Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices
Abstract
:1. Introduction
2. Materials and Method
2.1. Sample Preparation Method
2.2. Measurement Setup and Impedance Tube Method
2.3. Acoustic Diffuser Manufacturing Process
3. Results and Discussion
3.1. Influence of Charcoal Bulk Density on Sound Absorption Coefficient
3.2. Influence of Charcoal Thickness on Sound Reflection Coefficient
3.3. Designed Diffuser and Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aprianti, E.; Shafigh, P.; Bahri, S.; Farahani, J.N. Supplementary Cementitious Materials Origin from Agricultural Wastes–A Review. Constr. Build. Mater. 2015, 74, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, A.; Mvubu, M.; Muniyasamy, S.; Botha, A.; Anandjiwala, R.D. Thermal and Sound Insulation Materials from Waste Wool and Recycled Polyester Fibers and Their Biodegradation Studies. Energy Build. 2015, 92, 161–169. [Google Scholar] [CrossRef]
- Estanqueiro, B.; Dinis Silvestre, J.; de Brito, J.; Duarte Pinheiro, M. Environmental Life Cycle Assessment of Coarse Natural and Recycled Aggregates for Concrete. Eur. J. Environ. Civ. Eng. 2018, 22, 429–449. [Google Scholar] [CrossRef]
- Januševičius, T.; Mažuolis, J.; Butkus, D. Sound Reduction in Samples of Environmentally Friendly Building Materials and Their Compositions. Appl. Acoust. 2016, 113, 132–136. [Google Scholar] [CrossRef]
- Pastor-Villegas, J.; Pastor-Valle, J.; Rodríguez, J.M.; García, M.G. Study of Commercial Wood Charcoals for the Preparation of Carbon Adsorbents. J. Anal. Appl. Pyrolysis 2006, 76, 103–108. [Google Scholar] [CrossRef]
- Mopoung, S. Surface Image of Charcoal and Activated Charcoal from Banana Peel. J. Microsc. Soc. Thail. 2008, 22, 15–19. [Google Scholar]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore Characterization of Different Types of Coal from Coal and Gas Outburst Disaster Sites Using Low Temperature Nitrogen Adsorption Approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Arenas, J.P.; Crocker, M.J. Recent Trends in Porous Sound-Absorbing Materials. Sound Vib. 2010, 44, 12–18. [Google Scholar]
- Chen, P.-H.; Xu, C.; Chung, D. Sound Absorption Enhancement Using Solid–Solid Interfaces in a Non-Porous Cement-Based Structural Material. Compos. Part B Eng. 2016, 95, 453–461. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, H.; Lv, L.; Yuan, B.; Wang, G.; Wen, X. Effects of Locally Resonant Modes on Underwater Sound Absorption in Viscoelastic Materials. J. Acoust. Soc. Am. 2011, 130, 1201–1208. [Google Scholar] [CrossRef]
- Liu, Z.; Zhan, J.; Fard, M.; Davy, J.L. Acoustic Properties of a Porous Polycarbonate Material Produced by Additive Manufacturing. Mater. Lett. 2016, 181, 296–299. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustic Characterization of Natural Fibers for Sound Absorption Applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Ahmed, A.; Qayoum, A.; Mir, F.Q. Investigation of the Thermal Behavior of the Natural Insulation Materials for Low Temperature Regions. J. Build. Eng. 2019, 26, 100849. [Google Scholar] [CrossRef]
- Ahmed, A.; Qayoum, A.; Mir, F.Q. Spectroscopic Studies of Renewable Insulation Materials for Energy Saving in Building Sector. J. Build. Eng. 2021, 44, 103300. [Google Scholar] [CrossRef]
- Ahmed, A.; Qayoum, A. Investigation on the Thermal Degradation, Moisture Absorption Characteristics and Antibacterial Behavior of Natural Insulation Materials. Mater. Renew. Sustain. Energy 2021, 10, 4. [Google Scholar] [CrossRef]
- Marin, V.; Arenas, J.P. Sound Absorption Provided by an Impervious Membrane/Cavity/Activated Carbon Arrangement; Universitätsbibliothek der RWTH Aachen: Aachen, Germany, 2019. [Google Scholar]
- Yilmaz, N.D.; Banks-Lee, P.; Powell, N.B.; Michielsen, S. Effects of Porosity, Fiber Size, and Layering Sequence on Sound Absorption Performance of Needle-punched Nonwovens. J. Appl. Polym. Sci. 2011, 121, 3056–3069. [Google Scholar] [CrossRef]
- Curtu, I.; Stanciu, M.D.; Cosereanu, C.; Vasile, O. Assessment of Acoustic Properties of Biodegradable Composite Materials with Textile Inserts. Mater. Plast. 2012, 49, 68–72. [Google Scholar]
- Wang, D.; Peng, L.M.; Fu, F.; Song, B.Q.; Liu, M.H. Changes of Microscopic Structures and Sound Absorption Properties of Decayed Wood. Wood Res 2017, 62, 529–538. [Google Scholar]
- Sengupta, S.; Basu, G.; Datta, M.; Debnath, S.; Nath, D. Noise Control Material Using Jute (Corchorus Olitorius): Effect of Bulk Density and Thickness. J. Text. Inst. 2021, 112, 56–63. [Google Scholar] [CrossRef]
- Demirbas, A.; Ahmad, W.; Alamoudi, R.; Sheikh, M. Sustainable Charcoal Production from Biomass. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 1882–1889. [Google Scholar] [CrossRef]
- Zubairu, A.; Gana, S.A. Production and Characterization of Briquette Charcoal by Carbonization of Agro-Waste. Energy Power 2014, 4, 41–47. [Google Scholar]
- Suh, J.G.; Kim, Y.T.; Jung, S.S. Measurement and Calculation of the Sound Absorption Coefficient of Pine Wood Charcoal. J. Korean Phys. Soc. 2013, 63, 1576–1582. [Google Scholar] [CrossRef]
- Astrauskas, T.; Januševicius, T.; Grubliauskas, R. Acoustic Panels Made of Paper Sludge and Clay Composites. Sustainability 2021, 13, 637. [Google Scholar] [CrossRef]
- ISO, U. 10534-2; Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. International Organization for Standardization: Genève, Switzerland, 1998.
- ISO 11654; Acoustical Sound Absorbers for Use in Buildings-Rating of Sound Absorption. International Organisation for Standardisation: Geneva, Switzerland, 1997.
- Novak, C.; Ule, H.; Cert, J.K.I.B. Comparative Study of the ASTM E1050 Standard for Different Impedance Tube Lengths. Inst. Noise Control. Eng. 2011, 1, 815–822. [Google Scholar]
- Jiang, N.; Chen, J.; Parikh, D. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens. Bioresour. Technol. 2009, 100, 6533–6536. [Google Scholar] [CrossRef]
- Lee, H.H. Gas Adsorbing and Sound Absorbing Composite Structure of Activated Charcoal-Wooden Material Composites for Improving Indoor Air Quality and Removing Radon Gas, and Manufacturing Method Thereof. KR Patent № 101312049B1 2013. Available online: https://patents.justia.com/patent/9278304 (accessed on 28 July 2022).
- Romadhona, I.C.; Yahya, I. On the Use of Coupled Cavity Helmholtz Resonator Inclusion for Improving Absorption Performance of Wooden Sound Diffuser Element. Procedia Eng. 2017, 170, 458–462. [Google Scholar] [CrossRef]
- Memoli, G.; Caleap, M.; Asakawa, M.; Sahoo, D.R.; Drinkwater, B.W.; Subramanian, S. Metamaterial Bricks and Quantization of Meta-Surfaces. Nat. Commun. 2017, 8, 14608. [Google Scholar] [CrossRef] [Green Version]
- Vorländer, M.; Mommertz, E. Definition and Measurement of Random-Incidence Scattering Coefficients. Appl. Acoust. 2000, 60, 187–199. [Google Scholar] [CrossRef]
- Cox, T.; d’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Lee, K.; Smith, J.O., III. Implementation of a Highly Diffusing 2-D DigitalWaveguide Mesh with a Quadratic Residue Diffuser; Citeseer: Princeton, NJ, USA, 2004. [Google Scholar]
- Lock, A.; Holloway, D. Boundary Element Modelling of Fractal and Other Enhanced Bandwidth Schroeder Diffusers. 2015; pp. 1–10. Available online: https://www.acoustics.asn.au/conference_proceedings/AAS2015/papers/p81.pdf (accessed on 28 July 2022).
- Schröder, M.R. Diffuse Sound Reflection by Maximum− Length Sequences. J. Acoust. Soc. Am. 1975, 57, 149–150. [Google Scholar] [CrossRef]
- Schroeder, M.R. Binaural Dissimilarity and Optimum Ceilings for Concert Halls: More Lateral Sound Diffusion. J. Acoust. Soc. Am. 1979, 65, 958–963. [Google Scholar] [CrossRef]
- Krystoslavenko, O.; Grubliauskas, R. Theoretical predictions of sound scattering and sound diffusion coefficient from quadratic residue diffusers. In Proceedings of the 22th Conference for Junior Researchers Environment Protection Engineering, Vilnius, Lithuania, 20 April 2019; pp. 80–87. [Google Scholar]
- Peng, L.; Liu, M.; Wang, D.; Song, B. Sound Absorption Properties of Wooden Perforated Plates. Wood Res. 2018, 63, 559–572. [Google Scholar]
- Li, D.; Jiang, Z.; Li, L.; Liu, X.; Wang, X.; He, M. Investigation of Acoustic Properties on Wideband Sound-Absorber Composed of Hollow Perforated Spherical Structure with Extended Tubes and Porous Materials. Appl. Sci. 2020, 10, 8978. [Google Scholar] [CrossRef]
Type of Sample | Thickness of Sample (mm) | Bulk Density (kg/m3) |
---|---|---|
birch (B) | 10 | 440 |
birch (B) | 18 | 456 |
birch (B) | 25 | 454 |
birch (B) | 50 | 473 |
pine (P) | 10 | 327 |
pine (P) | 18 | 372 |
pine (P) | 25 | 392 |
pine (P) | 50 | 433 |
oak (O) | 10 | 310 |
oak (O) | 18 | 343 |
oak (O) | 25 | 378 |
oak (O) | 50 | 390 |
Number of Wells | Well Depth (cm) |
---|---|
1 | 4.5 |
2 | 17.9 |
3 | 8.9 |
4 | 8.9 |
5 | 17.9 |
6 | 4.5 |
7 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrystoslavenko, O.; Grubliauskas, R. Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices. Sustainability 2022, 14, 9431. https://doi.org/10.3390/su14159431
Khrystoslavenko O, Grubliauskas R. Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices. Sustainability. 2022; 14(15):9431. https://doi.org/10.3390/su14159431
Chicago/Turabian StyleKhrystoslavenko, Olga, and Raimondas Grubliauskas. 2022. "Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices" Sustainability 14, no. 15: 9431. https://doi.org/10.3390/su14159431
APA StyleKhrystoslavenko, O., & Grubliauskas, R. (2022). Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices. Sustainability, 14(15), 9431. https://doi.org/10.3390/su14159431