Assessment of Sargassum sp., Spirulina sp., and Gracilaria sp. as Poultry Feed Supplements: Feasibility and Environmental Implications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Characterization of the Algal Species
3.2. Lipid Profile Analysis
3.3. Heavy Metal Concentration in Algae Samples
3.4. Performance of Broiler Chickens with Algal Feed Additives
3.5. Environmental Impact Assessment of Using Algae as Poultry Feed
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uddin, S.; Gevao, B.; Al-Ghadban, A.N.; Nithyanandan, M.; Al-Shamroukh, D. Acidification in Arabian Gulf—Insights from pH and temperature measurements. J. Environ. Monit. 2012, 14, 1479–1482. [Google Scholar] [CrossRef] [PubMed]
- Gazeau, F.; Sallon, A.; Maugendre, L.; Louis, J.; Dellisanti, W.; Gaubert, M.; Lejeune, P.; Gobert, S.; Borges, A.; Harlay, J.; et al. First mesocosm experiments to study the impacts of ocean acidification on plankton communities in the NW Mediterranean Sea (MedSeA project). Estuar. Coast. Shelf Sci. 2017, 186, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Golda, R.; Golda, M.; Hayes, J.; Peterson, T.; Needoba, J. Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions. J. Microbiol. Methods 2017, 136, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Bebhehani, M.; Sajid, S.; Karam, Q. Concentration of 210Po and 210Pb in macroalgae from the northern Gulf. Mar. Pollut. Bull. 2019, 145, 474–479. [Google Scholar] [CrossRef]
- Taucher, J.; Haunost, M.; Boxhammer, T.; Bach, L.; Algueró-Muñiz, M.; Riebesell, U. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE 2017, 12, e0169737. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Campbell, D.; Gao, K. Short-term elevated CO2 exposure stimulated photochemical performance of a coastal marine diatom. Mar. Environ. Res. 2017, 125, 42–48. [Google Scholar] [CrossRef]
- UNEP. Sargassum White Paper—Turning the Crisis Into an Opportunity; Volume Ninth Meeting of the Scientific and Technical Advisory Committee (STAC) to the Protocol Concerning Specially Protected Areas and Wildlife (SPAW) in the Wider Caribbean Region; United Nations Environment Programme—Caribbean Environment Programme: Kingston, Jamaica, 2021. [Google Scholar]
- Levitan, O.; Brown, C.; Sudhaus, S.; Campbell, D.; LaRoche, J.; Berman-Frank, I. Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations. Environ. Microbiol. 2010, 12, 1899–1912. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wen, Y.; Wu, Y. Effect of Nitrogen and Phosphorus Ratio on Algal Growth in Lake Xuanwu. In Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, iCBBE, Wuhan, China, 10–12 May 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Alexandre, A.; Silva, J.; Buapet, P.; Björk, M.; Santos, R. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera Noltii. Ecol. Evol. 2012, 2, 2625–2635. [Google Scholar] [CrossRef]
- Hama, T.; Kawashima, S.; Shimotori, K.; Satoh, Y.; Omori, Y.; Wada, S.; Adachi, T.; Hasegawa, S.; Midorikawa, T.; Ishii, M.; et al. Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production. J. Oceanogr. 2012, 68, 183–194. [Google Scholar] [CrossRef]
- Paul, A.; Achterberg, E.; Bach, L.; Boxhammer, T.; Czerny, J.; Haunost, M.; Schulz, K.-G.; Stuhr, A.; Riebesell, U. No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community. Biogeosciences 2016, 13, 3901–3913. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Li, D.; Lin, W.; Li, W.; Shi, D. Nitrogen nutritional condition affects the response of energy metabolism in diatoms to elevated carbon dioxide. Mar. Ecol. Prog. Ser. 2017, 567, 41–56. [Google Scholar] [CrossRef]
- Lu, J.; Zhu, B.; Struewing, I.; Xu, N.; Duan, S. Nitrogen–phosphorus-associated metabolic activities during the development of a cyanobacterial bloom revealed by metatranscriptomics. Sci. Rep. 2019, 9, 2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Aswathnarayana Gokare, R.; Ambati, R.R. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Zhang, Y.; Xu, Q.; Iqbal, M.S.; Xi, Y.; Xiang, X. The significance of phosphorus in algae growth and the subsequent ecological response of consumers. J. Freshw. Ecol. 2022, 37, 57–69. [Google Scholar] [CrossRef]
- Hanson, R.B. Pelagic Sargassum community metabolism: Carbon and nitrogen. J. Exp. Mar. Biol. Ecol. 1977, 29, 107–118. [Google Scholar] [CrossRef]
- Uddin, S.; Aba, A.; Behbahani, M. Baseline concentration of 210Po and 210Pb in Sargassum from the northern Gulf. Mar. Pollut. Bull. 2015, 90, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Fowler, S.W.; Behbehani, M.; Metian, M. 210Po bioaccumulation and trophic transfer in marine food chains in the northern Arabian Gulf. J. Environ. Radioact. 2017, 174, 23–29. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Nazarudin, M.F.; Paramisparam, A.; Khalid, N.A.; Albaz, M.N.; Shahidan, M.S.; Yasin, I.S.M.; Isha, A.; Zarin, M.A.; Aliyu-Paiko, M. Metabolic variations in seaweed, Sargassum polycystum samples subjected to different drying methods via 1H NMR-based metabolomics and their bioactivity in diverse solvent extracts. Arab. J. Chem. 2020, 13, 7652–7664. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, A.A.; Mohamed, H.I.; Ramadan, K.M.A.; Barqawi, A.A.; Mansour, A.T. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar. Drugs 2022, 20, 342. [Google Scholar] [CrossRef]
- Dimbarre Lao Guimarães, I.; Casanova Monteiro, F.; Vianna da Anunciação de Pinho, J.; de Almeida Rodrigues, P.; Gomes Ferrari, R.; Adam Conte-Junior, C. Polycyclic aromatic hydrocarbons in aquatic animals: A systematic review on analytical advances and challenges. J. Environ. Sci. Health Part A 2022, 57, 198–217. [Google Scholar] [CrossRef] [PubMed]
- Swiatkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. Application of microalgae biomass in poultry nutrition. Worlds Poult. Sci. J. 2016, 71, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Coudert, E.; Baéza, E.; Berri, C. Use of algae in poultry production: A review. Worlds Poult. Sci. J. 2020, 76, 767–786. [Google Scholar] [CrossRef]
- Saadaoui, I.; Rasheed, R.; Aguilar, A.; Cherif, M.; Al Jabri, H.; Sayadi, S.; Manning, S.R. Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotechnol. 2021, 12, 76. [Google Scholar] [CrossRef]
- D’Archino, R.; Piazzi, L. Macroalgal assemblages as indicators of the ecological status of marine coastal systems: A review. Ecol. Indic. 2021, 129, 107835. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Roa-Ureta, R.H.; Premlal, P.; Nazeer, Z.; Pulikkoden, A.R.K.; Qurban, M.A.; Prihartato, P.K.; Alghamdi, H.A.; Qasem, A.M.; Rabaoui, L. Habitat-forming organisms in the offshore seabed of the western Arabian Gulf. Reg. Stud. Mar. Sci. 2022, 53, 102446. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Bottein, M.-Y.D.; Faizuddin, M. Ciguatera in the Indian Ocean with Special Insights on the Arabian Sea and Adjacent Gulf and Seas: A Review. Toxins 2021, 13, 525. [Google Scholar] [CrossRef]
- Elkadiri, R.; Manche, C.; Sultan, M.; Al-Dousari, A.; Uddin, S.; Chouinard, K.; Abotalib, A.Z. Development of a Coupled Spatiotemporal Algal Bloom Model for Coastal Areas: A Remote Sensing and Data Mining-Based Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5159–5171. [Google Scholar] [CrossRef]
- Al-Kandari, M.; Oliver, G.; Chen, W.; Skryabin, V.; Raghu, M.; Yousif, A.; Al-Jazzaf, S.; Taqi, A.; AlHamad, A. Diversity and distribution of the intertidal Mollusca of the State of Kuwait, Arabian Gulf. Reg. Stud. Mar. Sci. 2019, 33, 100905. [Google Scholar] [CrossRef]
- Hamdi, E.; Zoðlu; Ulger, I.; Ber, M.; Ayasan, T. Effects of Spirulina (Algae) supplementation to Japanese Quail (Coturnix coturnix Japonica) diets on growth performance and carcass traits. Indian J. Anim. Sci. 2020, 90, 923–927. [Google Scholar]
- Al-Khalaifah, H.S.; Al-Nasser, A.; Surrayai, T. Effects From Dietary Addition of Sargassum sp., Spirulina sp., or Gracilaria sp. Powder on Immune Status in Broiler Chickens. Front. Vet. Sci. 2022, 9, 928235. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Silva, L.; Andrade, J.; Veloso, M.; Santos, G. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quim. Nova 2008, 31, 901–905. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghadban, A.; Uddin, S.; Aba, A.; Behbehani, M. Baseline Radionuclide Specific Activity in Commercial Fishes of Kuwait. Aquat. Ecosyst. Health Manag. 2012, 15, 45–49. [Google Scholar] [CrossRef]
- Liu, K. Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination. Algal Res. 2017, 25, 307–321. [Google Scholar] [CrossRef]
- Marshall, R.J. Food and nutritional analysis|Dairy Products. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 312–319. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Qiu, S.; Ge, S. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Res. Int. 2018, 2018, 1503126. [Google Scholar] [CrossRef]
- Bartle, K.D.; Myers, P. History of gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 547–557. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Burdge, G.C.; Wright, P.; Jones, A.E.; Wootton, S.A. A method for separation of phosphatidylcholine, triacylglycerol, non-esterified fatty acids and cholesterol esters from plasma by solid-phase extraction. Br. J. Nutr. 2000, 84, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Seppänen-Laakso, T.; Laakso, I.; Hiltunen, R. Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal. Chim. Acta 2002, 465, 39–62. [Google Scholar] [CrossRef]
- USEPA. Measuring Metal Ions Using the Inductively Couple Plasma Procedure; U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Al-Khalaifah, H.; Al-Nasser, A. Dietary source of polyunsaturated fatty acids influences cell cytotoxicity in broiler chickens. Sci. Rep. 2021, 11, 10113. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Al-Nasser, A. Dietary supplementation with various fat oils affect phytohemagglutinin skin test in broiler chickens. Front. Immunol. 2020, 11, 1735. [Google Scholar] [CrossRef] [PubMed]
- Schoeni, J.L.; Doyle, M.P. Reduction of Campylobacter jejuni colonization of chicks by cecum-colonizing bacteria producing anti-C. jejuni metabolites. Appl. Environ. Microbiol. 1992, 58, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Khafipour, E.; Krause, D.O.; Kroeker, A.; Rodriguez-Lecompte, J.C.; Gozho, G.N.; Plaizier, J.C. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J. Dairy Sci. 2012, 95, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Pastakia, C.M.R. The rapid impact assessment matrix (RIAM)—A new tool for environmental impact assessment. In Environmental Impact Assessment Using the Rapid Impact Assessment Matrix (RIAM); Jensen, K., Ed.; Olsen and Olsen: Fredensborg, Denmark, 1998. [Google Scholar]
- Pastakia, C.M.R.; Madsen, K.N. A Rapid Assessment Matrix for Use in Water Related Projects. In Proceedings of the Stockholm Water Conference, Stockholm, Sweden, 13–18 August 1995. [Google Scholar]
- Uddin, S. Environmental Impacts of Desalination Activities in the Arabian Gulf. Int. J. Environ. Sci. Dev. 2014, 5, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Rose, M.; Lewis, J.; Langford, N.; Baxter, M.; Origgi, S.; Barber, M.; MacBain, H.; Thomas, K. Arsenic in Seaweed-Forms, Concentration and Dietary Exposure. Food Chem. Toxicol. 2007, 45, 1263–1267. [Google Scholar] [CrossRef]
- Adamse, P.; Van der Fels-Klerx, H.J.; de Jong, J. Cadmium, lead, mercury and arsenic in animal feed and feed materials—Trend analysis of monitoring results. Food Addit. Contam. Part A 2017, 34, 1298–1311. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Al-Nasser, A.; Al-Surrayai, T.; Sultan, H.; Al-Attal, D.; Al-Kandari, R.; Al-Saleem, H.; Al-Holi, A.; Dashti, F. Effect of Ginger Powder on Production Performance, Antioxidant Status, Hematological Parameters, Digestibility, and Plasma Cholesterol Content in Broiler Chickens. Animals 2022, 12, 901. [Google Scholar] [CrossRef]
- Pastakia, C.M.R.; Jensen, A. The Rapid Environment Assessment Matrix (RIAM) for EIA. Environ. Impact Assess. Rev. 1998, 18, 461–482. [Google Scholar] [CrossRef]
- Kang, E.; Kim, K. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae 2016, 31, 49–59. [Google Scholar] [CrossRef]
- Kim, H.; Spivack, A.; Menden-Deuer, S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae 2013, 26, 1–11. [Google Scholar] [CrossRef]
- Kim, J.M.; Baars, O.; Morel, F.M.M. The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150296. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Lee, K.; Shin, K.; Kang, J.-H.; Lee, H.-W.; Kim, M.; Jang, P.-G.; Jang, M.-C. The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol. Oceanogr. 2006, 51, 1629–1636. [Google Scholar] [CrossRef] [Green Version]
- Fisher, N.S.; Burns, K.A.; Cherry, R.D.; Heyraud, M. Accumulation and cellular distribution of 241Am, 210Po and 210Pb in two marine algae. Mar. Ecol.-Prog. Ser. 1983, 11, 233–237. [Google Scholar] [CrossRef]
- Ivanina, A.; Hawkins, C.; Beniash, E.; Sokolova, I. Effects of environmental hypercapnia and metal (Cd and Cu) exposure on acid-base and metal homeostasis of marine bivalves. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2015, 174–175, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ivanina, A.; Hawkins, C.; Sokolova, I. Interactive effects of copper exposure and environmental hypercapnia on immune functions of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Fish Shellfish Immunol. 2016, 49, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Connan, O.; Germain, P.; Solier, L.; Gouret, G. Variations of 210Po and 210Pb in various marine organisms from Western English Channel: Contribution of 210Po to the radiation dose. J. Environ. Radioact. 2007, 97, 168–188. [Google Scholar] [CrossRef]
- Morita, T.; Fujimoto, K.; Kasai, H.; Yamada, H.; Nishiuchi, K. Temporal variations of 90Sr and 137Cs concentrations and the 137Cs/90Sr activity ratio in marine brown algae, Undaria pinnatifida and Laminaria longissima, collected in coastal areas of Japan. J. Environ. Monit. 2010, 12, 1179. [Google Scholar] [CrossRef]
- Buo-Olayan, A.H.; Subrahmanyam, M.N.V. Heavy Metals in Marine Algae of the Kuwaiti Coast. Bull. Environ. Contam. Toxicol. 1996, 57, 816–823. [Google Scholar] [CrossRef]
- Choi, H.Y.; Stewart, G.M.; Lomas, M.W.; Kelly, R.P.; Moran, S.B. Linking the distribution of 210Po and 210Pb with plankton community along Line P, Northeast Subarctic Pacific. J. Environ. Radioact. 2014, 138, 390–401. [Google Scholar] [CrossRef]
- Kawai, H.; Kitamura, A.; Mimura, M.; Mimura, T.; Tahara, T.; Aida, D.; Sato, K.; Sasaki, H. Radioactive cesium accumulation in seaweeds by the Fukushima 1 Nuclear Power Plant accident-two years’ monitoring at Iwaki and its vicinity. J. Plant Res. 2014, 127, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Baumann, Z.; Casacuberta, N.; Baumann, H.; Masque, P.; Fisher, N.S. Natural and Fukushima-derived radioactivity in macroalgae and mussels along the Japanese shoreline. Biogeosciences 2013, 10, 3809–3815. [Google Scholar] [CrossRef] [Green Version]
- Praveen Pole, R.P.; Feroz Khan, M.; Godwin Wesley, S. Occurrence of 210Po in marine macroalgae inhabiting a coastal nuclear zone, southeast coast of India. J. Environ. Radioact. 2017, 169–170, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Desideri, D.; Meli, M.A.; Roselli, C.; Feduzi, L.; Ugolini, L. 210Polonium bioaccessibility assessment in algae for human consumption: An in vitro gastrointestinal digestion method. J. Toxicol. Environ. Health Part A 2017, 80, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Yasumoto, T.; Hokama, Y. Aplysiatoxin and debromoaplysiatoxin as the causative agents of a red alga Gracilaria coronopifolia poisoning in hawaii. Toxicon 1996, 34, 753–761. [Google Scholar] [CrossRef]
- Resiere, D.; Mehdaoui, H.; Florentin, J.; Gueye, P.; Lebrun, T.; Blateau, A.; Viguier, J.; Valentino, R.; Brouste, Y.; Kallel, H.; et al. Sargassum seaweed health menace in the Caribbean: Clinical characteristics of a population exposed to hydrogen sulfide during the 2018 massive stranding. Clin. Toxicol. 2021, 59, 215–223. [Google Scholar] [CrossRef]
- van Tussenbroek, B.I.; Arana, H.A.H.; Rodriguez-Martinez, R.E.; Espinoza-Avalos, J.; Canizales-Flores, H.M.; Gonzalez-Godoy, C.E.; Barba-Santos, M.G.; Vega-Zepeda, A.; Collado-Vides, L. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 2017, 122, 272–281. [Google Scholar] [CrossRef]
- Hamdy, A.A. Biosorption of heavy metals by marine algae. Curr. Microbiol. 2000, 41, 232–238. [Google Scholar] [CrossRef]
- Schiewer, S.; Wong, M.H. Ionic strength effects in biosorption of metals by marine algae. Chemosphere 2000, 41, 271–282. [Google Scholar] [CrossRef]
- Islam, M.S.; Kazi, M.A.I.; Hossain, M.M.; Ahsan, M.A.; Hossain, A.M.M.M. Propagation of Heavy Metals in Poultry Feed Production in Bangladesh. Bangladesh J. Sci. Ind. Res. 2007, 42, 465–474. [Google Scholar] [CrossRef]
- Adekanmi, A.T. Health Hazards of Toxic and Essential Heavy Metals from the Poultry Waste on Human and Aquatic Organisms. In Animal Feed Science and Nutrition: Production, Health and Environment; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
Sample | Moisture (%) | Ash (%) | Crude Fat (%) | Crude Fiber (%) | Crude Protein (%) | Energy (Calories/g) Dry Weight |
---|---|---|---|---|---|---|
Sargassum sp. * | 18.3 ± 0.3 | 24.39 ± 0.04 | 1.07 ± 0.10 | 13.90 ± 0.19 | 9.51 ± 0.08 | 154.4 |
Spirulina sp. * | 5.3 ± 0.2 | 7.76 ± 0.05 | 2.11 ± 0.54 | 0.15 ± 0.17 | 63.63 ± 0.24 | 189.8 |
Gracilaria sp. * | 19.05 ± 0.25 | 54.66 ± 0.10 | 1.01 ± 0.42 | 4.62 ± 0.20 | 9.07 ± 0.13 | 93.2 |
Sargassum sp. + | 18.9 ± 0.4 | 13.05 ± 2.01 | 0.152 ± 0.12 | 17.20 ± 0.50 | 21.6 ± 0.02 | 157.2 |
Fatty Acids (wt%) | |||||
---|---|---|---|---|---|
Algae 1 | Algae 2 | Algae 3 | Algae 4 | Algae 5 | |
C4:0 | 0.22 | 0.24 | 0.39 | 0.32 | 0.40 |
C8:0 | 0.09 | 0.00 | 0.11 | 0.00 | 0.00 |
C12:0 | 0.18 | 0.27 | 0.00 | 0.00 | 0.19 |
C14:0 | 3.56 | 3.74 | 3.64 | 3.70 | 3.68 |
C15:0 | 0.64 | 0.65 | 0.63 | 0.62 | 0.65 |
C16:0 | 35.37 | 36.78 | 36.84 | 37.21 | 37.11 |
C16:1n7 | 6.90 | 7.65 | 7.07 | 7.28 | 7.01 |
C17:0 | 0.31 | 0.31 | 0.00 | 0.28 | 0.00 |
C17:1 | 0.29 | 0.32 | 0.00 | 0.49 | 0.32 |
C18:0 | 1.39 | 1.39 | 1.46 | 1.27 | 1.35 |
C18:1n9trans | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 |
C18:1n9cis | 16.53 | 16.58 | 16.98 | 16.22 | 16.60 |
C18:2n6trans | 0.35 | 0.39 | 0.46 | 0.39 | 0.41 |
C18:2n6cis | 4.00 | 3.93 | 3.99 | 3.85 | 3.88 |
C20:0 | 0.95 | 0.98 | 1.00 | 0.91 | 0.94 |
C18:3n6 | 2.40 | 2.51 | 2.48 | 2.36 | 2.44 |
C18:3n3 | 0.97 | 0.96 | 1.07 | 1.09 | 1.03 |
C20:1n9 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 |
C21:0 | 1.65 | 1.82 | 1.82 | 1.65 | 1.75 |
C20:2 | 0.26 | 0.00 | 0.00 | 0.25 | 0.00 |
C22:0 | 0.77 | 0.69 | 0.64 | 0.68 | 0.64 |
C20:3n6 | 0.78 | 0.74 | 0.87 | 0.78 | 0.81 |
C20:3n3 | 10.63 | 10.67 | 10.56 | 10.31 | 10.37 |
C23:0 | 0.50 | 0.47 | 0.48 | 0.49 | 0.48 |
C22:2 | 0.00 | 0.11 | 0.16 | 0.00 | 0.00 |
C24:0 | 3.57 | 3.47 | 3.40 | 3.10 | 3.29 |
C20:5n3 | 0.55 | 0.50 | 0.63 | 0.58 | 0.59 |
C24:1n9 | 0.26 | 0.13 | 0.17 | 0.24 | 0.00 |
C22:1n9 | 1.89 | 1.75 | 2.02 | 2.00 | 1.98 |
C22:6n3 | 0.19 | 0.00 | 0.06 | 0.00 | 0.00 |
Total | 95.65 | 97.03 | 96.93 | 96.06 | 95.92 |
∑SAT 1 | 49.19 | 50.80 | 50.42 | 50.23 | 50.49 |
∑MONO 2 | 26.34 | 26.43 | 26.25 | 26.23 | 25.91 |
∑PUFA 3 | 17.73 | 17.30 | 17.79 | 17.24 | 17.09 |
∑n-6 4 | 7.53 | 7.57 | 7.80 | 7.38 | 7.53 |
∑n-3 5 | 12.34 | 12.14 | 12.31 | 11.97 | 12.00 |
∑n-6:∑n-3 6 | 0.61 | 0.62 | 0.63 | 0.61 | 0.62 |
Fatty Acids (wt%) | |||
---|---|---|---|
Sargassum sp. | Spirulina sp. | Gracilaria sp. | |
C8:0 | 0.00 | 0.31 | 0.00 |
C10:0 | 0.16 | 12.56 | 2.20 |
C12:0 | 0.12 | 0.19 | 0.00 |
C14:0 | 4.59 | 0.69 | 1.77 |
C14:1 | 0.00 | 0.18 | 0.24 |
C15:0 | 0.00 | 0.12 | 0.27 |
C16:0 | 41.73 | 48.09 | 63.99 |
C16:1n7 | 5.34 | 3.13 | 1.71 |
C17:0 | 0.00 | 0.37 | 0.00 |
C17:1 | 0.80 | 0.42 | 0.00 |
C18:0 | 0.87 | 1.15 | 2.13 |
C18:1n9trans | 0.00 | 0.26 | 0.00 |
C18:1n9cis | 12.14 | 4.01 | 9.26 |
C18:2n6trans | 0.00 | 0.12 | 0.00 |
C18:2n6cis | 5.04 | 12.75 | 2.09 |
C18:3n6 | 0.51 | 13.25 | 0.30 |
C18:3n3 | 5.83 | 0.63 | 0.52 |
C20:1n9 | 0.56 | 0.00 | 0.00 |
C21:0 | 2.71 | 0.00 | 0.00 |
C20:2 | 0.00 | 0.09 | 0.23 |
C22:0 | 0.51 | 0.16 | 2.49 |
C20:3n6 | 0.50 | 0.00 | 0.67 |
C20:3n3 | 9.43 | 0.00 | 3.15 |
C23:0 | 0.48 | 0.00 | 0.00 |
C22:2 | 0.00 | 0.00 | 1.87 |
C24:0 | 1.65 | 0.00 | 0.00 |
C20:5n3 | 1.92 | 0.00 | 0.00 |
C24:1n9 | 0.00 | 0.00 | 1.37 |
C22:4n6 | 0.00 | 0.00 | 0.26 |
C22:6n3 | 0.00 | 0.00 | 1.24 |
Total | 94.86 | 98.48 | 95.77 |
∑SAT 1 | 52.81 | 63.64 | 72.85 |
∑MONO 2 | 18.84 | 8.00 | 12.58 |
∑PUFA 3 | 23.22 | 26.75 | 10.11 |
∑n-6 4 | 6.05 | 26.00 | 3.06 |
∑n-3 5 | 17.17 | 0.63 | 4.92 |
∑n-6:∑n-3 6 | 0.35 | 41.27 | 0.62 |
Algae | As | Ba | Cd | Cr | Cu | Mo | Ni | Pb | V | Zn | Ag | Hg |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sargassum sp. (Kuwait) | 0.59 | 0.23 | <0.01 | 0.35 | 0.09 | 0.04 | 0.44 | 0.01 | 0.04 | 0.35 | <0.01 | <0.01 |
Sargassum sp. | 0.55 | 0.12 | 0.02 | 0.05 | 0.03 | <0.01 | 0.03 | <0.01 | 0.02 | 0.12 | <0.01 | <0.01 |
Spirulina sp. | <0.01 | 0.06 | <0.01 | 0.07 | 0.06 | <0.01 | 0.07 | <0.01 | <0.01 | 0.43 | <0.01 | <0.01 |
Gracilaria sp. | <0.01 | 0.06 | 0.01 | 1.69 | 0.06 | 0.23 | 0.84 | 0.061 | 0.45 | 0.25 | <0.01 | <0.01 |
Physical and Chemical Components (PC) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Components | ES | RB | A1 | A2 | B1 | B2 | B3 | ||||||
PC1 | Removal of algal biomass | 9 | A | 1 | 1 | 3 | 3 | 3 | |||||
PC2 | Uptake and accumulation of metals | 18 | B | 1 | 2 | 3 | 3 | 3 | |||||
PC3 | Uptake and accumulation of radionuclides | 18 | B | 1 | 2 | 3 | 3 | 3 | |||||
PC4 | Accumulation of hydrocarbons | 3 | A | 1 | 1 | 1 | 1 | 1 | |||||
PC5 | Growth of algal ponds for climate change mitigation | 7 | A | 1 | 1 | 1 | 3 | 3 | |||||
PC6 | Carbon dioxide sequestration for biomass conversion | 9 | A | 1 | 1 | 3 | 3 | 3 | |||||
Biological and Ecological Components (BE) | |||||||||||||
Components | ES | RB | A1 | A2 | B1 | B2 | B3 | ||||||
BE1 | Increase in algal biomass under changing climate | 9 | A | 1 | 1 | 3 | 3 | 3 | |||||
BE2 | Performance of broiler chicken with substitution of 2.5% Sargassum in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE3 | Performance of broiler chicken with substitution of 6% Sargassum in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE4 | Performance of broiler chicken with 10% substitution of Sargassum in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE6 | Performance of broiler chicken with substitution of 2.5% Spirulina in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE7 | Performance of broiler chicken with 6% substitution of Spirulina in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE8 | Performance of broiler chicken with substitution of 2.5% Gracilaria in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE9 | Performance of broiler chicken with 6% substitution of Gracilaria in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE10 | Performance of broiler chicken with 10% substitution of Gracilaria in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
BE11 | Performance of broiler chicken with 10% substitution of Spirulina in poultry feed | 0 | N | 0 | 1 | 1 | 1 | 1 | |||||
Sociological and Cultural Components (SC) | |||||||||||||
Components | ES | RB | A1 | A2 | B1 | B2 | B3 | ||||||
SC1 | Algal removal from coastline | 32 | C | 2 | 2 | 3 | 3 | 2 | |||||
SC2 | Reduction in dependence of feed import | 7 | A | 1 | 1 | 2 | 2 | 3 | |||||
Economical and Operational Components (EO) | |||||||||||||
Components | ES | RB | A1 | A2 | B1 | B2 | B3 | ||||||
EO1 | Cost of feed by using Sargassum from local marine area | 7 | A | 1 | 1 | 3 | 2 | 2 | |||||
EO2 | Procured algae for addition to poultry feed | 14 | B | 2 | 1 | 3 | 2 | 2 | |||||
EO3 | Feed efficiency of Gracilaria 2.5% | 0 | N | 0 | 0 | 2 | 1 | 1 | |||||
EO4 | Feed efficiency of Gracilaria at 6% | 0 | N | 0 | 1 | 2 | 1 | 1 | |||||
EO5 | Feed efficiency of Gracilaria at 10% | 0 | N | 0 | 2 | 2 | 1 | 1 | |||||
EO6 | Feed efficiency of Sargassum 2.5% | 0 | N | 0 | 0 | 2 | 1 | 1 | |||||
EO7 | Feed efficiency of Sargassum 6% | 0 | N | 0 | 1 | 2 | 1 | 1 | |||||
EO8 | Feed efficiency of Sargassum 10% | 0 | N | 0 | 2 | 2 | 1 | 1 | |||||
EO9 | Feed efficiency of Spirulina 5% | 0 | N | 0 | −1 | 2 | 1 | 1 | |||||
EO10 | Feed efficiency of Spirulina 7.5% | 0 | N | 0 | 1 | 2 | 1 | 1 | |||||
Summary of Scores | |||||||||||||
Range | −108 | −71 | −35 | −18 | −9 | 0 | 1 | 10 | 19 | 36 | 72 | ||
−72 | −36 | −19 | −10 | −1 | 0 | 9 | 18 | 35 | 71 | 108 | |||
Class | −E | −D | −C | −B | −A | N | A | B | C | D | E | ||
PC | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 0 | ||
BE | 0 | 0 | 0 | 0 | 0 | 9 | 1 | 0 | 0 | 0 | 0 | ||
SC | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | ||
EO | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 1 | 0 | 0 | 0 | ||
Total | 0 | 0 | 0 | 0 | 0 | 17 | 7 | 3 | 1 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khalaifah, H.; Uddin, S. Assessment of Sargassum sp., Spirulina sp., and Gracilaria sp. as Poultry Feed Supplements: Feasibility and Environmental Implications. Sustainability 2022, 14, 8968. https://doi.org/10.3390/su14148968
Al-Khalaifah H, Uddin S. Assessment of Sargassum sp., Spirulina sp., and Gracilaria sp. as Poultry Feed Supplements: Feasibility and Environmental Implications. Sustainability. 2022; 14(14):8968. https://doi.org/10.3390/su14148968
Chicago/Turabian StyleAl-Khalaifah, Hanan, and Saif Uddin. 2022. "Assessment of Sargassum sp., Spirulina sp., and Gracilaria sp. as Poultry Feed Supplements: Feasibility and Environmental Implications" Sustainability 14, no. 14: 8968. https://doi.org/10.3390/su14148968
APA StyleAl-Khalaifah, H., & Uddin, S. (2022). Assessment of Sargassum sp., Spirulina sp., and Gracilaria sp. as Poultry Feed Supplements: Feasibility and Environmental Implications. Sustainability, 14(14), 8968. https://doi.org/10.3390/su14148968