Has Industrial Upgrading Improved Air Pollution?—Evidence from China’s Digital Economy
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area and Data Sources
- (1)
- Air pollution data. PM2.5 concentration data for the period 2013–2020 (V4.CH.03) (https://sites.wustl.edu/acag/datasets/surface-pm2–5/#V4.CH.03) (accessed on 7 April 2021) come from the Atmospheric Composition Analysis Group (ACAG) of Washington University in St. Louis, MO, USA. The SO2 concentration data (https://zenodo.org/record/5765553#.YpYPwciEwi0) (accessed on 6 April 2021) and NO2 concentration data (https://zenodo.org/record/5765561#.YpYPwciEwi0) (accessed on 6 April 2021) are derived from the China High Air Pollutants (CHAP) dataset released by the University of Maryland, USA. It is generated from big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) by considering the spatial-temporal heterogeneity of air pollution and using artificial intelligence. It has long-term, full coverage, high-resolution, and high-quality characteristics.
- (2)
- Socioeconomic data. As core explanatory variables, the index of industrial sophistication (the ratio of tertiary industry to secondary industry) is calculated using the output value of the secondary industry and the output value of the tertiary industry provided in the statistical yearbooks of China’s provinces and cities. Considering the availability of relevant data at the city level, the digital economy index is constructed to measure the comprehensive development level of the digital economy in terms of both internet development and digital financial inclusion. The number of broadband internet access users per 100 persons, the proportion of computer service and software industry employees to urban employees, the total amount of telecommunication services per capita, and the number of cell phone users per 100 persons are selected from the China Urban Statistical Yearbook (2014–2021) to characterize the internet penetration rate, related employment, related output, and cell phone penetration rate, respectively. For digital finance development, the China Digital Inclusive Finance Index, which is jointly compiled by the Digital Finance Research Center of Peking University and Ant Financial Services Group, is used. This paper calculated these five indicators using the entropy value method [50] to obtain a comprehensive digital economy development index [51], denoted as Dige. Data on GDP per capita, population urbanization rate, and population density were obtained from the China Urban Statistical Yearbook (2014–2021). Because of the close relationship between nighttime lighting image data and urban population density, total GDP, energy consumption, and residents’ lifestyles, this paper selected the sum of raster grayscale values within the scope of prefecture-level administrative units to comprehensively measure the intensity of human socioeconomic activities in the studied cities. This paper selected nighttime light data from the global 500 m resolution “NPP-VIIRS-like” nighttime light dataset produced using a deep learning model (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD) (accessed on 5 April 2021) [52].
- (3)
- Natural environmental data. Existing studies show that, in addition to socioeconomic factors, natural environmental factors have significant effects on air quality, especially on PM2.5 concentrations. This paper selected the normalized difference vegetation index (NDVI), annual average precipitation, and airflow coefficient as influencing factors. The NDVI was obtained from the National Aeronautics and Space Administration (NASA) (https://search.earthdata.nasa.gov/search/granules?p=C1621135848-LPDAAC_ECS&pg[0][v]=f&pg[0][gsk]=-start_date&q=Vegetation%20Indices%2016-Day%20L3%20Global%20500m&tl=1651319558!3!!&lat=31.21875&long=50.484375) (accessed on 7 April 2021). The annual precipitation and the mean wind speed and atmospheric boundary data were obtained from the latitude and longitude raster meteorological data published by the ECMWF (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthlymeans?tab=form ) (accessed on 7 April 2021), and the ventilation coefficients (VC) were calculated by referring to the study by Hering [53].
2.2. Research Methodology
2.2.1. Spatial Autocorrelation
2.2.2. Entropy Value Method
2.2.3. Multiple Panel Regression Model
3. Results
3.1. Spatial-Temporal Distribution of Air Pollution
3.2. Spatial Correlation Characteristics of Air Pollution
3.3. Driving Relationship between Industrial Upgrading and Air Pollution
3.4. Heterogeneity of Influencing Factors of Air Pollution Based on Industrial Upgrading
4. Discussion
4.1. Mechanism Analysis of the Impact of Industrial Upgrading on Air Pollution
4.2. The Differential Impacts of Industrial Upgrading on Air Pollution
4.3. Research Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, Q.; Lin, Y.; Huang, J.; Chen, Z. Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data. China Econ. Rev. 2020, 59, 101381. [Google Scholar] [CrossRef]
- Wang, S.; Sun, P.; Sun, F.; Jiang, S.; Zhang, Z.; Wei, G. The direct and spillover effect of multi-dimensional urbanization on PM2.5 concentrations: A case study from the Chengdu-Chongqing Urban Agglomeration in China. Int. J. Environ. Res. Public Health 2021, 18, 10609. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Zhang, Z.; Ouyang, X.; Shen, Y.; Jiang, S.; Liu, B.; He, B.J. Delineating the spatial-temporal variation of air pollution with urbanization in the Belt and Road Initiative area. Environ. Impact Assess. Rev. 2021, 91, 106646. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Nogueira, T.; Abbass, R.A.; Brand, V.S.; de Fatima Andrade, M.; Asfaw, A.; Aziz, K.H.; Cao, S.; El-Gendy, A.; et al. In-car particulate matter exposure across ten global cities. Sci. Total Environ. 2020, 750, 141395. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Hama, S.; Abbass, R.A.; Nogueira, T.; Brand, V.S.; Abhijith, K.V.; de Fatima Andrade, M.; Asfaw, A.; Aziz, K.H.; Cao, S.; et al. Potential health risks due to in-car aerosol exposure across ten global cities. Environ. Int. 2021, 155, 106688. [Google Scholar] [CrossRef]
- Pei, T.; Gao, L.; Yang, C.; Xu, C.; Tian, Y.; Song, W. The impact of FDI on urban PM2.5 pollution in China: The mediating effect of industrial structure transformation. Int. J. Environ. Res. Public Health 2021, 18, 9107. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, J.; Zhong, C.; Li, X.; Wei, J. Spatiotemporal PM2.5 variations and its response to the industrial structure from 2000 to 2018 in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 279, 123742. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Xu, Y.; Sun, S.; Li, T. Potential heterogeneity in the relationship between urbanization and air pollution, from the perspective of urban agglomeration. J. Clean. Prod. 2021, 298, 126822. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Sun, S.; Yao, L.; Fu, X. Spatiotemporal heterogeneity of PM2.5 and its driving difference comparison associated with urbanization in China’s multiple urban agglomerations. Environ. Sci. Pollut. Res. 2022, 29, 29689–29703. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Song, H.; Wang, F.; Zhai, S.; Han, Z.; Wang, D.; Li, X.; Zhao, H.; Ma, R.; Zhang, G. Hysteretic effects of meteorological conditions and their interactions on particulate matter in Chinese cities. J. Clean. Prod. 2020, 274, 122926. [Google Scholar] [CrossRef]
- Chang, F.J.; Chang, L.C.; Kang, C.C.; Wang, Y.S.; Huang, A. Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques. Sci. Total Environ. 2020, 736, 139656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; He, S.; Cui, Y.; Zhou, H.; Kong, H. Effects of the socio-economic influencing factors on SO2 pollution in Chinese cities: A spatial econometric analysis based on satellite observed data. J. Environ. Manag. 2020, 268, 110667. [Google Scholar] [CrossRef]
- Yuan, W.; Sun, H.; Chen, Y.; Xia, X. Spatio-temporal evolution and spatial heterogeneity of influencing factors of SO2 emissions in Chinese cities: Fresh evidence from MGWR. Sustainability 2021, 13, 12059. [Google Scholar] [CrossRef]
- Ma, C.; Ju, T.; Wang, Q.; Li, F.; Zhang, Y.; Zhang, G. Spatiotemporal variations of tropospheric NO2 in Lanzhou for the period 2009–2018 based on satellite remote sensing. Atmos. Pollut. Res. 2021, 12, 206–216. [Google Scholar] [CrossRef]
- Liu, X.; Yi, G.; Zhou, X.; Zhang, T.; Lan, Y.; Yu, D.; Wen, B.; Hu, J. Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P. Atmosphere 2021, 12, 1142. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Karimian, H.; Li, M.; Fan, Q.; Xu, Z. Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on Geodetector and Geospatial models. Chemosphere 2022, 302, 134843. [Google Scholar] [CrossRef]
- Duan, W.; Wang, X.; Cheng, S.; Wang, R.; Zhu, J. Influencing factors of PM2.5 and O3 from 2016 to 2020 based on DLNM and WRF-CMAQ. Environ. Pollut. 2021, 285, 117512. [Google Scholar] [CrossRef]
- Maffia, J.; Balsari, P.; Padoan, E.; Ajmone-Marsan, F.; Aimonino, D.R.; Dinuccio, E. Evaluation of particulate matter (PM10) emissions and its chemical characteristics during rotary harrowing operations at different forward speeds and levelling bar heights. Environ. Pollut. 2020, 265, 115041. [Google Scholar] [CrossRef]
- Li, X.; Pan, Y.; Mo, Z. Joint effects of several factors on cloud-to-ground lightning and rainfall in Nanning (China). Atmos. Res. 2018, 212, 23–32. [Google Scholar] [CrossRef]
- Wei, G.; Sun, P.; Jiang, S.; Shen, Y.; Liu, B.; Zhang, Z.; Ouyang, X. The driving influence of multi-dimensional urbanization on PM2.5 concentrations in Africa: New evidence from multi-source remote sensing data, 2000–2018. Int. J. Environ. Res. Public Health 2021, 18, 9389. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Liu, H.; Wang, S. The coupling curve between urbanization and the eco-environment: China’s urban agglomeration as a case study. Ecol. Indic. 2021, 130, 108107. [Google Scholar] [CrossRef]
- Zhao, H.; Niu, Z.; Feng, X. Factors influencing improvements in air quality in Guanzhong cities of China, and variations therein for 2014–2020. Urban Clim. 2021, 38, 100877. [Google Scholar] [CrossRef]
- Han, X.; Fang, W.; Li, H.; Wang, Y.; Shi, J. Heterogeneity of influential factors across the entire air quality spectrum in Chinese cities: A spatial quantile regression analysis. Environ. Pollut. 2020, 262, 114259. [Google Scholar] [CrossRef]
- Li, X.; Yan, C.; Wang, C.; Ma, J.; Li, W.; Liu, J.; Liu, Y. PM2.5-bound elements in Hebei Province, China: Pollution levels, source apportionment and health risks. Sci. Total Environ. 2022, 806, 150440. [Google Scholar] [CrossRef]
- Karimi, B.; Shokrinezhad, B. Spatial variation of ambient PM2.5 and PM10 in the industrial city of Arak, Iran: A land-use regression. Atmos. Pollut. Res. 2021, 12, 101235. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, M.; Ding, Y. Exploring the effect of economic and environment factors on PM2.5 concentration: A case study of the Beijing-Tianjin-Hebei region. J. Environ. Manag. 2020, 268, 110703. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Zhang, Y.; Chen, H.; Sang, S. Global burden of COPD attributable to ambient PM2.5 in 204 countries and territories, 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Sci. Total Environ. 2021, 796, 148819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhao, K.; Yu, Y. The effect of environmental regulation on air pollution, productivity, and factor structure: A quasi-natural experiment evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 20392–20409. [Google Scholar] [CrossRef]
- Marangon, D.; Traversi, D.; D’Agostino, A.M.; Gea, M.; Fontana, M.; Schilirò, T. The North-western Italy air quality monitoring network: Improving experience of PM2.5 assessment with mutagenicity assay. Environ. Res. 2021, 195, 110699. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cui, W.; Zhang, M. Exploring the causal relationship between urbanization and air pollution: Evidence from China. Sustain. Cities Soc. 2022, 80, 103783. [Google Scholar] [CrossRef]
- She, Q.; Cao, S.; Zhang, S.; Zhang, J.; Zhu, H.; Bao, J.; Meng, X.; Liu, M.; Liu, Y. The impacts of comprehensive urbanization on PM2.5 concentrations in the Yangtze River Delta, China. Ecol. Indic. 2021, 132, 108337. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Booker, D.; Zhao, S.; Tang, J.; Jiang, H.; Shen, J.; Chen, D.; Li, J.; Jones, K.; Zhang, G. The application of land use regression model to investigate spatiotemporal variations of PM2.5 in Guangzhou, China: Implications for the public health benefits of PM2.5 reduction. Sci. Total Environ. 2021, 778, 146305. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, X.; Ding, S.; Ji, X.; Pan, W. Predictions and mitigation strategies of PM2.5 concentration in the Yangtze River Delta of China based on a novel nonlinear seasonal grey model. Environ. Pollut. 2021, 276, 116614. [Google Scholar] [CrossRef]
- Sun, W.; Xu, Z. A novel hourly PM2.5 concentration prediction model based on feature selection, training set screening, and mode decomposition-reorganization. Sustain. Cities Soc. 2021, 75, 103348. [Google Scholar] [CrossRef]
- Wyche, K.P.; Cordell, R.L.; Smallbone, K.L.; Lyons, P.; Hama, S.M.L.; Monks, P.S.; Staelens, J.; Hofman, J.; Stroobants, C.; Roekens, E.; et al. The spatio-temporal evolution of black carbon in the North-West European ‘air pollution hotspot’. Atmos. Environ. 2020, 243, 117874. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liang, J.; Yao, F. Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies. Environ. Pollut. 2021, 285, 117138. [Google Scholar] [CrossRef]
- Fang, X.; Fan, Q.; Liao, Z.; Xie, J.; Xu, X.; Fan, S. Spatial-temporal characteristics of the air quality in the Guangdong−Hong Kong−Macau Greater Bay Area of China during 2015–2017. Atmos. Environ. 2019, 210, 14–34. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China−New evidence using the dynamic threshold panel model. Energy Rep. 2020, 6, 28–39. [Google Scholar] [CrossRef]
- Liu, X.; Zou, B.; Feng, H.; Liu, N.; Zhang, H. Anthropogenic factors of PM2.5 distributions in China’s major urban agglomerations: A spatial-temporal analysis. J. Clean. Prod. 2020, 264, 121709. [Google Scholar] [CrossRef]
- Li, Z.; Li, N.; Wen, H. Digital economy and environmental quality: Evidence from 217 cities in China. Sustainability 2021, 13, 8058. [Google Scholar] [CrossRef]
- Jia, L.; Hu, X.; Zhao, Z.; He, B.; Liu, W. How environmental regulation, digital development and technological innovation affect China’s green economy performance: Evidence from dynamic thresholds and system GMM panel data approaches. Energies 2022, 15, 884. [Google Scholar] [CrossRef]
- Guo, F.; Wang, Z.; Ji, S.; Lu, Q. Influential nodes identification in the air pollution spatial correlation weighted networks and collaborative governance: Taking China’s three urban agglomerations as examples. Int. J. Environ. Res. Public Health 2022, 19, 4461. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, Y.; Lei, Y.; Xue, W.; Yan, G.; Liu, X.; Cai, B.; Tang, D.; Wang, J. Air quality benefits of achieving carbon neutrality in China. Sci. Total Environ. 2021, 795, 148784. [Google Scholar] [CrossRef]
- Han, D.; Ding, Y.; Shi, Z.; He, Y. The impact of digital economy on total factor carbon productivity: The threshold effect of technology accumulation. Environ. Sci. Pollut. Res. 2022, 1–16. [Google Scholar] [CrossRef]
- Harris, R.; Tzavalis, E. Inference for unit roots in dynamic panels where the time dimension is fixed. J. Econom. 1999, 91, 201–226. [Google Scholar] [CrossRef]
- Lin, H.; Pan, T.; Chen, S. Comprehensive evaluation of urban air quality using the relative entropy theory and improved TOPSIS method. Air Qual. Atmos. Health 2021, 14, 251–258. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Zhang, H.; Xue, C. Digital economy development and urban green innovation CA-pability: Based on panel data of 274 prefecture-level cities in China. Sustainability 2022, 14, 2921. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Hering, L.; Poncet, S. Environmental policy and exports: Evidence from Chinese cities. J. Environ. Econ. Manag. 2014, 68, 296–318. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 127–145. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital economy development, industrial structure upgrading and green total factor productivity: Empirical evidence from China’s cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Hausman, J. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Li, J.; Chen, B.; Wang, M.; Zhang, P.; Guan, D.; Meng, J.; Qian, H.; Cheng, Y.; Kang, C.; et al. Embodied greenhouse gas emissions from building China’s large-scale power transmission infrastructure. Nat. Sustain. 2021, 4, 739–747. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Hang, Y.; Wang, Q. The two-stage factors driving changes in China’s industrial SO2 emission intensity: A production-theoretical decomposition analysis. Sci. Total Environ. 2022, 814, 152426. [Google Scholar] [CrossRef]
- Wang, H.; Li, J. Dual effects of environmental regulation on PM2.5 pollution: Evidence from 280 cities in China. Environ. Sci. Pollut. Res. 2021, 28, 47213–47226. [Google Scholar] [CrossRef]
- Li, M.; Guan, S. Does China’s state-owned sector lead industrial transformation and upgrading? J. Clean. Prod. 2022, 338, 130412. [Google Scholar] [CrossRef]
- Song, M.; Zheng, C.; Wang, J. The role of digital economy in China’s sustainable development in a post-pandemic environment. J. Enterp. Inf. Manag. 2022, 35, 58–77. [Google Scholar] [CrossRef]
- Xiong, S.; Ma, X.; Ji, J. The impact of industrial structure efficiency on provincial industrial energy efficiency in China. J. Clean. Prod. 2019, 215, 952–962. [Google Scholar] [CrossRef]
- Gao, A.; Wang, J.; Poetzscher, J.; Li, S.; Gao, B.; Wang, P.; Luo, J.; Fang, X.; Li, J.; Hu, J.; et al. Coordinated health effects attributable to particulate matter and other pollutants exposures in the North China Plain. Environ. Res. 2022, 208, 112671. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, J.; Gao, X.; Xi, X.; Liu, D.; Zhao, Y. Global impacts of the topological structure of industrial driving networks on energy intensity. Energy 2021, 225, 120192. [Google Scholar] [CrossRef]
- Wei, W.; Xin, Z.; Geng, Y.; Li, J.; Yao, M.; Guo, Y.; Zhang, P. The reallocation effect of China’s provincial power transmission and trade on regional heavy metal emissions. IScience 2021, 24, 102529. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Guo, X.; Li, C. Research on big data analysis model of multi energy power generation considering pollutant emission−Empirical analysis from Shanxi Province. J. Clean. Prod. 2021, 316, 128154. [Google Scholar] [CrossRef]
- Li, J.; Lei, J.; Li, S.; Yang, Z.; Tong, Y.; Zhang, S.; Duan, Z. Spatiotemporal analysis of the relationship between urbanization and the eco-environment in the Kashgar metropolitan area, China. Ecol. Indic. 2022, 135, 108524. [Google Scholar] [CrossRef]
- Luo, X.; Sun, K.; Li, L.; Wu, S.; Yan, D.; Fu, X.; Luo, H. Impacts of urbanization process on PM2.5 pollution in “2+26” cities. J. Clean. Prod. 2021, 284, 124761. [Google Scholar] [CrossRef]
- Li, Z.; Li, C. How industrial upgrading can improve China’s air quality: Empirical analysis based on multilevel growth model. Environ. Sci. Pollut. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Ai, H.; Wang, M.; Zhang, Y.; Zhu, T. How does air pollution affect urban innovation capability? Evidence from 281 cities in China. Struct. Change Econ. Dyn. 2022, 61, 166–178. [Google Scholar] [CrossRef]
- Shi, L. Industrial Structure Changes, Spatial spillover and economic growth in the Yangtze River Delta. J. Coast. Res. 2020, 107, 377–382. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, P.; Zhang, Z.; Li, J. Impact of environmental regulations on industrial structure upgrading: An empirical study on Beijing-Tianjin-Hebei region in China. J. Clean. Prod. 2019, 238, 117848. [Google Scholar] [CrossRef]
Variables | Samples | Mean | Standard Deviation | Minimum | Maximum | HT Test | Conclusion | |
---|---|---|---|---|---|---|---|---|
Statistic | p | |||||||
lnPM2.5 | 2288 | 3.641 | 0.365 | 1.153 | 4.690 | 0.167 | 0.000 | smooth |
lnSO2 | 2288 | 2.812 | 0.572 | 0.333 | 4.504 | 0.925 | 0.000 | smooth |
lnNO2 | 2288 | 3.219 | 0.372 | 0.339 | 3.986 | 0.976 | 0.017 | smooth |
Ind | 2288 | 1.129 | 0.682 | 0.207 | 12.937 | 0.933 | 0.000 | smooth |
Dige | 2288 | 0.101 | 0.055 | 0.017 | 0.820 | −0.281 | 0.000 | smooth |
lnVGDP | 2288 | 10.817 | 0.565 | 9.037 | 13.068 | 0.898 | 0.000 | smooth |
ln2 VGDP | 2288 | 117.320 | 12.299 | 81.664 | 170.761 | 0.901 | 0.000 | smooth |
lnPU | 2288 | 4.001 | 0.258 | 3.032 | 4.605 | 0.927 | 0.000 | smooth |
lnHAI | 2288 | 10.188 | 0.976 | 7.713 | 13.104 | 0.166 | 0.000 | smooth |
lnPD | 2288 | 5.732 | 0.942 | 1.773 | 8.249 | 0.007 | 0.000 | smooth |
NDVI | 2288 | 0.717 | 0.152 | 0.066 | 0.905 | −0.324 | 0.000 | smooth |
lnPRCP | 2288 | 6.852 | 0.483 | 5.292 | 7.917 | 0.948 | 0.000 | smooth |
VC | 2288 | 7.482 | 0.6407 | 0.000 | 8.812 | 0.909 | 0.000 | smooth |
Year | PM2.5 Concentration | SO2 Concentration | NO2 Concentration | ||||||
---|---|---|---|---|---|---|---|---|---|
Moran’s I | z Value | p Value | Moran’s I | z Value | p Value | Moran’s I | z Value | p Value | |
2013 | 0.820 | 24.031 | 0.001 | 0.878 | 26.128 | 0.001 | 0.815 | 24.052 | 0.001 |
2014 | 0.792 | 23.096 | 0.001 | 0.872 | 25.887 | 0.001 | 0.806 | 23.855 | 0.001 |
2015 | 0.827 | 23.897 | 0.001 | 0.851 | 25.229 | 0.001 | 0.805 | 23.838 | 0.001 |
2016 | 0.805 | 24.080 | 0.001 | 0.839 | 25.110 | 0.001 | 0.804 | 23.570 | 0.001 |
2017 | 0.809 | 23.347 | 0.001 | 0.809 | 24.080 | 0.001 | 0.805 | 23.726 | 0.001 |
2018 | 0.782 | 22.905 | 0.001 | 0.771 | 22.833 | 0.001 | 0.810 | 23.891 | 0.001 |
2019 | 0.815 | 24.902 | 0.001 | 0.750 | 21.776 | 0.001 | 0.798 | 23.796 | 0.001 |
2020 | 0.775 | 23.571 | 0.001 | 0.713 | 20.504 | 0.001 | 0.809 | 23.931 | 0.001 |
Variables | Ind as a Core Explanatory Variable | Dige as a Core Explanatory Variable | ||||
---|---|---|---|---|---|---|
PM2.5 Concentration | SO2 Concentration | NO2 Concentration | PM2.5 Concentration | SO2 Concentration | NO2 Concentration | |
Ind | −0.039 *** (0.006) | −0.033 *** (0.013) | −0.014 *** (0.005) | - | - | - |
Dige | - | - | - | −1.362 *** (0.073) | −3.071 *** (0.167) | −0.387 ** (0.054) |
lnVGDP | 0.458 ** (0.165) | 1.045 *** (0.378) | 0.540 *** (0.150) | 0.342 ** (0.154) | 0.689 ** (0.350) | 0.371 *** (0.112) |
ln2 VGDP | −0.024 *** (0.008) | −0.054 *** (0.017) | −0.024 *** (0.007) | −0.018 *** (0.007) | −0.036 ** (0.016) | −0.016 *** (0.005) |
lnPU | −0.374 *** (0.033) | −1.006 *** (0.075) | −0.086 *** (0.023) | −0.323 *** (0.030) | −0.835 *** (0.069) | −0.069 *** (0.022) |
lnHAI | −0.390 *** (0.012) | −0.977 *** (0.028) | −0.073 *** (0.009) | −0.328 *** (0.012) | −0.811 *** (0.028) | −0.058 *** (0.008) |
lnPD | −0.036 ** (0.016) | −0.125 *** (0.036) | 0.027 ** (0.012) | −0.001 (0.014) | −0.040 (0.033) | 0.039 *** (0.010) |
NDVI | 0.346 *** (0.031) | 0.491 *** (0.071) | 0.246 *** (0.022) | 0.270 *** (0.029) | 0.269 *** (0.066) | 0.229 *** (0.021) |
lnPRCP | −0.203 *** (0.017) | −0.148 *** (0.039) | −0.117 *** (0.012) | −0.206 *** (0.016) | −0.154 *** (0.036) | −0.117 *** (0.012) |
VC | −0.029 *** (0.009) | −0.130 *** (0.021) | −0.036 *** (0.006) | −0.021 *** (0.008) | −0.084 *** (0.019) | −0.030 *** (0.006) |
cons | 8.645 *** (0.865) | 14.220 *** (1.982) | 1.991 ** (0.851) | 8.235 *** (0.810) | 13.193 *** (1.835) | 2.589 *** (0.592) |
R2 | 0.713 | 0.712 | 0.264 | 0.748 | 0.754 | 0.282 |
F statistic | 44.32 | 28.13 | 127.78 | 48.54 | 31.06 | 137.12 |
N | 2288 | 2288 | 2288 | 2288 | 2288 | 2288 |
Variables | Key Cities of Environmental Protection | Yangtze River Delta | “2 + 26” Cities in Beijing–Tianjin–Hebei and Its Surrounding Areas | |||
---|---|---|---|---|---|---|
Ind as a Core Explanatory Variable | Dige as a Core Explanatory Variable | Ind as a Core Explanatory Variable | Dige as a Core Explanatory Variable | Ind as a Core Explanatory Variable | Dige as a Core Explanatory Variable | |
Ind | −0.064 *** (0.011) | - | −0.188 *** (0.032) | - | −0.101 *** (0.024) | - |
Dige | - | −1.119 *** (0.082) | - | −1.003 *** (0.163) | - | −1.164 *** (0.054) |
lnVGDP | 0.622 *** (0.221) | 0.563 *** (0.378) | 4.113 *** (0.411) | 3.161 *** (0.439) | 1.085 *** (0.446) | 0.989 ** (0.447) |
ln2 VGDP | −0.032 *** (0.010) | −0.029 *** (0.009) | −0.188 *** (0.019) | −0.145 *** (0.020) | −0.050 *** (0.020) | −0.045 ** (0.020) |
lnPU | −0.318 *** (0.049) | −0.332 *** (0.045) | −0.479 *** (0.124) | −0.435 *** (0.124) | −0.507 *** (0.141) | −0.560 *** (0.138) |
lnHAI | −0.422 *** (0.019) | −0.364 *** (0.018) | −0.419 *** (0.043) | −0.420 *** (0.043) | −0.323 *** (0.041) | −0.303 *** (0.042) |
lnPD | −0.053 *** (0.019) | −0.025 (0.018) | −0.134 *** (0.044) | −0.102 ** (0.045) | −0.102 (0.082) | 0.013 (0.088) |
NDVI | 0.299 *** (0.043) | 0.220 *** (0.041) | 0.426 *** (0.099) | 0.305 *** (0.101) | 0.505 *** (0.105) | 0.423 *** (0.021) |
lnPRCP | −0.210 *** (0.022) | −0.205 *** (0.021) | −0.194 *** (0.043) | −0.205 *** (0.043) | −0.035 (0.058) | −0.159 (0.057) |
VC | 0.007 (0.010) | −0.020** (0.010) | −0.087 (0.056) | −0.046 (0.057) | −0.179 *** (0.033) | −0.142 *** (0.034) |
cons | 8.177 *** (1.145) | 8.034 *** (1.064) | −9.337 *** (0.851) | −4.649 ** (2.254) | 5.821 ** (2.557) | 5.488 *** (2.528) |
R2 | 0.745 | 0.786 | 0.816 | 0.818 | 0.861 | 0.863 |
F statistic | 32.93 | 43.91 | 31.29 | 37.53 | 29.62 | 26.14 |
N | 1344 | 1344 | 328 | 328 | 224 | 224 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, G.; Wang, Z.; Wang, Z.; Wei, L. Has Industrial Upgrading Improved Air Pollution?—Evidence from China’s Digital Economy. Sustainability 2022, 14, 8967. https://doi.org/10.3390/su14148967
Qi G, Wang Z, Wang Z, Wei L. Has Industrial Upgrading Improved Air Pollution?—Evidence from China’s Digital Economy. Sustainability. 2022; 14(14):8967. https://doi.org/10.3390/su14148967
Chicago/Turabian StyleQi, Guangzhi, Zhibao Wang, Zhixiu Wang, and Lijie Wei. 2022. "Has Industrial Upgrading Improved Air Pollution?—Evidence from China’s Digital Economy" Sustainability 14, no. 14: 8967. https://doi.org/10.3390/su14148967