Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh
Abstract
:1. Introduction
2. Evidence of Impact of Extension on Development Outcomes and Fertilizer Application
3. Methodology
4. Data and Summary of Statistics
4.1. Data
4.2. Summary of Statistics
5. Results
5.1. Fertilizer Use
5.2. Yield and Profit
5.3. Robustness Check with PSM
6. Discussion and Conclusions
6.1. Summary
6.2. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Ext. Receiver vs. No Ext. | More than One vs. No Ext. | Govt. Ext. vs. No Ext. |
---|---|---|---|
Per ha Yield (Participation = 1) | |||
Household head’s age | −0.00354 | −0.00705 | −0.00545 |
Household head’s gender | −3.150 *** | −6.774 *** | −3.645 *** |
Household head’s education | 0.0184 | −0.112 *** | −0.00102 |
Agriculture as the main occupation | 0.268 | 0.848 ** | 0.211 |
Rice area | −0.00334 * | −0.00682 *** | −0.00107 |
Access to credit | 0.250 * | −0.288 * | 0.297 ** |
Own irrigation | 0.347 ** | −0.328 * | |
Labor hours | 0.000437 *** | 0.000214 * | 0.000516 *** |
Improved variety | 0.870 *** | 1.040 *** | 1.091 *** |
Having livestock | −0.22 | −0.153 | −0.254 |
Constant | 4.597 *** | 13.29 *** | 5.221 *** |
Per ha Yield (Participation = 0) | 37.89 | −244.7 | |
Household head’s age | −0.00868 *** | −0.00912 *** | −0.00857 *** |
Household head’s gender | 0.816 *** | 0.736 *** | 0.792 *** |
Household head’s education | 0.0514 *** | 0.0519 *** | 0.0482 *** |
Agriculture as the main occupation | 0.147 | 0.190 * | 0.152 |
Rice area | −0.00149 * | −0.00160 ** | −0.00158 ** |
Access to credit | −0.117 ** | −0.129 *** | −0.121 ** |
Own irrigation | 0.389 *** | 0.383 *** | |
Labor hours | 0.000476 *** | 0.000457 *** | 0.000485 *** |
Improved variety | 0.840 *** | 0.861 *** | 0.845 *** |
Having livestock | 0.11 | 0.0978 | 0.0816 |
Constant | 2.073 *** | 2.101 *** | 2.132 *** |
Participation in extension services | |||
Household head’s age | 0.00779 *** | 0.00760 *** | 0.00809 *** |
Household head’s gender | 1.425 *** | 1.420 *** | 1.272 *** |
Household head’s education | 0.0503 *** | 0.0661 *** | 0.0469 *** |
Agriculture as the main occupation | −0.226 ** | −0.230 ** | −0.188 * |
Rice area | 0.00143 ** | 0.00167 ** | 0.00142 ** |
Access to credit | 0.147 *** | 0.154 *** | 0.0823 * |
Own irrigation | 0.274 *** | 0.325 *** | |
Labor hours | 0.000170 *** | 0.000149 *** | 0.000157 *** |
Improved variety | −0.138 *** | −0.0359 | −0.296 *** |
Having livestock | −0.0999 | −0.141 * | −0.136 * |
Mobile phone | 0.0958 *** | −0.00782 | 0.0838 *** |
Distance to market | 0.421 *** | 0.295 ** | 0.400 ** |
Constant | −3.492 *** | −3.577 *** | −3.235 *** |
Rho 1 | 0.52 ** | −0.97 *** | 0.34 |
Rho 2 | 0.69 *** | 0.59 *** | 0.78 *** |
Observations | 6564 | 6315 | 6440 |
Prob > chi2 | 0.00 | 0.00 | 0.00 |
Variables | Ext. Receiver vs. No Ext. | More than One vs. No Ext. | Govt. Ext. vs. No Ext. | Private Ext. vs. No Ext. |
---|---|---|---|---|
Per ha net profit (Participation = 1) | ||||
Household head’s age | −108.7 | 82.84 | −87.84 | −2903 *** |
Household head’s gender | −48,188 *** | −50,558 ** | ||
Household head’s education | −227.6 | −567.2 | −311.9 | |
Agriculture as the main occupation | 8387 | 14,309 ** | 10,888 | 10,382 |
Rice area | −47.99 | −71.16 * | 3.217 | −320.5 *** |
Access to credit | 1680 | −3976 | 4603 * | −13,039 *** |
Own irrigation | −636.8 | −6001 | −4038 | 16,113 *** |
Labor hours | −10.53 *** | −9.094 *** | −9.435 *** | −18.41 *** |
Improved variety | 9030 *** | 10,250 *** | 15,122 *** | −25,028 ** |
Having livestock | 1900 | 4331 | 3907 | −283.0 * |
Constant | 70,032 *** | 21,061 | 57,647 * | 215,016 *** |
Per ha net profit (Participation = 0) | −3806 | −4023 | −167.2 | |
Household head’s age | −230.0 *** | −198.6 *** | −230.1 *** | 130.6 |
Household head’s gender | 15,718 *** | 16,250 *** | ||
Household head’s education | 187.3 * | 181.2 | 221.9 ** | |
Agriculture as the main occupation | 10,203 *** | 11,090 *** | 9819 *** | 11,100 *** |
Rice area | −22.67 * | −16.7 | −28.27 ** | −18.19 |
Access to credit | −2242 *** | −1694 ** | −2177 *** | −2276 *** |
Own irrigation | 949.5 | 977.6 | 1442 | 2515 ** |
Labor hours | −4.742 *** | −4.646 *** | −4.584 *** | −4.256 *** |
Improved variety | 8355 *** | 8972 *** | 8089 *** | 2833 * |
Having livestock | 1991 | 2098 | 1523 | −243.6 *** |
Constant | 12,885 *** | 25,003 *** | 13,337 *** | 34,546 *** |
Participation in extension services | ||||
Household head’s age | 0.00745 *** | 0.00864 *** | 0.00744 *** | 0.0478 *** |
Household head’s gender | 1.402 *** | 1.236 *** | ||
Household head’s education | 0.0486 *** | 0.0643 *** | 0.0428 *** | |
Agriculture as the main occupation | −0.256 ** | −0.202 * | −0.214 * | −0.279 |
Rice area | 0.00132 ** | 0.00156 ** | 0.00104 | 0.000326 |
Access to credit | 0.173 *** | 0.203 *** | 0.102 ** | 0.264 *** |
Own irrigation | 0.324 *** | 0.365 *** | 0.406 *** | −0.081 |
Labor hours | 0.000123 *** | 0.000106 *** | 9.35 × 10−5 *** | 0.000144 *** |
Improved variety | −0.0790 ** | 0.0124 | −0.202 *** | 0.316 ** |
Having livestock | −0.0749 | −0.0974 | −0.134 * | 0.00346 |
Mobile phone | 0.0896 *** | 0.0229 | 0.0951 *** | 0.0666 ** |
Distance to market | 0.540 *** | 0.391 ** | 0.501 *** | 0.0618 |
Constant | −3.615 *** | −2.430 *** | −3.345 *** | −2.821 *** |
Rho 1 | 0.12 | 0.03 | 0.14 | −1.87 *** |
Rho 2 | −0.04 | −0.03 | −0.01 | −0.02 |
Observations | 6564 | 6315 | 6440 | 6564 |
Prob > chi2 | 0.00 | 0.00 | 0.00 | 0.00 |
Appendix B
Instrumental Validity Test
Parameter Estimate | Got Ext. Service or Not | Per ha Yield | Per ha Urea Use |
---|---|---|---|
Distance to bazar | 0.066 ** (0.02) | −0.04 (0.03) | −2.54 (2.39) |
Constant | −0.98 *** (0.02) | 3.52 *** (0.02) | 173.72 *** (2.01) |
Wild test | Chi2 = 5.9 | F = 1.58 | F = 1.13 |
Observations | 6965 | 6965 | 6965 |
Parameter Estimate | Got Ext. Service or Not | Per ha Yield | Per ha Net Profit | Per ha Urea Use |
---|---|---|---|---|
Mobile phone use | 0.59 *** (0.15) | 0.11 (0.13) | −1622 (2197) | −7.48 (9.85) |
Constant | −1.5 *** (0.14) | 3.39 *** (0.13) | 23,065 *** (2169) | 179.9 *** (9.73) |
Wild test | Chi2 = 18.22 *** | F = 0.76 | F = 0.54 | F = 0.17 |
Observations | 6599 | 6599 | 6599 | 6599 |
Appendix C
Appendix C.1. Propensity Score Matching
Appendix C.2. Fertilizer Use
Name of Fertilizer | Fertilizer Use (PSM) | |||
---|---|---|---|---|
Extension Contacts | More than One Contact | Govt. Ext. Service | Private Ext. Service | |
Urea | 10.7 ** | −4.63 | 11.54 | −10.26 |
Appendix C.3. Yield and Income
PSM | ||||
---|---|---|---|---|
Extension Contacts | More than One Contact | Govt. Ext. Service | Private Ext. Service | |
Per hectare yield | 0.33 ** | −0.05 | 0.25 ** | 0.52 ** |
Field level profit | 3432 ** | 2366 | 2349 | 8543 *** |
References
- Owens, T.; Hoddinott, J.; Kinsey, B. The Impact of Agricultural Extension on Farm Production in Resettlement Areas of Zimbabwe. Econ. Dev. Cult. Change 2003, 51, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Birkhaeuser, D.; Evenson, R.E.; Feder, G. The Economic Impact of Agricultural Extension: A Review. Econ. Dev. Cult. Change 1991, 39, 607–650. [Google Scholar] [CrossRef]
- Feder, G.; Murgai, R.; Quizon, J.B. The Acquisition and Diffusion of Knowledge: The Case of Pest Management Training in Farmer Field Schools, Indonesia. J. Agric. Econ. 2004, 55, 221–243. [Google Scholar] [CrossRef]
- Anang, B.T.; Bäckman, S.; Sipiläinen, T. Adoption and income effects of agricultural extension in northern Ghana. Sci. Afr. 2019, 7, e00219. [Google Scholar] [CrossRef]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of Agricultural Innovations in Developing Countries: A Survey. Econ. Dev. Cult. Change 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Danso-Abbeam, G.; Ehiakpor, D.S.; Aidoo, R. Agricultural extension and its effects on farm productivity and income: Insight from Northern Ghana. Agric. Food Secur. 2018, 7, 74. [Google Scholar] [CrossRef]
- Dercon, S.; Gilligan, D.O.; Hoddinott, J.; Woldehanna, T. The Impact of Agricultural Extension and Roads on Poverty and Consumption Growth in Fifteen Ethiopian Villages. Am. J. Agric. Econ. 2009, 91, 1007–1021. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Smith, S.C.; Sulaiman, M. Agricultural Extension and Technology Adoption for Food Security: Evidence from Uganda. Am. J. Agric. Econ. 2018, 100, 1012–1031. [Google Scholar] [CrossRef] [Green Version]
- Elias, A.; Nohmi, M.; Yasunobu, K.; Ishida, A. Effect of Agricultural Extension Program on Smallholders’ Farm Productivity: Evidence from Three Peasant Associations in the Highlands of Ethiopia. J. Agric. Sci. 2013, 5, p163. [Google Scholar] [CrossRef] [Green Version]
- Hasan, F.; Otsuki, T. Impact of Agricultural Extension on Productivity: Econometric Analysis Using Household Data in India. In Proceedings of the 7th International Conference of Asian Society of Agricultural Economists, Hanoi, Vietnum, 13–15 October 2011. [Google Scholar]
- Anderson, J.R.; Feder, G. Agricultural extension: Good intentions and hard realities. World Bank Res. Obs. 2004, 19, 41–60. [Google Scholar] [CrossRef]
- Dinar, A.; Karagiannis, G.; Tzouvelekas, V. Evaluating the impact of agricultural extension on farms’ performance in Crete: A nonneutral stochastic frontier approach. Agric. Econ. 2007, 36, 135–146. [Google Scholar] [CrossRef]
- Akobundu, E.; Alwang, J.; Essel, A.; Norton, G.W.; Tegene, A. Does Extension Work? Impacts of a Program to Assist Limited-Resource Farmers in Virginia. Rev. Agric. Econ. 2004, 26, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Lyne, M.C.; Jonas, N.; Ortmann, G.F. A quantitative assessment of an outsourced agricultural extension service in the Umzimkhulu District of KwaZulu-Natal, South Africa. J. Agric. Educ. Ext. 2018, 24, 51–64. [Google Scholar] [CrossRef]
- Emmanuel, D.; Owusu-Sekyere, E.; Owusu, V.; Jordaan, H. Impact of agricultural extension service on adoption of chemical fertilizer: Implications for rice productivity and development in Ghana. NJAS Wagening. J. Life Sci. 2016, 79, 41–49. [Google Scholar] [CrossRef]
- Ragasa, C.; Mazunda, J. The impact of agricultural extension services in the context of a heavily subsidized input system: The case of Malawi. World Dev. 2018, 105, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Beshir, H.; Emana, B.; Kassa, B.; Haji, J. Determinants of chemical fertilizer technology adoption in North eastern highlands of Ethiopia: The double hurdle approach. J. Res. Econ. Int. Financ. 2012, 1, 39–49. [Google Scholar]
- Fufa, B.; Hassan, R.M. Determinants of fertilizer use on maize in Eastern Ethiopia: A weighted endogenous sampling analysis of the extent and intensity of adoption. Agrekon 2006, 45, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.K.; Hossain, M.E. Do Farmers use Overdose Chemical Fertilizer in Agriculture? Empirical Evidence from Northern Bangladesh. Rajshahi Univ. J. Soc. Sci. Bus. Stud. 2021, 25, 63–75. [Google Scholar]
- Nkamleu, G.; Adesina, A. Determinants of chemical input use in peri-urban lowland systems: Bivariate probit analysis in Cameroon. Agric. Syst. 2000, 63, 111–121. [Google Scholar] [CrossRef]
- Abate, G.T.; Francesconi, G.N.; Getnet, K. Impact of agricultural cooperatives on smallholders’ technical efficiency: Empirical evidence from ethiopia. Ann. Public Coop. Econ. 2014, 85, 257–286. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Zhang, H.; Lu, W.; Liu, H. Differentiation, imperfect information and farm households’ fertilizer overuse. J. Agrotech. Econ. 2016, 2, 14–22. [Google Scholar]
- Qiu, H.; Luan, H.; Li, J.; Wang, Y. Impacts of risk aversion on farmer households’ behaviour of overusing chemical fertilizers’. Chin. Rural. Econ. 2014, 3, 85–96. [Google Scholar]
- Sun, Y.; Hu, R.; Zhang, C. Does the adoption of complex fertilizers contribute to fertilizer overuse? Evidence from rice production in China. J. Clean. Prod. 2019, 219, 677–685. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Zikria, R.; Damayanti, A. Impact of agricultural extension and risk preference on fertilizer overuse in rice farming. J. Agro Ekon. 2019, 37, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ge, Y. Excessive application of fertilizer, agricultural non-point source pollution, and farmers’ policy choice’. Sustainability 2019, 11, 1165. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Cao, J.; Huang, J.; Peng, S.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Buresh, R.J. Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Agric. Syst. 2007, 94, 331–340. [Google Scholar] [CrossRef]
- Lan, L.; Yang, L. Analysis and Reflect on the Problem about Ageing Labor Engaged in Agricultural Production: Based on the Second National Agricultural Census Statistics in China. Issues Agric. Econ. 2009, 6, 61–66. [Google Scholar]
- Xue, C.; Zhang, T.; Yao, S.; Guo, Y. Effects of Households’ Fertilization Knowledge and Technologies on Over-Fertilization: A Case Study of Grape Growers in Shaanxi, China. Land 2020, 9, 321. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China’. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, K.M.A.; Zhang, D. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Norse, D.; Sun, B. Policy for Reducing Non-Point Pollution from Crop Production in China; China Environmental Science Press: Beijing, China, 2006; pp. 135–161. [Google Scholar]
- Golicz, K.; Hallett, S.H.; Sakrabani, R. Old problem, the Millennial solution: Using mobile technology to inform decision making for sustainable fertilizer management. Curr. Opin. Environ. Sustain. 2021, 49, 26–32. [Google Scholar] [CrossRef]
- Judd, M.A.; Boyce, J.K.; Evenson, R.E. Investment in Agricultural Research and Extension. In Policy for Agricultural Research; CRC Press: Boca Raton, FL, USA, 2019; pp. 7–38. [Google Scholar] [CrossRef]
- Kuteesa, A.; Kisaame, K.E.; Barungi, J. Public Expenditure Governance in Uganda’s Agricultural Extension System; Advocates Coalition for Development and Environment: Kampala, Uganda, 2018. [Google Scholar]
- Lukhalo, T. An Expenditure Review of the Agricultural Extension System in South Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2017. [Google Scholar]
- Muyanga, M.; Jayne, T.S. Agricultural Extension in Kenya: Practice and Policy Lessons; Michigan State University, Department of Agricultural, Food, and Resource Economics: East Lansing, MI, USA, 2006. [Google Scholar]
- Uddin, M.N. Agricultural Extension Services In Bangladesh: A Review Study. Bull. Inst. Tocational Tech. Educ. 2008, 5, 119–130. [Google Scholar]
- Karim, M.R.; Noman, M.R.A.F. Effectiveness of Agricultural Extension System in the Implementation of Relevant Policies of Bangladesh. In Bangladesh: Economic, Political and Social Issues; Nova Science Publishers, Inc.: New York, NY, USA, 2018. [Google Scholar]
- World Bank. The World Bank in Bangladesh; World Bank Office: Dhaka, Bangladesh, 2020. [Google Scholar]
- DAE 2021a, Department of Agriculture Extension. Background. Available online: http://www.dae.gov.bd/site/page/545aac27-134b-49ee-aa31-3eb9a5aed928/- (accessed on 27 July 2021).
- DAE 2021b, Field Service Wing. Available online: http://www.dae.gov.bd/site/page/7821c789-6cb4-46a9-9a57-e2af3d7880aa/- (accessed on 24 July 2021).
- Cawley, A.; O’Donoghue, C.; Heanue, K.; Hilliard, R.; Sheehan, M. The Impact of Extension Services on Farm-level Income: An Instrumental Variable Approach to Combat Endogeneity Concerns. Appl. Econ. Perspect. Policy 2018, 40, 585–612. [Google Scholar] [CrossRef]
- Davis, K.; Nkonya, E.; Kato, E.; Mekonnen, D.; Odendo, M.; Miiro, R.; Nkuba, J. Impact of Farmer Field Schools on Agricultural Productivity and Poverty in East Africa. World Dev. 2012, 40, 402–413. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, C.; Hennessy, T. Policy and economic change in the agri-food sector in Ireland. Econ. Soc. Rev. 2015, 46, 315–337. [Google Scholar]
- Wossen, T.; Abdoulaye, T.; Alene, A.; Haile, M.G.; Feleke, S.; Olanrewaju, A.; Manyong, V. Impacts of extension access and cooperative membership on technology adoption and household welfare. J. Rural Stud. 2017, 54, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Kumar, A.; Joshi, P.K.; D’souza, A. Production risks, risk preference and contract farming: Impact on food security in India. Appl. Econ. Perspect. Policy 2018, 40, 353–378. [Google Scholar] [CrossRef]
- Cao, Y.; Swallow, B.; Qiu, F. Identifying the effects of a land-use policy on willingness to pay for open space using an endogenous switching regression model. Land Use Policy 2021, 102, 105183. [Google Scholar] [CrossRef]
- Akpalu, W.; Normanyo, A.K. Illegal fishing and catch potentials among small-scale fishers: Application of an endogenous Switching regression model. Environ. Dev. Econ. 2013, 19, 156–172. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, S.; Shiferaw, B.; Simtowe, F.; Lipper, L. Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia. Food Policy 2012, 37, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Fitawek, W.; Hendriks, S.L. Evaluating the Impact of Large-Scale Agricultural Investments on Household Food Security Using an Endogenous Switching Regression Model. Land 2021, 10, 323. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Wang, J. Farmers’ Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China. Am. J. Agric. Econ. 2014, 97, 602–617. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum Likelihood Estimation of Endogenous Switching Regression Models. Stata J. Promot. Commun. Stat. Stata 2004, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Abdulai, A. Does cooperative membership improve household welfare? Evidence from apple farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
- Maddala, G.; Nelson, F. Switching Regression Models with Exogenous and Endogenous Regimes. Proceedindgs Am. Stat. Assoc. 1975, Vol 5, 423–425. [Google Scholar]
- Feder, G.; Birner, R.; Anderson, J.R. The private sector’s role in agricultural extension systems: Potential and limitations. J. Agribus. Dev. Emerg. Econ. 2011, 1, 31–54. [Google Scholar] [CrossRef]
- Davis, K. Outsourcing Agricultural Advisory Services: Enhancing Rural Innovation in Sub-Saharan Africa. J. Agric. Educ. Ext. 2012, 18, 303. [Google Scholar] [CrossRef]
- Saravanan, R. ICTs for Agricultural Extension: Global Experiments, Innovations and Experiences; New India publishing: Delhi, India, 2010. [Google Scholar]
- Yadav, S.N.; Peterson, W.; Easter, K.W. Do farmers overuse nitrogen fertilizer to the detriment of the environment? Environ. Resour. Econ. 1997, 9, 323–340. [Google Scholar] [CrossRef]
- Khandker, S.B.; Koolwal, G.; Samad, H. Handbook on Impact Evaluation: Quantitative Methods and Practices; The World Bank Publications: Washington, DC, USA, 2009. [Google Scholar]
- Dehejia, R.; Wahba, S. Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Ichino, A.; Mealli, F.; Nannicini, T. From temporary help jobs to permanent employment: What can we learn from matching estimators and their sensitivity? J. Appl. Econ. 2008, 23, 305–327. [Google Scholar] [CrossRef] [Green Version]
- Imbens, G.W. Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review. Rev. Econ. Stat. 2004, 86, 4–29. [Google Scholar] [CrossRef]
- Robins, J.; Sued, M.; Lei-Gomez, Q.; Rotnitzky, A. Comment: Performance of Double-Robust Estimators When “Inverse Probability” Weights Are Highly Variable. Stat. Sci. 2007, 22, 544–559. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Inverse probability weighted estimation for general missing data problems. J. Econom. 2007, 141, 1281–1301. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
Item | Ext. Service Receiver vs. No Ext. | More than One Ext. Contact vs. No Ext. | Govt. Ext. Service Receiver vs. No Ext. | Private Ext. Service Receiver vs. No Ext. | |||||
---|---|---|---|---|---|---|---|---|---|
Ext. | No-ext | t-Test | More One | t-Test | Govt. | t-Test | Receiver | t-Test | |
Mean | Mean | Mean | Mean | Mean | |||||
Yield/ha (MT) | 3.40 | 3.22 | −0.17 *** | 3.44 | −0.21 *** | 3.3 | −0.07 | 3.58 | −0.36 ** |
Per ha net profit (BDT) | 28,585 | 27,753 | −832 | 29,770 | −2028 * | 28,417 | −666 | 28,294 | −540 |
Per ha Urea use (kg) | 116.32 | 116.53 | 0.21 | 113 | 3 | 110 | 6.02 | 126 | −10 |
Land area (decimal) | 29.24 | 27.82 | −1.42 * | 29.47 | −1.6 * | 29.23 | −1.3 | 32.25 | −4.4 * |
Household head’s age (years) | 49.33 | 47.46 | −1.87 *** | 49.3 | −1.8 *** | 49.58 | −2.12 *** | 46.77 | 0.69 |
Education of the farmer | 5.14 | 3.57 | −1.57 *** | 5.5 | −2 *** | 5.04 | −1.46 *** | 4.29 | −0.71 * |
Household head’s gender | 0.99 | 0.94 | −0.04 *** | 0.99 | −0.04 *** | 0.99 | −0.04 *** | 1 | −0.05 *** |
Agriculture as the main occupation | 0.33 | 0.28 | −0.04 *** | 0.33 | −0.5 *** | 0.38 | −0.09 *** | 0.13 | 0.14 *** |
Own irrigation | 0.14 | 0.08 | −0.06 *** | 0.16 | −0.07 *** | 0.15 | −0.07 *** | 0.10 | 0.02 |
Labor hours (per hectare) | 585 | 563 | −22 | 576 | −13 | 547 | 19 | 765 | 203 *** |
Having livestock | 0.92 | 0.92 | 0.00 | 0.92 | 0.01 | 0.91 | 0.01 | 0.93 | 0.00 |
Improved variety | 0.89 | 0.88 | −0.006 | 0.93 | −0.05 ** | 0.83 | 0.05 ** | 0.67 | 0.21 *** |
Access to credit | 0.80 | 0.76 | −0.03 *** | 0.8 | −0.03 ** | 0.8 | −0.03 *** | 0.85 | −0.08 ** |
Mobile phone | 0.99 | 0.97 | 0.02 *** | 0.98 | 0.017 ** | 0.99 | −0.01 ** | 0.98 | 0.01 |
Distance to market (km) | 0.60 | 0.61 | 0.009 | 0.58 | 0.03 | 0.61 | 0.00 | 0.53 | 0.07 |
No of observations | 1209 | 5794 | 925 | 898 | 164 |
Variables | Ext. Receiver vs. No Ext. | More than One vs. No Ext. | Govt. ext. vs. No Ext. | Private ext. vs. No Ext. |
---|---|---|---|---|
Per ha Urea Use (Participation = 1) | ||||
Household head’s age | 1.694 *** | 1.560 *** | 1.955 *** | 1.756 *** |
Household head’s gender | −112.2 | −205.4 *** | ||
Household head’s education | −1.681 | −1.757 | −0.558 | 2.155 |
Agriculture as the main occupation | 44.27 * | 50.22 ** | 27.64 | 80.94 * |
Rice area | −0.720 *** | −0.683 *** | −0.789 *** | −0.803 *** |
Access to credit | 21.95 ** | 37.59 *** | 13.74 | 89.29 *** |
Own irrigation | 21.84 * | 36.99 *** | 8.033 | |
Labor hours | 0.0223 *** | 0.0267 *** | 0.0245 ** | 0.0387 *** |
Improved variety | 52.66 *** | 44.41 *** | 66.85 *** | |
Having livestock | −19.83 | −22.20 * | −4.588 | −28.8 |
Constant | −15 | −12.96 | −17.96 | −37.61 |
Per ha Urea use (Participation = 0) | ||||
Household head’s age | −0.953 *** | −0.900 *** | −0.864 *** | −0.403 *** |
Household head’s gender | 1.847 | 9.61 | ||
Household head’s education | −3.011 *** | −3.369 *** | −2.542 *** | 0.314 |
Agriculture as the main occupation | 2.883 | 0.5 | 1.448 | 5.884 |
Rice area | −0.596 *** | −0.584 *** | −0.565 *** | −0.561 *** |
Access to credit | −0.0626 | −0.0612 | −0.0603 | −0.0535 |
Own irrigation | −15.91 *** | −15.39 *** | −11.55 *** | −7.180 ** |
Labor hours | −3.903 | −3.826 | −3.787 | −3.336 |
Improved variety | 5.412 | 5.262 | 1.575 | |
Having livestock | −5.812 | −5.691 | −5.614 | |
Constant | 147.0 *** | 146.0 *** | 137.0 *** | 165.2 *** |
Participation in extension services | ||||
Household head’s age | 0.00595 *** | 0.00578 *** | 0.00591 *** | 0.00286 |
Household head’s gender | 0.431 *** | 0.371 ** | ||
Household head’s education | 0.0303 *** | 0.0401 *** | 0.0239 *** | 0.0474 *** |
Agriculture as the main occupation | −0.188 ** | −0.164 * | −0.139 | −0.228 |
Rice area | 0.00309 *** | 0.00324 *** | 0.00339 *** | 0.00042 |
Access to credit | 0.172 *** | 0.200 *** | 0.121 *** | 0.265 *** |
Own irrigation | 0.191 *** | 0.213 *** | 0.226 *** | |
Labor hours | −0.000132 *** | −0.000167 *** | −0.000190 *** | 0.000136 *** |
Improved variety | −0.0867 *** | −0.0521 * | −0.173 *** | |
Having livestock | 0.00994 | 0.0067 | −0.0179 | 0.218 * |
Mobile phone | 0.0750 *** | 0.0561 *** | 0.0603 *** | 0.0705 * |
Distance to market | 0.144 | 0.1 | 0.235 ** | |
Constant | −1.881 *** | −1.958 *** | −1.509 *** | −2.652 *** |
Rho 1 | −0.01 | −0.04 | −0.07 | 1.11 *** |
Rho 2 | −2.1 *** | −2.1 *** | −2.3 *** | 0.02 |
Observations | 6564 | 6315 | 6440 | 6564 |
Prob > chi2 | 0.00 | 0.00 | 0.00 | 0.00 |
Name of Fertilizer | Fertilizer Use (ESR)(Observed Treatment Effect) | |||||||
---|---|---|---|---|---|---|---|---|
Extension Contact | More than One Contact | Govt. Ext. Service | Private Ext. Service | |||||
Per hectare Urea | ||||||||
176.71 | 180.81 | 174.37 | 180.81 | 179.16 | 179.94 | 172.36 | 172.32 | |
=−4.09 *** | =−6.44 *** | =−0.78 | =0.037 |
ESR (Observed Treatment Effect) | ||||||
---|---|---|---|---|---|---|
Extension Contact | More than One Contact | Govt. Ext. Service | ||||
Per hectare yield | ||||||
3.65 | 3.47 | 3.75 | 3.47 | 3.49 | 3.48 | |
=0.18 *** | =0.28 *** | =0.01 |
ESR (Observed Treatment Effect) | ||||||||
---|---|---|---|---|---|---|---|---|
Extension Contacts | More than One Contact | Govt. Ext. Service | Private Ext. Service | |||||
Net farm profit | ||||||||
20,951 | 21,601 | 22,980 | 21,596 | 18,885 | 21,729 | 26,330 | 21,229 | |
=−650 ** | =1383 *** | =−2843 *** | =5101 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Connor, J.D. Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh. Sustainability 2022, 14, 9385. https://doi.org/10.3390/su14159385
Rahman MM, Connor JD. Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh. Sustainability. 2022; 14(15):9385. https://doi.org/10.3390/su14159385
Chicago/Turabian StyleRahman, Mohammad Mahbubur, and Jeffry D. Connor. 2022. "Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh" Sustainability 14, no. 15: 9385. https://doi.org/10.3390/su14159385
APA StyleRahman, M. M., & Connor, J. D. (2022). Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh. Sustainability, 14(15), 9385. https://doi.org/10.3390/su14159385