Life Cycle Assessment and Life Cycle Cost of an Innovative Carbon Paper Sensor for 17α-Ethinylestradiol and Comparison with the Classical Chromatographic Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction Procedure of 17α-Ethinylestradiol from Fish Samples
2.2. Carbon Paper Sensing of 17α-Ethinylestradiol in Fish Extracts
2.3. Chromatographic Analysis of 17α-Ethinylestradiol in Fish Extracts
3. Life Cycle Assessment
3.1. Goal and Scope
3.2. Inventory
4. Results and Discussion
4.1. Environmental Impact Assessment
4.2. Interpretation of Environmental Impacts
4.3. Life Cycle Costing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular Economy Innovation and Environmental Sustainability Impact on Economic Growth: An Integrated Model for Sustainable Development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Chen, T.-L.; Kim, H.; Pan, S.-Y.; Tseng, P.-C.; Lin, Y.-P.; Chiang, P.-C. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total Environ. 2020, 716, 136998. [Google Scholar] [CrossRef] [PubMed]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Miller, T.H.; Bury, N.R.; Owen, S.F.; MacRae, J.I.; Barron, L.P. A review of the pharmaceutical exposome in aquatic fauna. Environ. Pollut. 2018, 239, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef]
- Carvalho, R.N.; Ceriani, L.; Ippolito, A.; Lettieri, T. Development of the First Watch List under the Environmental Quality Standards Directive, JRC Technical Report; European Commission: Publications Office of the European Union, Luxembourg, 2015.
- Hersey, M.; Berger, S.N.; Holmes, J.; West, A.; Hashemi, P. Recent Developments in Carbon Sensors for at-Source Electroanalysis. Anal. Chem. 2019, 91, 27–43. [Google Scholar] [CrossRef]
- Ferreira, P.C.; Ataíde, V.N.; Silva Chagas, C.L.; Angnes, L.; Tomazelli Coltro, W.K.; Longo Cesar Paixão, T.R.; Reis de Araujo, W. Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends Anal. Chem. 2019, 119, 115622. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, R.; Luo, F.; Wang, P.; Lin, Z. Miniaturized electrochemical sensors and their point-of-care applications. Chin. Chem. Lett. 2020, 31, 589–600. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Rao, Z.; Dhanjai; Wu, J.; Shen, Y.; Boddula, R.; Huang, Y. Electrochemical (bio) sensors go green. Biosens. Bioelectron. 2020, 163, 112270. [Google Scholar] [CrossRef]
- Torrinha, Á.; Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Correia, A.N.; Lima-Neto, P.; Morais, S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. Nanomaterials 2020, 10, 1268. [Google Scholar] [CrossRef]
- Torrinha, Á.; Morais, S. Electrochemical (bio)sensors based on carbon cloth and carbon paper: An overview. TrAC Trends Anal. Chem. 2021, 142, 116324. [Google Scholar] [CrossRef]
- Shi, H.; Wen, G.; Nie, Y.; Zhang, G.; Duan, H. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale 2020, 12, 5261–5285. [Google Scholar] [CrossRef] [PubMed]
- Torrinha, Á.; Martins, M.; Tavares, M.; Delerue-Matos, C.; Morais, S. Carbon paper as a promising sensing material: Characterization and electroanalysis of ketoprofen in wastewater and fish. Talanta 2021, 226, 122111. [Google Scholar] [CrossRef] [PubMed]
- Torrinha, Á.; Carneiro, P.; Dias, D.; Delerue-Matos, C.; Morais, S. The simpler the better: Highly sensitive 17α-ethinylestradiol sensor based on an unmodified carbon paper transducer. Talanta 2022, 245, 123457. [Google Scholar] [CrossRef]
- Varanda, M.G.; Pinto, G.; Martins, F. Life cycle analysis of biodiesel production. Fuel Processing Technol. 2011, 92, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Brito, M.; Martins, F. Life cycle assessment of butanol production. Fuel 2017, 208, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Yusof, S.J.H.M.; Roslan, A.M.; Ibrahim, K.N.; Abdullah, S.S.S.; Zakaria, M.R.; Hassan, M.A.; Shirai, Y. Life Cycle Assessment for Bioethanol Production from Oil Palm Frond Juice in an Oil Palm Based Biorefinery. Sustainability 2019, 11, 6928. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Kumar Choubey, V.; Deepak, A.; Gedam, V.V.; Raut, R.D. Life cycle assessment (LCA) of dairy processing industry: A case study of North India. J. Clean. Prod. 2021, 326, 129331. [Google Scholar] [CrossRef]
- Wilfart, A.; Gac, A.; Salaün, Y.; Aubin, J.; Espagnol, S. Allocation in the LCA of meat products: Is agreement possible? Clean. Environ. Syst. 2021, 2, 100028. [Google Scholar] [CrossRef]
- Blanc, S.; Massaglia, S.; Brun, F.; Peano, C.; Mosso, A.; Giuggioli, N.R. Use of Bio-Based Plastics in the Fruit Supply Chain: An Integrated Approach to Assess Environmental, Economic, and Social Sustainability. Sustainability 2019, 11, 2475. [Google Scholar] [CrossRef] [Green Version]
- Gamage, A.; Liyanapathiranage, A.; Manamperi, A.; Gunathilake, C.; Mani, S.; Merah, O.; Madhujith, T. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability 2022, 14, 6085. [Google Scholar] [CrossRef]
- AzariJafari, H.; Guest, G.; Kirchain, R.; Gregory, J.; Amor, B. Towards comparable environmental product declarations of construction materials: Insights from a probabilistic comparative LCA approach. Build. Environ. 2021, 190, 107542. [Google Scholar] [CrossRef]
- Abdelaal, F.; Guo, B.H.W. Stakeholders’ perspectives on BIM and LCA for green buildings. J. Build. Eng. 2022, 48, 103931. [Google Scholar] [CrossRef]
- Bianco, I.; Thiébat, F.; Carbonaro, C.; Pagliolico, S.; Blengini, G.A.; Comino, E. Life Cycle Assessment (LCA)-based tools for the eco-design of wooden furniture. J. Clean. Prod. 2021, 324, 129249. [Google Scholar] [CrossRef]
- Anshassi, M.; Townsend, T.G. Reviewing the underlying assumptions in waste LCA models to identify impacts on waste management decision making. J. Clean. Prod. 2021, 313, 127913. [Google Scholar] [CrossRef]
- Goyal, H.; Mondal, P. Life cycle assessment (LCA) of the arsenic and fluoride removal from groundwater through adsorption and electrocoagulation: A comparative study. Chemosphere 2022, 304, 135243. [Google Scholar] [CrossRef]
- Martins, F.; Machado, S.; Albergaria, T.; Delerue-Matos, C. LCA applied to nano scale zero valent iron synthesis. Int. J. Life Cycle Assess. 2017, 22, 707–714. [Google Scholar] [CrossRef] [Green Version]
- The Top 300 of 2019, ClinCalc DrugStats Database, Version 2021.10. Available online: https://clincalc.com/DrugStats/Top300Drugs.aspx (accessed on 22 September 2021).
- You, H.H.; Song, G. Review of endocrine disruptors on male and female reproductive systems. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 244, 109002. [Google Scholar] [CrossRef]
- Ahamed, A.; Ge, L.; Zhao, K.; Veksha, A.; Bobacka, J.; Lisak, G. Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment towards “green” sensor manufacturing. Chemosphere 2021, 278, 130462. [Google Scholar] [CrossRef]
- Le Brun, G.; Raskin, J.-P. Material and manufacturing process selection for electronics eco-design: Case study on paper-based water quality sensors. Procedia CIRP 2020, 90, 344–349. [Google Scholar] [CrossRef]
- Ali, M.F.B.; Uejo, Y.; Kishikawa, N.; Ohyama, K.; Kuroda, N. A selective and highly sensitive high performance liquid chromatography with fluorescence derivatization approach based on Sonogashira coupling reaction for determination of ethinyl estradiol in river water samples. J. Chromatogr. A 2020, 1628, 461440. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; McKechnie, J.; Turner, T.A.; Pickering, S.J. Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Compos. Part A Appl. Sci. Manuf. 2017, 100, 206–214. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
Inputs/Outputs | Units | Weighing | Mixing | Salting out 1 | Centrifugation 1 | Salting out 2 | Centrifugation 2 | Evaporation | Dissolution |
---|---|---|---|---|---|---|---|---|---|
Electricity | kWh | 0.00009 | 0.0005 | 0.116 | 0.001 | 0.07 | 0.0018 | 0.019 | |
Acetonitrile | kg | 0.00787 | 0.0003148 | ||||||
Magnesium sulphate | kg | 0.004 | 0.0009 | ||||||
Sodium Chloride | kg | 0.001 | |||||||
Water | kg | 0.005 | 0.0016 | ||||||
Solid wastes | kg | 0.0055 | 0.00105 | 0.01754417 | |||||
Liquid effluents | m3 | 0.000009 | 0.000002 | ||||||
acylonitrile | kg | ||||||||
Vinyl acetate | kg | ||||||||
Steam | kg | ||||||||
Sulfuric acid | kg | ||||||||
Natural gas | MJ | ||||||||
NaHPO4 | kg | ||||||||
Column (silica) | 1 | ||||||||
Polypropylene | kg | 0.02229 |
Inputs/Outputs | Units | Carbon Sensor—Carbon Paper | Carbon Sensor—Other | Chromatographic Analysis |
---|---|---|---|---|
Electricity | kWh | 1.21426 × 10−5 | 0.006 | 0.731 |
Acetonitrile | kg | 0.0177075 | ||
Magnesium sulphate | kg | |||
Sodium Chloride | kg | |||
Water | kg | 8.10502 × 10−7 | 0.01 | 0.01495 |
Solid wastes | kg | 2.926 × 10−7 | 0.00032 | 2.94732 × 10−5 |
Liquid effluents | m3 | 0.00001 | ||
acylonitrile | kg | 5.1205 × 10−7 | ||
Vinyl acetate | kg | 4.6816 × 10−8 | ||
Steam | kg | 9.18764 × 10−6 | ||
Sulfuric acid | kg | 5.852 × 10−9 | ||
Natural gas | MJ | 5.20243 × 10−5 | ||
NaHPO4 | kg | 0.000134667 | ||
Column (silica) | 1 | 2.19371 × 10−5 | ||
Polypropylene | kg | 0.00032 | 0.00032 |
Inputs/Outputs | Units | Weighing | Mixing | Salting out 1 | Centrifugation 1 | Salting out 2 | Centrifugation 2 | Evaporation | Dissolution |
---|---|---|---|---|---|---|---|---|---|
Electricity | 0.2489 EUR/kWh | 0.00009 | 0.0005 | 0.116 | 0.001 | 0.07 | 0.0018 | 0.019 | |
Acetonitrile | 135.6 EUR/L | 0.01 | 0.0004 | ||||||
Magnesium sulfate and NaCl | 3.64 EUR/unit | 1 | |||||||
Magnesium sulfate and C18 | 2.96 EUR/unit | 1 | |||||||
Water | 0.002218 EUR/L | 0.005 | 0.0016 | ||||||
Solid wastes | 0.17 EUR/kg | 0.0055 | 0.00105 | 0.017544 | |||||
Liquid effluents | 1.7748 EUR/m3 | 0.000009 | 0.000002 | ||||||
NaHPO4 | 87.5 EUR/kg | ||||||||
Column (silica) | 760.08 EUR/unit | ||||||||
Propylene | 0.27534 EUR | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
Carbon paper | 0.4543 EUR/cm2 | ||||||||
Costs—Subtotal (EUR) | 0.0344399 | 0.034553 | 5.030418 | 0.064241 | 2.994666 | 0.052023 | 0.034866 | 0.096373 | |
Costs—Total (EUR) | 8.341578 |
Inputs/Outputs | Units | Carbon Sensor—Carbon Paper | Carbon Sensor—Other | Chromatographic Analysis |
---|---|---|---|---|
Electricity | 0.2489 EUR/kWh | 0.006 | 0.731 | |
Acetonitrile | 135.6 EUR/L | 0.0225 | ||
Magnesium sulfate and NaCl | 3.64 EUR/unit | |||
Magnesium sulfate and C18 | 2.96 EUR/unit | 0.001 | ||
Water | 0.002218 EUR/L | |||
Solid wastes | 0.17 EUR/kg | |||
Liquid effluents | 1.7748 EUR/m3 | 0.01 | 0.01495 | |
NaHPO4 | 87.5 EUR/kg | 2.93 × 10−7 | 0.00032 | 2.95 × 10−5 |
Column (silica) | 760.08 EUR/unit | 0.00001 | 0.04 | |
Propylene | 0.0048 EUR/unit | 0.000134667 | 1 | |
Carbon paper | 0.4543 EUR/cm2 | 0.035 | ||
Maintenance (EUR) | 0.0033 | 0.3125 | ||
Costs—Subtotal (EUR) | 0.015900 | 0.017993 | 6.58712 | |
Costs—Total (EUR) | 0.033893 | 6.58712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, F.; Torrinha, Á.; Delerue-Matos, C.; Morais, S. Life Cycle Assessment and Life Cycle Cost of an Innovative Carbon Paper Sensor for 17α-Ethinylestradiol and Comparison with the Classical Chromatographic Method. Sustainability 2022, 14, 8896. https://doi.org/10.3390/su14148896
Martins F, Torrinha Á, Delerue-Matos C, Morais S. Life Cycle Assessment and Life Cycle Cost of an Innovative Carbon Paper Sensor for 17α-Ethinylestradiol and Comparison with the Classical Chromatographic Method. Sustainability. 2022; 14(14):8896. https://doi.org/10.3390/su14148896
Chicago/Turabian StyleMartins, Florinda, Álvaro Torrinha, Cristina Delerue-Matos, and Simone Morais. 2022. "Life Cycle Assessment and Life Cycle Cost of an Innovative Carbon Paper Sensor for 17α-Ethinylestradiol and Comparison with the Classical Chromatographic Method" Sustainability 14, no. 14: 8896. https://doi.org/10.3390/su14148896