# Research on Extension Design of Emergency Cold Chain Logistics from the Perspective of Carbon Constraints

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

## 3. Background and Method

#### 3.1. Insufficient Informatization

#### 3.2. Insufficient Professionalism

#### 3.3. Lack of Storage and Distribution Infrastructure

#### 3.4. Last-Mile Logistics Problem

#### 3.5. Method

## 4. Results and Discussion

_{1}information interaction to MI

_{4}contactless delivery.

#### 4.1. MI_{1} Information Interaction

#### 4.2. MI_{2} Professionalization

#### 4.3. MI_{3} Optimizing Transit Efficiency

#### 4.4. MI_{4} Contactless Delivery

#### 4.5. Superiority Evaluation

_{1}MI

_{2}MI

_{2}MI

_{4}are respectively ${\beta}_{1}=0.3$ ${\beta}_{2}=0.2$ ${\beta}_{3}=0.2$ ${\beta}_{4}=0.3$. After normalizing the correlation degree of each scheme, the corresponding superiority degree of each scheme can be calculated according to model (10), the normative correlation degree and carbon emission of measures are reported in Table 1.

^{2}cold storage that can hold 30 t goods consumes 34.5 kWh of electricity per day, while the temporary cold storage needs to consume more electricity to ensure the refrigeration temperature due to its poor insulation capacity and refrigeration efficiency. Therefore, assuming that the daily electricity consumption is 1.5 times that of the standard cold storage, that is 51.75 kwh. The carbon emission per kWh is 0.785 kg, and the carbon emission of daily refrigeration electricity of the cold storage ${c}_{3121}=40.62\text{}\mathrm{kg}$. In measure ⑥, the daily supply of fresh products is $g=9\text{}\mathrm{t}$. One plastic bag can hold 1.5 kg of fresh products and produce about 0.1 g carbon emission. In this case, the carbon emission produced by using plastic vacuum packaging every day is ${c}_{41}=0.6\text{}\mathrm{kg}$; There are 24 residential apartments in total. Each delivery robot can complete the transportation of fresh food in one residential apartment in one day. In one distribution cycle, it needs to complete the distribution of at least eight residential apartments every day, so it needs eight delivery robots. Taking the power of a delivery robot of a brand as an example, its battery capacity is 20 Ah and the voltage is 29.4 V. If the energy loss in the charging process is not considered, it needs 0.588 kWh to be fully charged. The automatic distribution robot is charged once a day, and the daily charging of eight machines produces carbon emission ${c}_{42}\approx \text{}3.69\text{}\mathrm{kg}$.

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lehtveer, M.; Hedenus, F. Nuclear power as a climate mitigation strategy– technology and proliferation risk. J. Risk. Res.
**2015**, 18, 273–290. [Google Scholar] [CrossRef] [Green Version] - Zhou, L.; Wu, X.; Xu, Z.; Fujita, H. Emergency decision making for natural disasters: An overview. Int. J. Disast. Risk. Re.
**2018**, 27, 567–576. [Google Scholar] [CrossRef] - Zhou, D.; Fan, C.; Chen, A. Evolution mechanism and driving factors of unconventional emergencies in megacities: An empirical study based on 102 cases in the world. Nat. Hazards.
**2020**, 107, 513–530. [Google Scholar] [CrossRef] - Rong, L.; Tan, H. Emergency chain reaction model based on disaster pregnant environment. Sys. Engine.
**2012**, 30, 40–47. [Google Scholar] - Jiang, P.; Wang, Y.; Liu, C.; Hu, Y.; Xie, J. Evaluating Critical Factors Influencing the Reliability of Emergency Logistics Systems Using Multiple-Attribute Decision Making. Symmetry
**2020**, 12, 1115. [Google Scholar] [CrossRef] - Cai, W. Overview of Extenics. Syst. Eng.-Theory. Pract.
**1998**, 1, 77–85. [Google Scholar] - Cai, W.; Yang, C.Y. Basic theory and method system of Extenics. Chinese Sci. Bull.
**2013**, 58, 1190–1199. [Google Scholar] - Yang, C.Y.; Li, X.S. Research progress of extension innovation method and its application. Ind. Eng. J.
**2012**, 15, 131–137. [Google Scholar] - Thome, A.M.T.; Scavarda, L.F.; Scavarda, A.J. Conducting systematic literature review in operations management. Prod. Plan. Control
**2016**, 27, 408–420. [Google Scholar] [CrossRef] - Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Phys. Ther.
**2009**, 89, 873–880. [Google Scholar] [CrossRef] - Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg.
**2021**, 88, 105906. [Google Scholar] [CrossRef] [PubMed] - Anisya, T.; Mitsuko, M. Logistics training: Necessity or luxury? Educ. Emerg.
**2005**, 22, 60–61. [Google Scholar] - Manopiniwes, W.; Nagasawa, K.; Irohara, T. Humanitarian Relief Logistics with Time Restriction: Thai Flooding Case Study. Ind. Eng. Manage. Sys. Int. J.
**2014**, 13, 398–407. [Google Scholar] [CrossRef] [Green Version] - Ahmadi, M.; Seifi, A.; Tootooni, B. A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district. Transport Res. E-Log.
**2015**, 75, 145–163. [Google Scholar] [CrossRef] - Baharmand, H.; Comes, T.; Lauras, M. Bi-objective multi-layer location-allocation model for the immediate aftermath of sudden-onset disasters. Transport. Res. E-Log.
**2019**, 127, 86–110. [Google Scholar] [CrossRef] - Sun, Q.; Liu, S. Locating abrupt disaster emergency logistics centres using improved artificial bee colony (IABC) algorithm. Sci. Progress.
**2021**, 104, 368504211016205. [Google Scholar] [CrossRef] - Boonmee, C.; Arimura, M.; Asada, T. Facility location optimization model for emergency humanitarian logistics. Int. J. Disast. Risk Reduct.
**2017**, 24, 485–498. [Google Scholar] [CrossRef] - Tofighi, S.; Torabi, S.; Mansouri, S. Humanitarian Logistics Network Design under Mixed Uncertainty. Eur. J. Oper. Res.
**2016**, 250, 239–250. [Google Scholar] [CrossRef] [Green Version] - Haghi, M.; Ghomi, S.M.T.F.; Jolai, F. Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource. J. Clean. Prod.
**2017**, 154, 188–202. [Google Scholar] [CrossRef] - Sheu, J. An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transport Res. E-log.
**2007**, 43, 687–709. [Google Scholar] [CrossRef] - Li, L.; Tang, S. An Artificial Emergency Logistics-Planning System for Severe Disasters. IEEE Intell. Syst.
**2008**, 23, 86–88. [Google Scholar] [CrossRef] - Özdamar, L.; Ekinci, E.; Kuecuekyazici, B. Emergency Logistics Planning in Natural Disasters. An. Oper. Res.
**2004**, 129, 217–245. [Google Scholar] [CrossRef] - Yi, W.; Ozdamar, L. A dynamic logistics coordination model for evacuation and support in disaster response activities. Eur. J. Oper. Res.
**2005**, 179, 1177. [Google Scholar] [CrossRef] - Zhang, Y.; Liu, J. Emergency Logistics Scheduling Under Uncertain Transportation Time Using Online Optimization Methods. IEEE Access
**2021**, 9, 36995–37010. [Google Scholar] [CrossRef] - Feizollahi, S.; Shirmohammadi, A.; Kahreh, Z. Investigation the requirements of supply and distribution emergency logistics management and categorization its sub-criteria using AHP: A case study. Manage. Sci. Lett.
**2012**, 2, 2335. [Google Scholar] [CrossRef] - L’Hermitte, C.; Nair, N. A blockchain-enabled framework for sharing logistics resources during emergency operations. Disasters
**2020**, 45, 527–554. [Google Scholar] [CrossRef] - Jiang, Y.; Yuan, Y. Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges. Int. J. Environ. Res. Public Health
**2019**, 16, 779. [Google Scholar] [CrossRef] [Green Version] - Cozzolino, A. Humanitarian Logistics Cross-Sector Cooperation in Disaster Relief Management. Springer Briefs Bus.
**2010**, 43, 495. [Google Scholar] [CrossRef] [Green Version] - Guo, H.; Shao, M. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy. Asian Agric. Res.
**2012**, 4, 59. [Google Scholar] [CrossRef] - Zhang, H.; Qiu, B.; Zhang, K. A new risk assessment model for agricultural products cold chain logistics. Ind. Manage. Data Sys.
**2017**, 117, 1800–1816. [Google Scholar] [CrossRef] [Green Version] - Xiong, H. Research on Cold Chain Logistics Distribution Route Based on Ant Colony Optimization Algorithm. Discrete Dyn. Nat. Soc.
**2021**, 2021, 6623563. [Google Scholar] [CrossRef] - Yan, L.; Grifoll, M.; Zheng, P. Model and Algorithm of Two-Stage Distribution Location Routing with Hard Time Window for City Cold-Chain Logistics. Appl. Sci.
**2020**, 10, 2564. [Google Scholar] [CrossRef] [Green Version] - Theophilus, O.; Dulebenets, M.; Pasha, J.; Lau, Y.; Fathollahi-Fard, A.; Mazaheri, A. Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations. Comput. Ind. Eng.
**2021**, 156, 107240. [Google Scholar] [CrossRef] - Chen, Y. Intelligent algorithms for cold chain logistics distribution optimization based on big data cloud computing analysis. J. Cloud Comput.
**2020**, 9, 37. [Google Scholar] [CrossRef] - Liu, H.; Pretorius, L.; Jiang, D. Optimization of cold chain logistics distribution network terminal. EURASIP J. Wirel. Comm.
**2018**, 2018, 158. [Google Scholar] [CrossRef] - Ali, I.; Nagalingam, S.; Gurd, B. A resilience model for cold chain logistics of perishable products. Int. J. Logist. Manag.
**2018**, 29, 922–941. [Google Scholar] [CrossRef] - Yang, Y.; Ma, C.; Zhou, J.; Dong, S.; Ling, G.; Li, J. A multi-dimensional robust optimization approach for cold-chain emergency medical materials dispatch under COVID-19: A case study of Hubei Province. J. Traffic Transp. Eng.
**2022**, 9, 1–20. [Google Scholar] [CrossRef] - Qi, C.; Hu, L. Optimization of vehicle routing problem for emergency cold chain logistics based on minimum loss. Phys. Commu.
**2020**, 40, 101085. [Google Scholar] [CrossRef] - Li, X.; Li, F. Collaborative evaluation model and strategy research of emergency cold chain supply chain under major emergencies. J. Saf. Sci. Technol.
**2021**, 17, 18–24. [Google Scholar] - Alsuwailem, A.A.; Salem, E.; Saudagar, A.K.J.; AlTameem, A.; AlKhathami, M.; Khan, M.B.; Hasanat, M.H.A. Impacts of COVID-19 on the Food Supply Chain: A Case Study on Saudi Arabia. Sustainability
**2022**, 14, 254. [Google Scholar] [CrossRef] - Kazancoglu, Y.; Ozbiltekin-Pala, M.; Sezer, M.; Ekren, B.; Kumar, V. Assessing the Impact of COVID-19 on Sustainable Food Supply Chains. Sustainability
**2022**, 14, 143. [Google Scholar] [CrossRef] - Yui-yip, L.; Zhang, J.; Ng Adolf, K.; Roozbeh, P. Implications of a Pandemic Outbreak Risk: A Discussion on China’s Emergency Logistics in the Era of Coronavirus Disease 2019 (COVID-19). J. Int. Log. Trade.
**2020**, 18, 127–135. [Google Scholar] - Cardoso, B.; Cunha, L.; Leiras, A.; Goncalves, P.; Yoshizaki, H.; de Brito, I.; Pedroso, F. Causal Impacts of Epidemics and Pandemics on Food Supply Chains: A Systematic Review. Sustainability.
**2021**, 13, 9799. [Google Scholar] [CrossRef] - Khamis, A.; Meng, J.; Wang, J.; Azar, A.T.; Prestes, E.; Li, H.; Hameed, I.A.; Takacs, A.; Rudas, I.J.; Haidegger, L. Robotics and Intelligent Systems Against a Pandemic. Acta Polytech Hung.
**2021**, 18, 13–35. [Google Scholar] [CrossRef] - Wincewicz-Bosy, M.; Sadowski, A.; Wasowska, K.; Galar, Z.; Dymyt, M. Military Food Supply Chain during the COVID-19 Pandemic. Sustainability
**2022**, 14, 2464. [Google Scholar] [CrossRef] - Takavakoglou, V.; Pana, E.; Skalkos, D. Constructed Wetlands as Nature-Based Solutions in the Post-COVID Agri-Food Supply Chain: Challenges and Opportunities. Sustainability
**2022**, 14, 3145. [Google Scholar] [CrossRef] - Ergun, S.; Usta, P.; Gok, S.Z.A.; Weber, G.W. A game theoretical approach to emergency logistics planning in natural disasters. Ann. Oper. Res.
**2021**. [Google Scholar] [CrossRef] - Rogers, B.; Dennison, K.; Adepoju, N.; Dowd, S.; Uedoi, K. Vaccine Cold Chain Part 1. Proper Handling and Storage of Vaccine. AAOHN J.
**2010**, 58, 337–344. [Google Scholar] [CrossRef] [Green Version] - Mallik, S.; Mandal, P.K.; Chatterjee, C.; Ghosh, P.; Manna, N.; Chakrabarty, D.; Bagchi, S.N.; Dasgupta, S. Assessing cold chain status in a metro city of India: An intervention study. Afr. Health. Sci.
**2011**, 11, 128–133. [Google Scholar] - Zimmer, M.; Reuter, M. Pandemic relief volunteers-increasing resilience for disasters. Notfall. Rett. Med.
**2022**. [Google Scholar] [CrossRef] - Paton, D. Disaster Relief Work an Assessment of Training Effectiveness. J. Trauma. Stress
**1994**, 7, 275–288. [Google Scholar] [CrossRef] [PubMed] - Hye, R.J.; Lee, C.K. Private Participation in Disaster Management Process: Comparison of Large Scale Disaster Cases between Korea and Japan. J. Saf. Crisis Manage.
**2021**, 11, 17–26. [Google Scholar] - Ghodsi, H.; Sohrabizadeh, S.; Jazani, R.K.; Kavousi, A. Factors Affecting Resiliency Among Volunteers in Disasters. A Systematic Literature Review. Disaster Med. Public
**2022**, 16, 398–404. [Google Scholar] - Liu, G. Food Losses and Food Waste in China: A First Estimate. OECD Food Agr. Fish. Pap.
**2015**, 66. [Google Scholar] - Huang, K.; Rafiei, R. Equitable last mile distribution in emergency response. Comput. Ind. Eng.
**2019**, 127, 887–900. [Google Scholar] [CrossRef] - Khare, A.; Batta, R.; Kang, J.E. On the analysis of last-mile relief delivery on a tree network: Application to the 2015 Nepal earthquake. J. Oper. Res. Soc.
**2020**, 72, 727–743. [Google Scholar] [CrossRef] - Noyan, N.; Kahvecioglu, G. Stochastic last mile relief network design with resource reallocation. OR Spectrum
**2018**, 40, 187–231. [Google Scholar] [CrossRef] [Green Version] - Moshref-Javadi, M.; Winkenbach, M. Applications and Research avenues for drone-based models in logistics A classification and review. Expert Syst. Appl.
**2021**, 177, 114854. [Google Scholar] [CrossRef] - Fikar, C.; Gronalt, M.; Hirsch, P. A decision support system for coordinated disaster relief distribution. Expert Syst. Appl.
**2016**, 57, 104–116. [Google Scholar] [CrossRef] - Ferrer, J.M.; Martin-Campo, F.J.; Ortuno, M.T.; Pedraza-Martinez, A.J.; Tirado, G.; Vitoriano, B. Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications. Eur. J. Oper. Res.
**2018**, 269, 501–515. [Google Scholar] [CrossRef] - Wang, S.; Zhan, S.; Wang, Y. Extension model and strategy generation of patent conflict in Industrial Technology Standards Alliance. Stud. Sci. Sci.
**2016**, 34, 1487–1497. [Google Scholar] - Zhang, X. Application of extension innovation method in enterprise cost control. Commun. Financ. Account.
**2019**, 23, 83–90. [Google Scholar] - Chen, M.; Xu, H.; Li, T. Generation of penetration strategy supported by micro air launched decoys. J. Ordnance Equip. Eng.
**2020**, 41, 89–95. [Google Scholar] - Jia, P.; Dong, J. Evaluation of the extenicity of logistics service supply chain performance index based on BSC. Stat. Decis.
**2018**, 34, 44–48. [Google Scholar] - Zhao, Y.; Wang, J.; Chen, Z.; Xie, R. Research on PPP project performance evaluation index system and comprehensive rating model. Friends. Account.
**2018**, 04, 110–115. [Google Scholar] - Zhu, X.; Liu, J.; Wang, M. Research on emergency coordination strategy of supply chain Emergencies Based on extension. Soft Sci.
**2011**, 25, 72–75+93. [Google Scholar] - Wang, J.; Zhang, J. Earthquake emergency plan generation model based on scenario balance. J. Safe. Environ.
**2018**, 18, 1923–1930. [Google Scholar] - Ren, S.; Gui, F.; Zhao, Y.; Xie, Z.; Hong, H.; Wang, H. Accelerating preliminary low-carbon design for products by integrating TRIZ and Extenics methods. Adv. Mech. Eng.
**2017**, 9, 1687814017725461. [Google Scholar] [CrossRef] [Green Version] - Ren, S.; Gui, F.; Zhao, Y.; Zhan, M.; Wang, W.L.; Zhou, J.Q. An Extenics-Based Scheduled Configuration Methodology for Low-Carbon Product Design in Consideration of Contradictory Problem Solving. Sustainability
**2021**, 13, 5859. [Google Scholar] [CrossRef] - Shen, L.; Tao, F.; Shi, Y.; Qin, R. Optimization of Location-Routing Problem in Emergency Logistics Considering Carbon Emissions. Int. J. Environ. Res. Public Health
**2019**, 16, 2982. [Google Scholar] [CrossRef] [Green Version] - Wang, S.; Tao, F.; Shi, Y. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint. Int. J. Environ. Res. Public Health.
**2012**, 15, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhang, L.; Tseng, M.; Wang, C.; Xiao, C.; Fei, T. Low-carbon cold chain logistics using ribonucleic acid-ant colony optimization algorithm. J. Cleaner Prod.
**2019**, 233, 169–180. [Google Scholar] [CrossRef] - Zhang, S.; Chen, N.; She, N.; Li, K. Location optimization of a competitive distribution center for urban cold chain logistics in terms of low-carbon emissions. Comput. Ind. Eng.
**2021**, 154, 107120. [Google Scholar] [CrossRef] - Stellingwerf, H.; Kanellopoulos, A.; van der Vorst, J.; Bloemhof, J. Reducing CO
_{2}emissions in temperature-controlled road transportation using the LDVRP model. Transport. Res. D—Tr. Environ.**2018**, 58, 80–93. [Google Scholar] [CrossRef] - Wang, S.; Tao, F.; Shi, Y.; Wen, H. Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax. Sustainability
**2017**, 9, 694. [Google Scholar] [CrossRef] [Green Version] - Qin, G.; Tao, F.; Li, L. A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions. Int. J. Environ. Res. Public Health
**2019**, 16, 576. [Google Scholar] [CrossRef] [Green Version] - Liu, G.; Hu, J.; Yang, Y.; Xia, S.; Lim, M. Vehicle routing problem in cold Chain logistics: A joint distribution model with carbon trading mechanisms. Resour. Conserv. Recycl.
**2020**, 156, 104715. [Google Scholar] [CrossRef] - Sabat, I.; Neuman-Bohme, S.; Varghese, N.E.; Barros, P.P.; Brouwer, W.; van Exel, J.; Schreyogg, J.; Stargardt, T. United but divided: Policy responses and people’s perceptions in the EU during the COVID-19 outbreak. Health Policy
**2020**, 124, 909–918. [Google Scholar] [CrossRef] - Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Bhatt, S. Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in European countries: Technical description update. Nature
**2020**, 584, 257–261. [Google Scholar] [CrossRef] - Mei, C.Q. Policy style, consistency and the effectiveness of the policy mix in China’s fight against COVID-19. Policy Soc.
**2020**, 39, 309–325. [Google Scholar] [CrossRef] - Bryant, P.; Elofsson, A. Estimating the impact of mobility patterns on COVID-19 infection rates in 11 European countries. PeerJ
**2020**, 8, e9879. [Google Scholar] [CrossRef] [PubMed] - George, J.M.; Simon, X. The Effectiveness of Social Distancing in Mitigating COVID-19 Spread a modelling analysis. Sci. Rep.
**2021**, 11, 11958. [Google Scholar] - Lai, S.; Ruktanonchai, N.W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J.R.; Tatem, A.J. Effect of non-pharmaceutical interventions for containing the COVID-19 outbreak in China. Nature
**2020**, 585, 410–413. [Google Scholar] [CrossRef] - Suo, Y.H.; Guo, D.X. The important role of voluntary service in the prevention and control of COVID-19 and suggestions for improvement. China Soc. Work
**2020**, 12, 42–43. [Google Scholar] - Zhang, J.; Liu, Y. Service effectiveness and reflection of the "volunteer + community social organization" model in the prevention and control of COVID-19. J. Tianjin Admin. Inst.
**2020**, 22, 79–86. [Google Scholar] - Gao, F. Study on the construction of emergency logistics system under the COVID-19. J. Hubei Polytech. Inst.
**2020**, 23, 89–92. [Google Scholar] - Xiong, W.Y.; Li, J. Dilemma and improvement path of Community Grid Management under the background of epidemic prevention and control. China Mkt.
**2022**, 02, 38–39. [Google Scholar] - Pan, W.J.; Guo, M.M. Analysis of the impact of COVID-19 on the circulation of agricultural products. J. Commer. Econ.
**2020**, 11, 155–157. [Google Scholar] - Yu, J.X.; Wang, Y.F.; Suo, X.; Wang, N. Problems and Countermeasures of Wuhan emergency logistics development in response to the COVID-19. China Transport. Rev.
**2020**, 42, 4–7. [Google Scholar] - Zhong, T.Y.; Crush, J.; Si, Z.Z.; Scott, S. Emergency food supplies and food security in Wuhan and Nanjing, China, during the COVID-19 pandemic: Evidence from a field survey. Dev. Policy Rev.
**2022**, 40, e12575. [Google Scholar] [CrossRef] - Li, H.; Dong, R. Construction of food cold chain logistics traceability system based on blockchain technology in the post pandemic Era. Food. Mach.
**2021**, 37, 134–138+155. [Google Scholar] - Zhang, C. More than 4000 medical personnel of the people’s Liberation Army rushed to Wuhan. Origins
**2020**, 2, 12–13. [Google Scholar] - Liu, J.H.; Sha, X.M.; Lv, L.J. Rethinking on the involvement of social work in the public health system: Reflection on the response process of social work based on the COVID-19. J. East China Univ. Sci. Tech.
**2020**, 35, 44–56. [Google Scholar] - Wan, Y.L. Interval structure and information system construction of cold chain logistics of fresh products in the post epidemic Era. J. Commer. Eco.
**2020**, 24, 86–90. [Google Scholar] - Marija, B.; Ludvik, B.; Robert, V. Stability of perishable goods in cold logistic chains. Int. J. Prod. Econ.
**2005**, 94, 345–356. [Google Scholar] - Sasangohar, F.; Moats, J.; Mehta, R.; Peres, S.C. Disaster Ergonomics: Human Factors in COVID-19 Pandemic Emergency Management. Hum. Factors
**2020**, 62, 1061–1068. [Google Scholar] [CrossRef] - Run, H.N.; Ye, Q.; Ding, N. Enlightenment of epidemic situation on the circulation of fresh agricultural products. Macroecon. Manag.
**2020**, 9, 34–35. [Google Scholar] - Han, M.S. Analysis of China’s refrigeration equipment market in 2020. Chinese J. Refrig. Tech.
**2021**, 41, 67–86+94. [Google Scholar] - Burdorf, A.; Porru, F.; Rugulies, R. The COVID-19 (Coronavirus) pandemic consequences for occupational health. Scand. J. Work Env. Heath
**2020**, 46, 229–230. [Google Scholar] [CrossRef] - Deng, W.B.; Hu, D.; He, L. Thoughts on improving the construction of express terminal distribution system under the COVID-19—A case study of Chongqing. J. Chongqing Univ. Posts. Telecommun.
**2020**, 32, 113–119. [Google Scholar] - Zhao, T.H.; Tu, W.; Fang, Z.X.; Wang, X.F.; Huang, Z.D.; Xiong, S.W.; Zheng, M. Optimizing Living Material Delivery during the COVID-19 Outbreak. IEEE T. Intell. Transp.
**2021**, 23, 6709–6719. [Google Scholar] [CrossRef] - Wen, C.; Yang, C.Y.; He, B. New progress in basic theory research of Extenics. Strategic Study. CAE
**2003**, 2, 80–87. [Google Scholar]

Stage | Weight | Measure | Correlation Degree K | $\mathbf{Normative}\text{}\mathbf{Correlation}\text{}\mathbf{Degree}\text{}{\mathit{K}}^{\prime}$ | Superiority Degree | $\mathbf{Carbon}\text{}\mathbf{Emission}\text{}\mathit{C}$ |
---|---|---|---|---|---|---|

MI_{1} | 0.3 | ① | 0.5 | 0.5 | 0.45 | 0 |

0.67 | 1 | |||||

② | 1 | 1 | 0.39 | ${C}_{12}$ | ||

0.2 | 0.3 | |||||

MI_{2} | 0.2 | ③ | 0.6 | 0.75 | 0.15 | ${C}_{21}$ |

④ | 0.2 | 0.25 | 0.05 | ${C}_{22}={c}_{221}+{t}_{1}{c}_{222}$ | ||

⑤ | 0.8 | 1 | 0.2 | 0 | ||

MI_{3} | 0.2 | ⑥ | 0.8 | 0.8 | 0.36 | ${C}_{31}={t}_{1}m\text{}{\alpha}_{1}/\text{}{t}_{2}+{t}_{1}{c}_{3121}$ |

1 | 1 | |||||

⑦ | 1 | 1 | 0.24 | ${C}_{32}={t}_{1}m\text{}{\alpha}_{2}$ | ||

0.2 | 0.2 | |||||

MI_{4} | 0.3 | ⑧ | 1 | 1 | 0.3 | ${C}_{41}={t}_{1}g{c}_{41}$ |

⑨ | 1 | 1 | 0.3 | ${C}_{42}={t}_{1}{c}_{42}$ | ||

⑩ | 0.5 | 0.5 | 0.15 | ${C}_{43}={t}_{1}{c}_{43}$ |

Scheme | Measures | $\mathbf{Superiority}\text{}\mathit{G}$ | Scheme | Measures | $\mathbf{Superiority}\text{}\mathit{G}$ |
---|---|---|---|---|---|

${Z}_{1}$ | ①③⑥⑧ | 1.26 | ${Z}_{19}$ | ②③⑥⑧ | 1.2 |

${Z}_{2}$ | ①③⑥⑨ | 1.26 | ${Z}_{20}$ | ②③⑥⑨ | 1.2 |

${Z}_{3}$ | ①③⑥⑩ | 1.11 | ${Z}_{21}$ | ②③⑥⑩ | 1.05 |

${Z}_{4}$ | ①③⑦⑧ | 1.14 | ${Z}_{22}$ | ②③⑦⑧ | 1.08 |

${Z}_{5}$ | ①③⑦⑨ | 1.14 | ${Z}_{23}$ | ②③⑦⑨ | 1.08 |

${Z}_{6}$ | ①③⑦⑩ | 0.99 | ${Z}_{24}$ | ②③⑦⑩ | 0.93 |

${Z}_{7}$ | ①④⑥⑧ | 1.16 | ${Z}_{25}$ | ②④⑥⑧ | 1.1 |

${Z}_{8}$ | ①④⑥⑨ | 1.16 | ${Z}_{26}$ | ②④⑥⑨ | 1.1 |

${Z}_{9}$ | ①④⑥⑩ | 1.01 | ${Z}_{27}$ | ②④⑥⑩ | 0.95 |

${Z}_{10}$ | ①④⑦⑧ | 1.04 | ${Z}_{28}$ | ②④⑦⑧ | 0.98 |

${Z}_{11}$ | ①④⑦⑨ | 1.04 | ${Z}_{29}$ | ②④⑦⑨ | 0.98 |

${Z}_{12}$ | ①④⑦⑩ | 0.89 | ${Z}_{30}$ | ②④⑦⑩ | 1.25 |

${Z}_{13}$ | ①⑤⑥⑧ | 1.31 | ${Z}_{31}$ | ②⑤⑥⑧ | 1.25 |

${Z}_{14}$ | ①⑤⑥⑨ | 1.31 | ${Z}_{32}$ | ②⑤⑥⑨ | 0.83 |

${Z}_{15}$ | ①⑤⑥⑩ | 1.16 | ${Z}_{33}$ | ②⑤⑥⑩ | 1.1 |

${Z}_{16}$ | ①⑤⑦⑧ | 1.19 | ${Z}_{34}$ | ②⑤⑦⑧ | 1.13 |

${Z}_{17}$ | ①⑤⑦⑨ | 1.19 | ${Z}_{35}$ | ②⑤⑦⑨ | 1.13 |

${Z}_{18}$ | ①⑤⑦⑩ | 1.04 | ${Z}_{36}$ | ②⑤⑦⑩ | 0.98 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lu, L.; Hu, S.; Ren, Y.; Kang, K.; Li, B.
Research on Extension Design of Emergency Cold Chain Logistics from the Perspective of Carbon Constraints. *Sustainability* **2022**, *14*, 9083.
https://doi.org/10.3390/su14159083

**AMA Style**

Lu L, Hu S, Ren Y, Kang K, Li B.
Research on Extension Design of Emergency Cold Chain Logistics from the Perspective of Carbon Constraints. *Sustainability*. 2022; 14(15):9083.
https://doi.org/10.3390/su14159083

**Chicago/Turabian Style**

Lu, Lin, Song Hu, Yuelin Ren, Kai Kang, and Beibei Li.
2022. "Research on Extension Design of Emergency Cold Chain Logistics from the Perspective of Carbon Constraints" *Sustainability* 14, no. 15: 9083.
https://doi.org/10.3390/su14159083