Yang, Y.; Lu, S.; Zeng, K.; Ge, C.; Yang, B.; Gao, L.; Zhao, Y.; Beard, M.C. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 2017, 10, 18–30. [Google Scholar] [CrossRef]
- Chowdhury, M.; Shahahmadi, S.; Chelvanathan, P.; Tiong, S.; Amin, N.; Techato, K.-A.; Nuthammachot, N.; Chowdhury, T.; Suklueng, M. Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys. 2020, 16, 102839. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Ni, M.; Feng, X.-D. Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Express 2020, 7, 016416. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Zyoud, A.H.; Ahmed, N.M.; Abdelkader, A.F. Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film–Based Solar Cell with Different Non–Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS–1D Software. Crystals 2021, 11, 1454. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.K.; Bhattacharya, B.; Rhee, H.-W. Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl. Mater. Today 2019, 14, 175–200. [Google Scholar] [CrossRef]
- Minbashi, M.; Ghobadi, A.; Ehsani, M.; Dizaji, H.R.; Memarian, N. Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 2018, 176, 520–525. [Google Scholar] [CrossRef]
- Konstantakou, M.; Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 11518–11549. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, L.; Qiu, Y.; Fan, B. Analysis of Sb2Se3/CdS based photovoltaic cell: A numerical simulation approach. J. Phys. Chem. Solids 2018, 122, 19–24. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.; Kuang, H. Numerical simulation and performance optimization of Sb2S3 solar cell with a hole transport layer. Opt. Mater. 2020, 108, 110414. [Google Scholar] [CrossRef]
- Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 2004, 12, 143–153. [Google Scholar] [CrossRef]
- Kao, K.C. Dielectric Phenomena in Solids||Electrical Conduction and Photoconduction; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Sridharan, A.; Noel, N.K.; Hwang, H.; Hafezian, S.; Rand, B.P.; Kéna-Cohen, S. Time-resolved imaging of non-diffusive carrier transport in long-lifetime halide perovskite thin films. arXiv 2019, arXiv:1905.11242. [Google Scholar]
- Correa-Baena, J.-P.; Turren-Cruz, S.-H.; Tress, W.; Hagfeldt, A.; Aranda, C.; Shooshtari, L.; Bisquert, J.; Guerrero, A. Changes from bulk to surface recombination mechanisms between pristine and cycled perovskite solar cells. ACS Energy Lett. 2017, 2, 681–688. [Google Scholar] [CrossRef]
- Bissels, G.; Schermer, J.; Asselbergs, M.; Haverkamp, E.; Mulder, P.; Bauhuis, G.; Vlieg, E. Theoretical review of series resistance determination methods for solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 605–614. [Google Scholar] [CrossRef]
- Hossain, E.S.; Chelvanathan, P.; Shahahmadi, S.A.; Sopian, K.; Bais, B.; Amin, N. Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D. Curr. Appl. Phys. 2018, 18, 79–89. [Google Scholar] [CrossRef]
- Eensalu, J.S.; Katerski, A.; Kärber, E.; Weinhardt, L.; Blum, M.; Heske, C.; Yang, W.; Acik, I.O.; Krunks, M. Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows. Beilstein J. Nanotechnol. 2019, 10, 2396–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Properties | ZnS (ETL) | Sb2Se3 | PEDOT: PSS (HTL) | References |
---|---|---|---|---|
Thickness (nm) | 70 | 200–1200 | 40 | [27,32] |
Bandgap, Eg (eV) | 3.5 | 1.04 | 2.2 | [27,33,34] |
Electron affinity, (eV) | 4.5 | 4.04 | 2.9 | [35,36,37] |
Dielectric permittivity, (relative) | 10 | 18 | 3 | [35,38,39] |
CB effective density of states, NC (cm−3) | 1.5 1018 | 2.2 1018 | 2.2 1015 | [36,39,40] |
VB effective density of states, NV (cm−3) | 1.8 1018 | 1.8 1019 | 1.8 1018 | [36,39,40] |
Electron thermal velocity (cm/s) | 1 107 | 1 107 | 1 107 | [31,34,38] |
Hole thermal velocity | 1 107 | 1 107 | 1 107 | [31,34,38] |
Electron mobility (cm2/Vs) | 50 | 15 | 10 | [36,39,41] |
Hole mobility (cm2/Vs) | 20 | 5.1 | 10 | [36,39,41] |
Shallow uniform donor density, ND (cm−3) | 1 1022 | 0 | 0 | [36] |
Shallow uniform acceptor density, NA (cm−3) | 0 | 1.0 1017 | 3.17 1014 | [31,36] |
Defect density Nt (cm−3) | 1 1014 | 6.90 1013−16 | 1 1016 | [31,36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khac, D.L.; Chowdhury, S.; Luengchavanon, M.; Jamal, M.S.; Laref, A.; Techato, K.; Sreesawet, S.; Channumsin, S.; Chia, C.H. Influence/Effect of Deep-Level Defect of Absorber Layer and n/i Interface on the Performance of Antimony Triselenide Solar Cells by Numerical Simulation. Sustainability 2022, 14, 6780. https://doi.org/10.3390/su14116780
Khac DL, Chowdhury S, Luengchavanon M, Jamal MS, Laref A, Techato K, Sreesawet S, Channumsin S, Chia CH. Influence/Effect of Deep-Level Defect of Absorber Layer and n/i Interface on the Performance of Antimony Triselenide Solar Cells by Numerical Simulation. Sustainability. 2022; 14(11):6780. https://doi.org/10.3390/su14116780
Chicago/Turabian StyleKhac, Dong Le, Shahariar Chowdhury, Montri Luengchavanon, Mohammad Shah Jamal, Amel Laref, Kuaanan Techato, Suwat Sreesawet, Sittiporn Channumsin, and Chin Hua Chia. 2022. "Influence/Effect of Deep-Level Defect of Absorber Layer and n/i Interface on the Performance of Antimony Triselenide Solar Cells by Numerical Simulation" Sustainability 14, no. 11: 6780. https://doi.org/10.3390/su14116780