Multi-Scale Characterization of Spatial Variability of Soil Organic Carbon in a Semiarid Zone in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling
2.2.1. County-Scale Sampling
- (1)
- Belt transects: Six belt transects were arranged along the northeast–southwest direction in the study area. The bandwidth between every two adjacent belt transects was 15 km.
- (2)
- Sampling areas: Forty-two sampling areas were designed for the belt transects. The dimension of each sample grid was a 5 km × 5 km square, and the distance between two adjacent sampling areas in the same belt transect was 13 km.
- (3)
- Sampling points: The design of each sampling point allowed for a comprehensive investigation of the influence of soil types, typical vegetation types, land use types, and topographical factors on SOC. Three to five representative sampling points were designed randomly in each sampling area. Thus, a total of 182 sampling points were selected.
2.2.2. Regional Scale Sampling
2.2.3. Watershed-Scale Sampling
2.2.4. Sampling Treatment and Data Source
2.3. Statistical Analyses
2.3.1. Geostatistics
2.3.2. Other Analyses
3. Results
3.1. Descriptive Statistical Analysis of SOC Content
3.2. Analyses of Spatial Variability
3.3. Spatial Distribution of SOC Content
3.4. Soil Type, Land Use, and Topography Impacts on SOC Content at Different Scales
3.5. Relationship between SOC Content and Different Environmental Factors at Different Scales
4. Discussion
4.1. Multi-Scale Characterization of SOC Spatial Variability
4.2. Factors Affecting SOC Variability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Post, W.M.; Peng, T.H.; Emanuel, W.R.; King, A.W.; Dale, V.H.; DeAngelis, D.L. The global carbon cycle. Am. Sci. 1990, 78, 310–326. [Google Scholar]
- Smith, P.; Fang, C.M.; Dawson, J.J.C.; Moncrieff, J.B. Impact of global warming on soil organic carbon. Adv. Agron. 2008, 97, 1–43. [Google Scholar]
- Albaladejo, J.; Ortiz, R.; Garcia-Franco, N.; Navarro, A.R.; Almagro, M.; Pintado, J.G.; Martínez-Mena, M. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J. Soils Sediments 2013, 13, 265–277. [Google Scholar] [CrossRef]
- Thaler, E.A.; Larsen, I.J.; Yu, Q. A new index for remote sensing of soil organic carbon based solely on visible wavelengths. Soil Sci. Soc. Am. J. 2019, 83, 1443–1450. [Google Scholar] [CrossRef]
- Veronesi, F.; Schillaci, C. Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecol. Indic. 2019, 101, 1032–1044. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 2009, 148, 364–374. [Google Scholar] [CrossRef]
- Panagos, P.; Liedekerke, M.V.; Montanarella, L. Multi-scale European soil information system (MEUSIS): A multi-scale method to derive soil indicators. Comput. Geosci. 2011, 15, 463–475. [Google Scholar] [CrossRef]
- Brombin, V.; Mistri, E.; De Feudis, M.; Forti, C.; Salani, G.M.; Natali, C.; Falsone, G.; Vittori, A.L.; Bianchini, G. Soil carbon investigation in three pedoclimatic and agronomic settings of Northern Italy. Sustainability 2020, 12, 10539. [Google Scholar] [CrossRef]
- Cubera, E.; Moreno, G. Effect of land use on soil water dynamic in dehesas of Central-Western Spain. Catena 2007, 71, 298–308. [Google Scholar] [CrossRef]
- Fathizad, H.; Taghizadeh, M.R.; Hakimzadeh, A.M.A.; Zeraatpisheh, M.; Heung, B.; Scholten, T. Spatiotemporal assessment of soil organic carbon change using machine-learning in arid regions. Agronomy 2022, 12, 628. [Google Scholar] [CrossRef]
- Atwell, M.A.; Wuddivira, M.N. Soil organic carbon characterization in a tropical ecosystem under different land uses using proximal soil sensing technique. Arch. Agron. Soil Sci. 2022, 68, 297–310. [Google Scholar] [CrossRef]
- Zeleke, T.B.; Si, B.C. Characterizing scale-dependent spatial relationships between soil properties using multifractal techniques. Geoderma 2006, 134, 440–452. [Google Scholar] [CrossRef]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils-effects of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Sahu, B.; Ghosh, A.K.; Seema. Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Reg. 2021, 26, e00413. [Google Scholar] [CrossRef]
- Guedes Filho, O.; Vieira, S.R.; Chiba, M.K.; Nagumo, C.H.; Dechen, S.C.F. Spatial and temporal variability of crop yield and some Rhodic Hapludox properties under no-tillage. Rev. Bras. Ciênc. Solo 2010, 34, 1–14. [Google Scholar] [CrossRef]
- Gamma Design Software. GS+ GeoStatistics for the Environmental Sciences. User’s Guide; Version 7; Gamma Design Software, LLC: Plainwell, MI, USA, 2004. [Google Scholar]
- Nielsen, D.R.; Bouma, J. Soil Spatial Variability; Pudoc: Wageningen, The Netherlands, 1985. [Google Scholar]
- Yemefack, M.; Rossiter, D.G.; Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 2005, 125, 117–143. [Google Scholar] [CrossRef]
- Kwang, J.S.; Thaler, E.A.; Quirk, B.J.; Quarrier, C.L.; Larsen, I.J. A Landscape rvolution modeling approach for predicting three-dimensional soil organic carbon redistribution in agricultural landscapes. J. Geophys. Res. Biogeosci. 2022, 127, 6616. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Holmes, K.W.; Kyriakidis, P.C.; Chadwick, O.A.; Soares, J.V.; Roberts, D.A. Multi-scale variability in tropical soil nutrients following land-cover change. Biogeochemistry 2005, 74, 173–203. [Google Scholar] [CrossRef]
- Hibbard, K.A.; Archer, S.; Schimel, D.S.; Valentine, D.W. Biogeochemical changes accompanying woody plant encroachment in a subtropical Savanna. Ecology 2001, 82, 1999–2011. [Google Scholar] [CrossRef]
- McCulley, R.L.; Archer, S.R.; Boutton, T.W.; Hons, F.M.; Zuberer, D.A. Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 2004, 85, 2804–2817. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Lo Seen, D.; Ramesh, B.R.; Nair, K.M.; Martin, M.; Arrouays, D.; Bourgeon, G. Soil carbon stocks, deforestation and land-cover changes in the Western Ghats biodiversity hotspot (India). Glob. Chang. Biol. 2010, 16, 1777–1792. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic matter stocks using random forest modelling in a semi-arid steppe ecosystem. Plant Soil 2011, 340, 7–24. [Google Scholar] [CrossRef]
- Hoffmann, U.; Yair, A.; Hikel, H.; Kuhn, N.J. Soil organic carbon in the rocky desert of northern Negev (Israel). J. Soils Sediments 2012, 12, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Sauer, T.J.; Cambardella, C.A.; Meek, D.W. Spatial variation of soil properties relating to vegetation changes. Plant Soil 2006, 280, 1–5. [Google Scholar] [CrossRef]
- Forstner, S.J.; Wechselberger, V.; Müller, S.; Keibinger, K.M.; Díaz-Pinés, E.; Wanek, W.; Scheppi, P.; Hagedorn, F.; Gundersen, P.; Tatzber, M.; et al. Vertical redistribution of soil organic carbon pools after twenty years of nitrogen addition in two temperate voniferous forests. Ecosystems 2019, 22, 379–400. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Meier, I.C.; Leuschner, C. Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Glob. Chang. Biol. 2010, 16, 1035–1045. [Google Scholar] [CrossRef]
- Jiang, C.; Qian, L.X.; Wu, Z.F.; Wen, Y.; Deng, N.R. Multi-scale correlation analysis of soil organic carbon with its influence factors using wavelet transform. Chin. J. Appl. Ecol. 2013, 24, 3415–3422. [Google Scholar]
- Viskari, T.; Pusa, J.; Fer, I.; Repo, A.; Vira, J.; Liski, J. Calibrating the soil organic carbon model Yasso20 with multiple datasets. Geosci. Model Dev. 2022, 15, 1735–1752. [Google Scholar] [CrossRef]
- Mosier, S.; Paustian, K.; Davies, C.; Kane, M.; Cotrufo, M.F. Soil organic matter pools under management intensification of loblolly pine plantations. For. Ecol. Manag. 2019, 447, 60–66. [Google Scholar] [CrossRef]
- Paramesh, V.; Kumar, P.; Nath, A.J.; Francaviglia, R.; Mishra, G.; Arunachalam, V.; Toraskar, S. Simulating soil organic carbon stock under different climate change scenarios: A RothC model application to typical land-use systems of Goa, India. Catena 2022, 213, 106129. [Google Scholar] [CrossRef]
- Merbold, L.; Ziegler, W.; Mukelabai, M.M.; Kutsch, W.L. Spatial and temporal variation of CO2 efflux along a disturbance gradient in a miombo woodland in Western Zambia. Biogeosciences 2011, 8, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Bouahom, B.; Valentin, C. Soil organic carbon stocks in Laos: Spatial variations and controlling factors. Glob. Chang. Biol. 2010, 16, 1380–1393. [Google Scholar] [CrossRef]
- Oueslati, I.; Allamano, P.; Bonifacio, E.; Claps, P. Vegetation and topographic control on spatial variability of soil organic carbon. Pedosphere 2013, 23, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, J.; Zhu, L.; Tian, H.; Shi, J.; Ren, X. Spatial variation and driving mechanism of soil organic carbon components in the alluvial/sedimentary zone of the Yellow River. J. Geogr. Sci. 2021, 31, 535–550. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Kravchenko, A. Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs. Geoderma 2011, 166, 102–110. [Google Scholar] [CrossRef]
- De Benedetto, D.; Barca, E.; Castellini, M.; Popolizio, S.; Lacolla, G.; Stellacci, A.M. Prediction of soil organic carbon at field scale by regression kriging and multivariate adaptive regression splines using geophysical covariates. Land 2022, 11, 381. [Google Scholar] [CrossRef]
- Wei, J.B.; Xiao, D.N.; Zhang, X.Y.; Li, X.Z.; Li, X.Y. Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the black soil region, northeast China. Environ. Monit. Assess. 2006, 121, 597–613. [Google Scholar]
- Gilbert, C.; Sigua, S.; Coleman, W. Spatial distribution of soil carbon in pastures with cow-calf operation: Effects of slope aspect and slop position. J. Soil Sediments 2010, 10, 240–247. [Google Scholar]
- Yoo, K.; Amudson, R.; Heimsath, A.M.; Dietrich, D.E. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma 2006, 130, 47–65. [Google Scholar] [CrossRef]
Scale | SOC Content (g kg−1) | SD | Sample Number | CV (%) | Skewness | Kurtosis | ||
---|---|---|---|---|---|---|---|---|
Minimum | Mean | Maximum | ||||||
County scale | 1.23 | 7.49 | 19.95 | 3.80 | 182 | 50.73 | 0.17 | 2.09 |
Regional scale | 1.31 | 7.57 | 19.89 | 3.31 | 100 | 43.59 | 0.35 | 2.79 |
Watershed scale | 1.43 | 7.54 | 19.48 | 3.50 | 87 | 46.45 | 0.86 | 2.28 |
Scale | Model | Nugget | Sill | Range (m) | Nugget/Sill (%) | RSS | R2 |
---|---|---|---|---|---|---|---|
County scale | Spherical | 0.28 | 0.77 | 2100 | 36.61 | 2.11 | 0.73 |
Regional scale | Spherical | 0.27 | 0.81 | 1890 | 33.42 | 1.96 | 0.77 |
Watershed scale | Gaussian | 0.039 | 0.141 | 980 | 27.66 | 2.43 | 0.50 |
Scale | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
County Scale | Regional Scale | Watershed Scale | |||||||||||
Number of Samples | Mean (g kg−1) | SD | CV (%) | Number of Samples | Mean (g kg−1) | SD | CV (%) | Number of Samples | Mean (g kg−1) | SD | CV (%) | ||
Land use types | Forestland | 89 | 8.15 a | 3.61 | 44.31 | 31 | 7.61 a | 2.41 | 31.71 | 35 | 7.96 a | 2.64 | 33.13 |
Shrubland | 56 | 7.21 b | 2.79 | 38.70 | 46 | 7.15 a | 2.56 | 35.83 | 32 | 7.67 a | 2.96 | 38.64 | |
Grassland | 37 | 4.70 c | 1.94 | 41.24 | 23 | 6.04 b | 1.78 | 29.42 | 20 | 6.67 b | 2.18 | 32.72 | |
Soil types | Aeolian sandy soil | 45 | 4.88 a | 1.34 | 27.46 | 31 | 4.96 a | 1.13 | 22.76 | 24 | 5.25 a | 1.30 | 24.79 |
Chestnut soil | 64 | 7.59 b | 3.28 | 43.21 | 55 | 6.54 b | 2.53 | 38.61 | 63 | 6.43 b | 2.34 | 36.45 | |
Cinnamon soil | 40 | 8.25 b | 2.69 | 32.61 | 14 | 8.44 c | 2.80 | 33.23 | |||||
Brown soil | 33 | 12.84 c | 5.05 | 39.33 |
Altitude | Slope | Slope Aspect | NDVI | |
---|---|---|---|---|
County scale | ||||
SOC content | 0.4522 * | 0.3376 | 0.0389 | 0.6928 * |
Regional scale | ||||
SOC content | 0.3532 | −0.4123 * | 0.2345 | 0.5112 * |
Watershed scale | ||||
SOC content | 0.5123 * | −0.4433 * | 0.2921 | 0.3005 |
Scale | Predictive Variables | Coefficients | p Values | Standard Error (SE) | R2 Adj. | p Value |
---|---|---|---|---|---|---|
County scale | Intercept | 0.578 | <0.001 | 0.072 | 0.496 | <0.001 |
Altitude | 0.015 | <0.001 | 116.210 | |||
NDVI | 0.021 | <0.001 | 0.020 | |||
Regional scale | Intercept | 7.929 | 0.051 | 0.851 | 0.362 | 0.034 |
NDVI | 6.069 | 0.062 | 0.094 | |||
Slope | −0.312 | 0.105 | 1.740 | |||
Watershed scale | Intercept | 0.623 | 0.044 | 0.067 | 0.457 | 0.019 |
Altitude | 0.045 | 0.023 | 47.470 | |||
Slope | −0.234 | 0.045 | 13.210 | |||
Slope aspect | 0.012 | 0.084 | 0.640 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yue, Y.; Qin, F.; Dong, X.; Sun, C.; Liu, Y.; Zhang, P. Multi-Scale Characterization of Spatial Variability of Soil Organic Carbon in a Semiarid Zone in Northern China. Sustainability 2022, 14, 9390. https://doi.org/10.3390/su14159390
Li L, Yue Y, Qin F, Dong X, Sun C, Liu Y, Zhang P. Multi-Scale Characterization of Spatial Variability of Soil Organic Carbon in a Semiarid Zone in Northern China. Sustainability. 2022; 14(15):9390. https://doi.org/10.3390/su14159390
Chicago/Turabian StyleLi, Long, Yongjie Yue, Fucang Qin, Xiaoyu Dong, Cheng Sun, Yanqi Liu, and Peng Zhang. 2022. "Multi-Scale Characterization of Spatial Variability of Soil Organic Carbon in a Semiarid Zone in Northern China" Sustainability 14, no. 15: 9390. https://doi.org/10.3390/su14159390
APA StyleLi, L., Yue, Y., Qin, F., Dong, X., Sun, C., Liu, Y., & Zhang, P. (2022). Multi-Scale Characterization of Spatial Variability of Soil Organic Carbon in a Semiarid Zone in Northern China. Sustainability, 14(15), 9390. https://doi.org/10.3390/su14159390