Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review
Abstract
:1. Introduction
2. Microbiological Pathways in Anaerobic Co-Digestion Condition
3. Principal Parameters and Factors Affecting Microbial Activity during AcoD
3.1. Temperature
3.2. Total Solid (TS) and Volatile Solid (VS)
3.3. Carbon to Nitrogen Ratio
Comparatively Lower C/N Value Materials | Comparatively Higher C/N Value Materials | ||||
---|---|---|---|---|---|
Substrates | Lower C/N Value < 23 | References | Substrates | Higher C/N Value > 24 | References |
Chicken manure | 9.27 | [43] | Corn stover | 42.92 | [43] |
Vicuñas (VM) | 15.40 | [16] | Olive mill solid waste (OMSW) | 31.4 | [44] |
Rugulopteryx okamurae | 15.2 | [44] | R. Okamurae—OMSW | 27.4 | [44] |
CCF | 13 | [8] | Raw llama dung | 26.8 | [45] |
Pig manure | 11.70 | [46] | Buckwheat hull | 43.8 | [47] |
Raw dromedary dung | 22.2 | [45] | Cardboard (CB) | 163 | [48] |
Palm oil mill effluent | 9.7 | [49] | Corn stover | 40.8 | [46] |
Slaughterhouse waste | 13.7 | [47] | Brewery trub | 33 | [47] |
Cucumber residues | 14.76 | [46] | Fruit wastes | 44.7 | [47] |
Sewage sludge | 8.5–12 | [2,47] | Sophora flavescens residues | 65.64 | [2] |
Dairy manure | 22.5 | [47] | Coffee husk | [20] | |
Water hyacinth | 19.5 | [50] | Cactus | 27.9 | [51] |
MSW | 18.4 | [50] | Decanter cake | 49.54 | [49] |
Llama manure (LM) | 17.40 | [16] | Food waste | 24.6 | [2] |
Microalgae | 15.3 | [52] | |||
Empty fruit bunch | 12.86 | [49] |
3.4. Retention Time
Operational Parameter | Optimum | Reference |
---|---|---|
pH overall | 6–8.5 (ideal 6.8–7.2) | [20,58] |
Methanogenesis | 6.8–8.0 | |
Alkalinity | 1000–5000 mg/L as CaCO3 | |
C/N | 20–30:1 | [37] |
HRT | 70–80 days at a psychrophilic temperature, 12–40 days at mesophilic temperature, and 15–20 days at thermophilic temperature | [53,59] |
OLR | 0.5–4.7 kg VS/m3d | [60] |
Particle size | Less than 10 mm is recommended | [60] |
Semi-dry, wet, dry | 10–20%, ≤10%, ≥20%, respectively | [14] |
3.5. Ammonia
4. Effects of Anaerobic Co-Digestion on Different Parameters
4.1. As Chemical Pretreatment
4.2. Synergistic Effect
4.2.1. Theoretical Biomethane Potentials
Mono/Co-Substrates | C/N | Mode Conditions | Theoretical Maximum CH4 (mL/g VS) | Experimental CH4 (mL/g VS) | References |
---|---|---|---|---|---|
Cotton gin trash (0:1) | 36 | BMP test, 36 °C ± 1 | 451.0 | 169.6 | [71] |
Goat manure:cotton gin trash (0.1:0.9) | 32.2 | BMP test, 36 °C ± 1 | 428.5 | 189.0 | [71] |
Goat manure (1:0) | 15 | BMP test, 36 °C ± 1 | 290 | 274.1 | [71] |
Goat manure:cotton gin trash (0.9:0.1) | 17.7 | BMP test, 36 °C ± 1 | 313.0 | 261.4 | [71] |
Corn stover (1:0) | 42.9 | Batch scale, 37 °C | 555.81 | 240 | [43] |
Chicken manure (0:1) | 9.27 | batch scale, 37 °C | 401.32 | 298.21 | [43] |
Corn stover:chicken manure (1:2) | 21 | Batch scale, 37 °C | 452.82 | 280 | [43] |
FW (10:0) | 24.61 | Batch, 37 °C | 513 | nd | [2] |
FW:Sophora flavescens residues (7:3) | 25.8 | Batch, 37 °C | 503 | nd | [2] |
100% DSCG | 24 | Batch, 37 °C | 483 | 336 | [74] |
75% DSCG:25% STW | 24.3 | Batch, 37 °C | 481 | 231 ± 12 | [74] |
25% DSCG:75% MC | 24.2 | Batch, 37 °C | 333.7 | 260 | [74] |
CB | 160 | Batch, 37 °C | 450 | [48] | |
80% FW and 20% CB | 77.9 | Batch, 37 °C | 610 | 240 | [48] |
YW | 74 | BMP test, 37 °C | 497.9 | 49 | [72] |
25% YW + 75% FW | 29 | BMP test, 37 °C | 637.4 | 360 | [72] |
75% YW + 25% FW | 59 | BMP test, 37 °C | 509 | 165 | [72] |
4.2.2. Biogas Yield
Co-Substrate | C/N | BDth (%) | Mode and Condition | Synergistic Effect | Methane Yields | References |
---|---|---|---|---|---|---|
Cabbage cauliflower and FW (0.36:0.64) | 45 | 98 | BMP test at 37 °C | 0.9 | 475 mLSTP CH4/g VS | [8] |
Cabbage and cauliflower FW (0.14:0.86) | 56 | 85 | BMP test, 37 °C | 0.85 | 433 mLSTP CH4/g VS | [8] |
Corn stover:chicken waste (1:2) | 21 | 70.60 | Labscale, 37 °C | 1 | 319.70 mL/g VS | [43] |
Corn stover:chicken waste (1:1) | 26 | 60.02 | Labscale, 37 °C | 1 | 287.28 mL/g VS | [43] |
FW:CB (0.8:0.2) | 60 | 39 | Pilot scale, 37 °C | 0.7 | 240 mL/g VS | [48] |
FW:SFR (7:3) | 25.8 | 58.83 | Batch, 37 °C | 1.19 | 640 mL/g VS | [2] |
Food waste:Sophora flavescens residues (5:5) | 27.3 | 58.11 | Batch, 37 °C | 1.21 | 629 mL/g VS | [2] |
Food waste:sewage sludge (3:1) | 28 | 40 | Batch, 37 °C | 0.88 | 452 mL/g VS | [36] |
Defatted spent coffee grounds:spent tea grounds (0.5:0.5) | 24.2 | 66.4 | BMP, 37 °C | 1.06 | 318 mL/g VS | [74] |
Defatted spent coffee grounds:macroalgae (0.25:0.75) | 24.2 | 77.9 | BMP, 37 °C | 1.01 | 260 mL/g VS | [74] |
Defatted spent coffee grounds:spent coffee grounds (0.75:0.25) | 24.8 | 64.3 | BMP, 37 °C | 0.9 | 306 mL/g VS | [74] |
Meadow grass:wheat straw:cattle manure (0.75:0.75:0.25) | 34 | 83 | Batch, 53 °C | 1.18 | 351 mL/g VS | [89] |
4.2.3. Microbes Delivery
4.3. Biodegradability (BD)
4.4. Moisture Contents
4.5. Stability
4.5.1. pH
4.5.2. Organic Removal Efficiency
4.5.3. Organic Loading Rates (OLRs)
4.5.4. VFA, TA, and VFA/TA Ratio
5. Conclusions and Recommendations for Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Ma, X.; Yu, M.; Yang, M.; Gao, M.; Wu, C.; Wang, Q. Synergistic effect from anaerobic co-digestion of food waste and Sophora flavescens residues at different co-substrate ratios. Environ. Sci. Pollut. Res. 2019, 26, 37114–37124. [Google Scholar] [CrossRef] [PubMed]
- Tsapekos, P.; Kougias, P.; Angelidaki, I. Anaerobic Mono- and Co-digestion of Mechanically Pretreated Meadow Grass for Biogas Production. Energy Fuels 2015, 29, 4005–4010. [Google Scholar] [CrossRef]
- Nkuna, R.; Roopnarain, A.; Adeleke, R. Effects of organic loading rates on microbial communities and biogas production from water hyacinth: A case of mono- and co-digestion. J. Chem. Technol. Biotechnol. 2018, 94, 1294–1304. [Google Scholar] [CrossRef]
- Oladejo, O.S.; Dahunsi, S.O.; Adesulu-Dahunsi, A.T.; Ojo, S.O.; Lawal, A.I.; Idowu, E.O.; Olanipekun, A.A.; Ibikunle, R.A.; Osueke, C.O.; Ajayi, O.E.; et al. Energy generation from anaerobic co-digestion of food waste, cow dung and piggery dung. Bioresour. Technol. 2020, 313, 123694. [Google Scholar] [CrossRef]
- Imeni, S.M.; Pelaz, L.; Corchado-Lopo, C.; Busquets, A.M.; Ponsá, S.; Colón, J. Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms. Bioresour. Technol. 2019, 291, 121872. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar] [CrossRef]
- Beniche, I.; Hungría, J.; El Bari, H.; Siles, J.A.; Chica, A.F.; Martín, M.A. Effects of C/N ratio on anaerobic co-digestion of cabbage, cauliflower, and restaurant food waste. Biomass-Convers. Biorefin. 2020, 11, 2133–2145. [Google Scholar] [CrossRef]
- Mohamed, N. Revitalising an Eco-Justice Ethic of Islam by Way of Environmental Education: Implications for Islamic Education. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2012. Available online: http://scholar.sun.ac.za (accessed on 20 December 2021).
- Ziaee, F.; Mokhtarani, N.; Niavol, K.P. Solid-state anaerobic co-digestion of organic fraction of municipal waste and sawdust: Impact of co-digestion ratio, inoculum-to-substrate ratio, and total solids. Biodegradation 2021, 32, 299–312. [Google Scholar] [CrossRef]
- Xu, J.; Mustafa, A.; Sheng, K. Effects of inoculum to substrate ratio and co-digestion with bagasse on biogas production of fish waste. Environ. Technol. 2016, 38, 2517–2522. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, J.; Wang, X.; Zhang, R.; Tuo, X.; Guo, A.; Qiu, L. Fate of antibiotic resistance genes and mobile genetic elements during anaerobic co-digestion of Chinese medicinal herbal residues and swine manure. Bioresour. Technol. 2017, 250, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Higgins, M.J.; Bustamante, H.; Galway, B.; Nghiem, L.D. Current status and perspectives on anaerobic co-digestion and associated downstream processes. Environ. Sci. Water Res. Technol. 2018, 4, 1759–1770. [Google Scholar] [CrossRef]
- Odejobi, O.J.; Ajala, O.O.; Osuolale, F.N. Anaerobic co-digestion of kitchen waste and animal manure: A review of operating parameters, inhibiting factors, and pretreatment with their impact on process performance. Biomass-Convers. Biorefin. 2021, 1–17. [Google Scholar] [CrossRef]
- Kesharwani, N.; Bajpai, S. Pilot scale anaerobic co-digestion at tropical ambient temperature of India: Digester performance and techno-economic assessment. Bioresour. Technol. Rep. 2021, 15, 100715. [Google Scholar] [CrossRef]
- Meneses-Quelal, O.; Velázquez-Martí, B.; Gaibor-Chávez, J.; Niño-Ruiz, Z. Effect of the co-digestion of agricultural lignocellulosic residues with manure from South American camelids. Biofuels Bioprod. Biorefin. 2021, 15, 525–544. [Google Scholar] [CrossRef]
- Imeni, S.M. Techno-Economic Assessment of Anaerobic Co-Digestions of Livestock Manure with Agro-Industrial By-Products. Ph.D. Thesis, University of Vic-Central University of Catalonia, Catalonia, Spain, 2019. [Google Scholar]
- Batstone, D.; Keller, J. Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1). Water Sci. Technol. 2003, 47, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Silva, T.C.D.; Chandra, R.; Malik, A.; Vijay, V.K.; Misra, A. Strategies for boosting biomethane production from rice straw: A systematic review. Bioresour. Technol. Rep. 2021, 15, 100813. [Google Scholar] [CrossRef]
- Du, N.; Li, M.; Zhang, Q.; Ulsido, M.D.; Xu, R.; Huang, W. Study on the biogas potential of anaerobic digestion of coffee husks wastes in Ethiopia. Waste Manag. Res. 2020, 39, 291–301. [Google Scholar] [CrossRef]
- Caruso, M.C.; Braghieri, A.; Capece, A.; Napolitano, F.; Romano, P.; Galgano, F.; Altieri, G.; Genovese, F. Recent Updates on the Use of Agro-Food Waste for Biogas Production. Appl. Sci. 2019, 9, 1217. [Google Scholar] [CrossRef] [Green Version]
- Babgi, B.A.; Alsayari, J.H.; Davaasuren, B.; Emwas, A.-H.; Jaremko, M.; Abdellattif, M.H.; Hussien, M.A. Synthesis, structural studies, and anticancer properties of [CuBr (PPh3) 2 (4,6-dimethyl-2-thiopyrimidine-S]. Crystals 2021, 11, 688. [Google Scholar] [CrossRef]
- Zala, M.; Solanki, R.; Bhale, P.V. Experimental investigation on anaerobic co-digestion of food waste and water hyacinth in batch type reactor under mesophilic condition. Biomass-Convers. Biorefin. 2019, 10, 707–714. [Google Scholar] [CrossRef]
- Gómez-Quiroga, X.; Aboudi, K.; Álvarez-Gallego, C.J.; Romero-García, L.I. Successful and stable operation of anaerobic thermophilic co-digestion of sun-dried sugar beet pulp and cow manure under short hydraulic retention time. Chemosphere 2022, 293, 133484. [Google Scholar] [CrossRef]
- Hajizadeh, A. Biogas Production by Psychrophilic Anaerobic Digestion and Biogas-to-Hydrogen through Methane Reforming: Experimental Study and Process Simulation. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2021. [Google Scholar]
- Pečar, D.; Pohleven, F.; Goršek, A. Kinetics of methane production during anaerobic fermentation of chicken manure with sawdust and fungi pre-treated wheat straw. Waste Manag. 2020, 102, 170–178. [Google Scholar] [CrossRef] [PubMed]
- de Diego-Díaz, B.; Peñas, F.J.; Rodríguez, J.F. Sustainable management of lignocellulosic wastes: Temperature strategies for anaerobic digestion of artichoke. J. Clean. Prod. 2021, 280, 124479. [Google Scholar] [CrossRef]
- Ankathi, S.K. Systems Analysis for Sustainability Assessment of Biogas and Bio-CH4 Production from Food Waste and Dairy Manure Mixtures in the US. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2021. [Google Scholar] [CrossRef]
- Shi, X.; Guo, X.; Zuo, J.; Wang, Y.; Zhang, M. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts. Waste Manag. 2018, 75, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Uma, S.; Thalla, A.K.; Devatha, C.P. Co-digestion of Food Waste and Switchgrass for Biogas Potential: Effects of Process Parameters. Waste Biomass-Valoriz. 2018, 11, 827–839. [Google Scholar] [CrossRef]
- Pratama, A. Anaerobic Co-Digestion of Oil Palm Frond Waste with Cow Manure for Biogas Production: Influence of a Stepwise Organic Loading on the Methane Productivity). Ser. II For. Wood Ind. Agric. Food Eng. 2021, 14, 99–112. [Google Scholar] [CrossRef]
- Patinvoh, R.J.; Lundin, M.; Taherzadeh, M.J.; Horváth, I.S. Dry Anaerobic Co-Digestion of Citrus Wastes with Keratin and Lignocellulosic Wastes: Batch and Continuous Processes. Waste Biomass-Valoriz. 2018, 11, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, M.; Diab, A.; Soliman, M. Methane production from anaerobic co-digestion of sludge with fruit and vegetable wastes: Effect of mixing ratio and inoculum type. Biomass-Convers. Biorefin. 2020, 11, 989–998. [Google Scholar] [CrossRef]
- Perin, J.K.H.; Borth, P.L.B.; Torrecilhas, A.R.; da Cunha, L.S.; Kuroda, E.K.; Fernandes, F. Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. J. Clean. Prod. 2020, 272, 123130. [Google Scholar] [CrossRef]
- Elsayed, M.; Andres, Y.; Blel, W. Anaerobic co-digestion of linen, sugar beet pulp, and wheat straw with cow manure: Effects of mixing ratio and transient change of co-substrate. Biomass-Convers. Biorefin. 2022, 1–10. [Google Scholar] [CrossRef]
- Hamrouni, Y.M.B.; Ben Cheikh, R. Enhancing the energetic potential of Mediterranean food waste by anaerobic co-digestion with sewage sludge. Environ. Prog. Sustain. Energy 2020, 40, e13512. [Google Scholar] [CrossRef]
- Ghaleb, A.; Kutty, S.; Salih, G.; Jagaba, A.; Noor, A.; Kumar, V.; Almahbashi, N.; Saeed, A.; Al-Dhawi, B.S. Sugarcane Bagasse as a Co-Substrate with Oil-Refinery Biological Sludge for Biogas Production Using Batch Mesophilic Anaerobic Co-Digestion Technology: Effect of Carbon/Nitrogen Ratio. Water 2021, 13, 590. [Google Scholar] [CrossRef]
- Tran, N.S.; Van Huynh, T.; Nguyen, N.V.C.; Ingvorsen, K. Bio-pretreatment Enhances Biogas Production from Co-digestion of Rice Straw and Pig Manure. Int. Energy J. 2021, 21, 457–466. [Google Scholar]
- Sounni, F.; Elgnaoui, Y.; El Bari, H.; Merzouki, M.; Benlemlih, M. Effect of mixture ratio and organic loading rate during anaerobic co-digestion of olive mill wastewater and agro-industrial wastes. Biomass-Convers. Biorefin. 2021, 1–7. [Google Scholar] [CrossRef]
- Elsayed, M.; Ran, Y.; Ai, P.; Azab, M.; Mansour, A.; Jin, K.; Zhang, Y.; Abomohra, A.E.-F. Innovative integrated approach of biofuel production from agricultural wastes by anaerobic digestion and black soldier fly larvae. J. Clean. Prod. 2020, 263, 121495. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. Enhanced methane production from anaerobic co-digestion of rice straw and hydrilla verticillata and its kinetic analysis. Biomass-Bioenergy 2019, 125, 8–16. [Google Scholar] [CrossRef]
- Sumantri, I.; Diponegoro, U. Enhancement of Biogas Production from Mixed Organic Substrates Containing Cow Manure and Delignified Spent Coffee Grounds (SCG) by Addition of Effective Microorganism-4. Res. Sq. 2021, 1–18. [Google Scholar] [CrossRef]
- Yu, Q.; Cui, S.; Sun, C.; Liu, R.; Sarker, M.; Guo, Z.; Lai, R. Synergistic Effects of Anaerobic Co-Digestion of Pretreated Corn Stover with Chicken Manure and Its Kinetics. Appl. Biochem. Biotechnol. 2020, 193, 515–532. [Google Scholar] [CrossRef]
- de la Lama-Calvente, D.; Fernández-Rodríguez, M.J.; Llanos, J.; Mancilla-Leytón, J.M.; Borja, R. Enhancing methane production from the invasive macroalga Rugulopteryx okamurae through anaerobic co-digestion with olive mill solid waste: Process performance and kinetic analysis. J. Appl. Phycol. 2021, 33, 4113–4124. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; Mancilla-Leytón, J.M.; de la Lama-Calvente, D.; Borja, R. Evaluation of batch mesophilic anaerobic digestion of raw and trampled llama and dromedary dungs: Methane potential and kinetic study. Biomass-Convers. Biorefin. 2022, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Li, Y.; Jia, S.; Song, Y.; Sun, Y.; Zheng, Z.; Yu, J.; Cui, Z.; Han, Y.; et al. Methane production from the co-digestion of pig manure and corn stover with the addition of cucumber residue: Role of the total solids content and feedstock-to-inoculum ratio. Bioresour. Technol. 2020, 306, 123172. [Google Scholar] [CrossRef]
- Cucina, M.; Pezzolla, D.; Tacconi, C.; Gigliotti, G. Anaerobic co-digestion of a lignocellulosic residue with different organic wastes: Relationship between biomethane yield, soluble organic matter and process stability. Biomass-Bioenergy 2021, 153, 106209. [Google Scholar] [CrossRef]
- Begum, S.; Das, T.; Anupoju, G.R.; Eshtiaghi, N. Solid-state anaerobic co-digestion of food waste and cardboard in a pilot-scale auto-fed continuous stirred tank reactor system. J. Clean. Prod. 2021, 289, 125775. [Google Scholar] [CrossRef]
- Chan, Y.J.; Lee, H.W.; Selvarajoo, A. Comparative study of the synergistic effect of decanter cake (DC) and empty fruit bunch (EFB) as the co-substrates in the anaerobic co-digestion (ACD) of palm oil mill effluent (POME). Environ. Chall. 2021, 5, 100257. [Google Scholar] [CrossRef]
- Kunatsa, T.; Zhang, L.; Xia, X. Biogas potential determination and production optimisation through optimal substrate ratio feeding in co-digestion of water hyacinth, municipal solid waste and cow dung. Biofuels 2020, 13, 631–641. [Google Scholar] [CrossRef]
- Belay, J.B.; Habtu, N.G.; Ancha, V.R.; Hussen, A.S. Alkaline hydrogen peroxide pretreatment of cladodes of cactus (opuntia ficus-indica) for biogas production. Heliyon 2021, 7, e08002. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.O.; Astals, S.; Passos, F. Anaerobic co-digestion of food waste and microalgae in an integrated treatment plant. J. Chem. Technol. Biotechnol. 2021, 97, 1545–1554. [Google Scholar] [CrossRef]
- Auma, E.O. Anaerobic Co-Digestion of Water Hyacinth (Eichhornia crassipes) with Ruminal Slaughterhouse Waste under Mesophilic Conditions. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2020. [Google Scholar]
- Khoo, K.S.; Chia, W.Y.; Chew, K.W.; Show, P.L. Microalgal-Bacterial Consortia as Future Prospect in Wastewater Bioremediation, Environmental Management and Bioenergy Production. Indian J. Microbiol. 2021, 61, 262–269. [Google Scholar] [CrossRef]
- Kawan, J.A.; Suja’, F.; Pramanik, S.K.; Yusof, A.; Rahman, R.A.; Abu Hasan, H. Effect of Hydraulic Retention Time on the Performance of a Compact Moving Bed Biofilm Reactor for Effluent Polishing of Treated Sewage. Water 2022, 14, 81. [Google Scholar] [CrossRef]
- Christou, M.; Vasileiadis, S.; Karpouzas, D.; Angelidaki, I.; Kotsopoulos, T. Effects of organic loading rate and hydraulic retention time on bioaugmentation performance to tackle ammonia inhibition in anaerobic digestion. Bioresour. Technol. 2021, 334, 125246. [Google Scholar] [CrossRef]
- Wickramaarachchi, A.; Rathnasiri, P.; Narayana, M.; Torrijos, M.; Escudie, R. Kinetic Modeling of Dry Anaerobic Co-Digestion of Lignocellulosic Biomass. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 193–198. [Google Scholar] [CrossRef]
- Trisakti, B.; Manalu, V.; Taslim, I.; Turmuzi, M. Acidogenesis of Palm Oil Mill Effluent to Produce Biogas: Effect of Hydraulic Retention Time and pH. Procedia-Soc. Behav. Sci. 2015, 195, 2466–2474. [Google Scholar] [CrossRef] [Green Version]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Obileke, K.; Nwokolo, N.; Makaka, G.; Mukumba, P.; Onyeaka, H. Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review. Energy Environ. 2020, 32, 191–225. [Google Scholar] [CrossRef]
- Quispe-Cardenas, E.; Rogers, S. Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. Water Res. 2021, 204, 117596. [Google Scholar] [CrossRef]
- Chen, B.; Shao, Y.; Shi, M.; Ji, L.; He, Q.; Yan, S. Anaerobic digestion of chicken manure coupled with ammonia recovery by vacuum-assisted gas-permeable membrane process. Biochem. Eng. J. 2021, 175, 108135. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Fadairo, A.A.; Fagbenle, R.O. Biogas production from water hyacinth blends. In Proceedings of the International Conference on Heat Transfer, Fluid Mechanics and Thermodynamic, Orlando, FL, USA, 14–26 July 2014; pp. 792–799. [Google Scholar]
- Jatoi, A.S.; Abbasi, S.A.; Hashmi, Z.; Shah, A.K.; Alam, M.S.; Bhatti, Z.A.; Maitlo, G.; Hussain, S.; Khandro, G.A.; Usto, M.A.; et al. Recent trends and future perspectives of lignocellulose biomass for biofuel production: A comprehensive review. Biomass-Convers. Biorefin. 2021, 1–13. [Google Scholar] [CrossRef]
- Naik, G.P.; Poonia, A.K.; Chaudhari, P.K. Pretreatment of lignocellulosic agricultural waste for delignification, rapid hydrolysis, and enhanced biogas production: A review. J. Indian Chem. Soc. 2021, 98, 100147. [Google Scholar] [CrossRef]
- Zou, H.; Jiang, Q.; Zhu, R.; Chen, Y.; Sun, T.; Li, M.; Zhai, J.; Shi, D.; Ai, H.; Gu, L.; et al. Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance. J. Environ. Manag. 2019, 254, 109830. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Palani, S.G.; Ghangrekar, M.M.; Anand, N.; Pathak, P. Dual role of grass clippings as buffering agent and biomass during anaerobic co-digestion with food waste. Clean Technol. Environ. Policy 2022, 1–13. [Google Scholar] [CrossRef]
- Ugwu, S.N.; Enweremadu, C.C. Enhancing anaerobic digestion of okra waste with the addition of iron nanocomposite (Ppy/Fe3O4). Biofuels 2019, 11, 503–512. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Noor, R.S.; Cheng, Q.; Chu, X.; Qu, B.; Zhen, F.; Sun, Y. Furfural wastewater pretreatment of corn stalk for whole slurry anaerobic co-digestion to improve methane production. Sci. Total Environ. 2019, 674, 49–57. [Google Scholar] [CrossRef]
- Kaur, H.; Kommalapati, R.R. Optimizing anaerobic co-digestion of goat manure and cotton gin trash using biochemical methane potential (BMP) test and mathematical modeling. SN Appl. Sci. 2021, 3, 724. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Ifran, M.; Li, A. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Sci. Total Environ. 2019, 704, 135429. [Google Scholar] [CrossRef] [PubMed]
- Khumalo, S.C.; Oluwaseun, O.O.; Okudoh, V.I. Evaluating input parameter effects on the overall anaerobic co-digestion performance of abattoir and winery solid wastes. Bioresour. Technol. Rep. 2021, 13, 100635. [Google Scholar] [CrossRef]
- Atelge, M.; Atabani, A.; Abut, S.; Kaya, M.; Eskicioglu, C.; Semaan, G.; Lee, C.; Yildiz, Y.; Unalan, S.; Mohanasundaram, R.; et al. Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies. Bioresour. Technol. 2020, 322, 124470. [Google Scholar] [CrossRef]
- Vats, N.; Khan, A.A.; Ahmad, K. Effect of substrate ratio on biogas yield for anaerobic co-digestion of fruit vegetable waste & sugarcane bagasse. Environ. Technol. Innov. 2019, 13, 331–339. [Google Scholar] [CrossRef]
- Paranhos, A.G.D.O.; Adarme, O.F.H.; Barreto, G.F.; Silva, S.D.Q.; de Aquino, S.F. Methane production by co-digestion of poultry manure and lignocellulosic biomass: Kinetic and energy assessment. Bioresour. Technol. 2019, 300, 122588. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sharma, H.B.; Dubey, B.K. Anaerobic co-digestion of food waste with pretreated yard waste: A comparative study of methane production, kinetic modeling, and energy balance. J. Clean. Prod. 2019, 243, 118480. [Google Scholar] [CrossRef]
- Tasnim, F.; Iqbal, S.A.; Chowdhury, A.R. Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renew. Energy 2017, 109, 434–439. [Google Scholar] [CrossRef]
- Aragaw, T.; Andargie, M.; Gessesse, A. Co-digestion of cattle manure with organic kitchen waste to increase biogas production using rumen fluid as inoculums. Int. J. Phys. Sci. 2013, 8, 443–450. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion—A review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Engler, N.; Nassour, A.; Nelles, M. Effects of co-substrates’ mixing ratios and loading rate variations on food and agricultural wastes’ anaerobic co-digestion performance. Biomass-Convers. Biorefin. 2021, 1–16. [Google Scholar] [CrossRef]
- Morales-Polo, C.; del Mar Cledera-Castro, M.; Soria, B.Y.M. Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives. Appl. Sci. 2018, 8, 1804. [Google Scholar] [CrossRef] [Green Version]
- Awosusi, A.; Sethunya, V.; Matambo, T. Synergistic effect of anaerobic co-digestion of South African food waste with cow manure: Role of low density-polyethylene in process modulation. Mater. Today Proc. 2020, 38, 793–803. [Google Scholar] [CrossRef]
- Xing, B.-S.; Cao, S.; Han, Y.; Wen, J.; Zhang, K.; Wang, X.C. Stable and high-rate anaerobic co-digestion of food waste and cow manure: Optimisation of start-up conditions. Bioresour. Technol. 2020, 307, 123195. [Google Scholar] [CrossRef]
- Haryanto, A.; Triyono, S.; Wicaksono, N.H. Effect of Hydraulic Retention Time on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. J. Renew. Energy Dev. 2018, 7, 93–100. [Google Scholar] [CrossRef]
- Martínez-Ruanoa, J.A.; Restrepo-Sernaa, D.L.; Carmona-Garciaa, E.; Poveda Giraldo, J.A.; Aroca, G.; Carlos, C.A. Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment. Appl. Energy 2019, 241, 504–518. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. Renew. Energy 2019, 149, 1352–1359. [Google Scholar] [CrossRef]
- Prabhu, A.V.; Raja, S.A.; Avinash, A.; Pugazhendhi, A. Parametric optimization of biogas potential in anaerobic co-digestion of biomass wastes. Fuel 2020, 288, 119574. [Google Scholar] [CrossRef]
- Awais, M.; Alvarado-Morales, M.; Tsapekos, P.; Gulfraz, M.; Angelidaki, I. Methane Production and Kinetic Modeling for Co-digestion of Manure with Lignocellulosic Residues. Energy Fuels 2016, 30, 10516–10523. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Khanal, S.K. Anaerobic co-digestion: Current status and perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Cheng, C.; He, C.; Yu, R.; Shen, D.; Jiao, Y. Experimental study on anaerobic co-digestion of the individual component of biomass with sewage sludge: Methane production and microbial community. Biomass-Convers. Biorefin. 2020, 1–14. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Xing, W.; Li, R.; Yang, T.; Yao, N.; Lv, D. Links between synergistic effects and microbial community characteristics of anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresour. Technol. 2021, 329, 124919. [Google Scholar] [CrossRef]
- Li, L.H.; He, S.B.; Sun, Y.M.; Kang, X.H.; Jiang, J.F.; Yuan, Z.H.; Liu, D.F. Anaerobic co-digestion of Pennisetum hybrid and pig manure: A comparative study of performance and microbial community at different mixture ratio and organic loading rate. Chemosphere 2020, 247, 125871. [Google Scholar] [CrossRef]
- Xu, R.-Z.; Fang, S.; Zhang, L.; Huang, W.; Shao, Q.; Fang, F.; Feng, Q.; Cao, J.; Luo, J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. Bioresour. Technol. 2021, 341, 125823. [Google Scholar] [CrossRef]
- Calabrò, P.; Catalán, E.; Folino, A.; Sánchez, A.; Komilis, D. Effect of three pretreatment techniques on the chemical composition and on the methane yields of Opuntia ficus-indica (prickly pear) biomass. Waste Manag. Res. 2017, 36, 17–29. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresour. Technol. 2020, 321, 124427. [Google Scholar] [CrossRef]
- Ríos-González, L.J.; Medina-Morales, M.A.; A Rodriguez-De la Garza, J.; Romero-Galarza, A.; Medina, D.D.; Morales-Martínez, T.K. Comparison of dilute acid pretreatment of agave assisted by microwave versus ultrasound to enhance enzymatic hydrolysis. Bioresour. Technol. 2020, 319, 124099. [Google Scholar] [CrossRef]
- Abraham, A.; Mathew, A.K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J.H.; Sang, B.-I. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De León, L.R.; Diez, P.Q.; Gálvez, L.T.; Perea, L.A.; Barragán, C.L.; Rodríguez, C.G.; León, A.R. Biochemical methane potential of water hyacinth and the organic fraction of municipal solid waste using leachate from Mexico City’s Bordo Poniente composting plant as inoculum. Fuel 2020, 285, 119132. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Lee, C. Anaerobic co-digestion of food waste, human feces, and toilet paper: Methane potential and synergistic effect. Fuel 2019, 248, 189–195. [Google Scholar] [CrossRef]
- Okewale, A.O.; Adesina, O.A. Evaluation of biogas production from co-digestion of pig dung, water hyacinth and poultry droppings. Waste Dispos. Sustain. Energy 2019, 1, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Siddique, N.I.; Wahid, Z.A. Achievements and perspectives of anaerobic co-digestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Ebner, J.H.; Labatut, R.A.; Lodge, J.S.; Williamson, A.A.; Trabold, T.A. Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects. Waste Manag. 2016, 52, 286–294. [Google Scholar] [CrossRef]
- Guo, Z.; Usman, M.; Alsareii, S.A.; Harraz, F.A.; Al-Assiri, M.; Jalalah, M.; Li, X.; Salama, E.-S. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. Bioresour. Technol. 2021, 337, 125383. [Google Scholar] [CrossRef]
- Nkuna, R.; Roopnarain, A.; Rashama, C.; Adeleke, R. Insights into organic loading rates of anaerobic digestion for biogas production: A review. Crit. Rev. Biotechnol. 2021, 42, 487–507. [Google Scholar] [CrossRef]
- Ünyay, H.; Yılmaz, F.; Başar, I.A.; Perendeci, N.A.; Çoban, I.; Şahinkaya, E. Effects of organic loading rate on methane production from switchgrass in batch and semi-continuous stirred tank reactor system. Biomass-Bioenergy 2021, 156, 106306. [Google Scholar] [CrossRef]
- Miramontes-Martínez, L.R.; Rivas-García, P.; Albalate-Ramírez, A.; Botello-Álvarez, J.E.; Escamilla-Alvarado, C.; Gomez-Gonzalez, R.; Alcalá-Rodríguez, M.M.; Valencia-Vázquez, R.; Santos-López, I.A. Anaerobic co-digestion of fruit and vegetable waste: Synergy and process stability analysis. J. Air Waste Manag. Assoc. 2021, 71, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Inayat, A.; Ahmed, S.F.; Djavanroodi, F.; Al-Ali, F.; Alsallani, M.; Mangoosh, S. Process Simulation and Optimization of Anaerobic Co-Digestion. Front. Energy Res. 2021, 9, 764463. [Google Scholar] [CrossRef]
- Qi, N.; Zhao, X.; Zhang, L.; Gao, M.; Yu, N.; Liu, Y. Performance assessment on anaerobic co-digestion of Cannabis ruderalis and blackwater: Ultrasonic pretreatment and kinetic analysis. Resour. Conserv. Recycl. 2021, 169, 105506. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibro, M.K.; Ancha, V.R.; Lemma, D.B. Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review. Sustainability 2022, 14, 9387. https://doi.org/10.3390/su14159387
Ibro MK, Ancha VR, Lemma DB. Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review. Sustainability. 2022; 14(15):9387. https://doi.org/10.3390/su14159387
Chicago/Turabian StyleIbro, Mohammed Kelif, Venkata Ramayya Ancha, and Dejene Beyene Lemma. 2022. "Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review" Sustainability 14, no. 15: 9387. https://doi.org/10.3390/su14159387