Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sizing of the PVDI System
2.1.1. Water Resource
2.1.2. Total Head
2.1.3. Water Demand
2.1.4. Required Flowrate
2.2. Designing of PV Systems and Pump Set for Particular Site
2.2.1. Monthly Crop Water Requirement
2.2.2. Pump Set Designing
2.2.3. DI Head Unit
2.2.4. PV System Designing
2.3. System Simulation
- Analysis of overall shading situation (horizon) and detailed shading analysis of the nearby located objects as well as the internal shading between the PV module rows.
- Generation of climate-relevant datasets (irradiation and temperature) and comparison to other sources and long-term statistical data, including the assessment of differences.
- Simulation of yearly power production of the solar power plant using up-to-date bankable simulation Photovoltaic geographic information system (PVGIS) software considering irradiation, climatic conditions, shading situation, and soil conditions (albedo, array soiling). Standard design values for the losses related to Solar PV technology and VFD type and external cabling will be used.
- Uncertainty analysis of the simulation.
2.3.1. Simulation of PV System
2.3.2. Solar-Drip Simulation Tool (SoSiT)
3. Results
3.1. Simulation Results of Energy Generation from PV Systems
3.2. Solar-Drip Simulation Tool (SoSiT) Output Results
3.3. Installed Experimental System Energy Generation
3.4. Comparison of Pumping Systems Operating on Electricity, Solar, and Diesel
Cost Break Up | Electricity | Diesel | Solar |
---|---|---|---|
Cost of pumping unit (USD) | 1033.45 | 1033.45 | 1033.45 |
Motor (USD) | 440.58 | 478.65 | 440.58 |
Transformer/Solar (USD) | 1246.67 | 7718.25 | |
Housing (USD) | 543.92 | 543.92 | 543.92 |
Total capital expenses (P) | 3264.62 | 2056.02 | 9736.20 |
Parameter-fixed cost | |||
Assumed Life (L; Years) | 15 | 15 | 20 |
Salvage value, % | 10 | 10 | 20 |
Interest rate (i), % | 10 | 10 | 6 |
Taxes on P, % | 0 | 0 | 0 |
Insurance on P, % | 0 | 0 | 0 |
Fixed Cost | |||
Depreciation incl Housing | 195.88 | 123.36 | 389.45 |
Average Interest on Investment | 163.23 | 102.80 | 292.09 |
Taxes (No tax on Tubewell operation) | 0 | 0 | 0 |
0 | 0 | 0 | |
Total fixed costs per annum | 359.11 | 226.16 | 681.53 |
Parameter-variable cost | |||
Average working hour per day | 3 | 3 | 3 |
Unit cost of energy source used | 0.054 USD/kWh | 0.60 USD/L | |
Units of energy resources consumed/h | 7.46 kWh/h | ||
Oil change duration, h | 50 | ||
Cost of lubricant, dosage | 8.16 | ||
No. of Lubricant change per annum | 22 | ||
Repair & Maintenance % of Capex | 2% | 4% | 2% |
Labor charges/h; min wages | 0.54 | 0.54 | 0.54 |
Variable Cost | |||
Electricity/Fuel charges | 444.31 | 1965.46 | 0 |
Lubrication cost | 0 | 178.68 | 0 |
Repair and Maintenance | 65.29 | 82.24 | 146.04 |
Labor charges@ USD 54.39/month | 0 | 0 | 0 |
Total variable cost per annum | 509.61 | 2226.38 | 146.04 |
Total Cost | |||
Total cost per annum (USD) | 868.71 | 2452.54 | 827.58 |
Total cost per hour (USD/h) | 0.79 | 2.24 | 0.76 |
Unit cost (USD/kWh) | 0.1063 | 0.30 | 0.1013 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PVDI | Photovoltaic Drip irrigation |
VFD | Variable Frequency Drive |
PVGIS | Photovoltaic geographic information system |
SoSiT | Solar-Drip Simulation Tool |
TDH | Total Dynamic Head |
kW | Kilowatt |
kWh | Kilowatt-hour |
MW | Megawatt |
USD | United State Dollar |
LPS | Liter per second |
HP | Horse Power |
PV | Photovoltaic |
DI | Drip Irrigation |
OFWM | On Farm Water Management |
CBM | Cubic meter |
DC | Direct Current |
AC | Alternating current |
References
- Nikolaidis, P.; Chatzis, S.; Poullikkas, A. Optimal planning of electricity storage to minimize operating reserve requirements in an isolated island grid. Energy Syst. 2020, 11, 1157–1174. [Google Scholar] [CrossRef]
- Abujubbeh, M.; Marazanye, V.T.; Qadir, Z.; Fahrioglu, M.; Batunlu, C. Techno-economic feasibility analysis of grid-tied PV-wind hybrid system to meet a typical household demand: Case study-amman, Jordan. In Proceedings of the 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 418–423. [Google Scholar]
- Abujubbeh, M.; Fahrioglu, M. Determining maximum allowable PV penetration level in transmission networks: Case analysis-Northern Cyprus Power System. In Proceedings of the 2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 292–297. [Google Scholar]
- Tamoor, M.; Tahir, M.S.; Sagir, M.; Tahir, M.B.; Iqbal, S.; Nawaz, T. Design of 3 kW integrated power generation system from solar and biogas. Int. J. Hydrogen Energy 2020, 45, 12711–12720. [Google Scholar] [CrossRef]
- Rashid, M.; Abujubbeh, M.; Fahrioglu, M. Improving capacity factor of transmission lines by hybridizing CSP with wind. In Proceedings of the 4th International Conference on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 8–10 April 2017; pp. 1–5. [Google Scholar]
- Tamoor, M.; Bhatti, A.R.; Farhan, M.; Miran, S.; Raza, F.; Zaka, M.A. Designing of a Hybrid Photovoltaic Structure for an Energy-Efficient Street Lightning System Using PVsyst Software. Eng. Proc. 2021, 12, 45. [Google Scholar]
- Tamoor, M.; Abu Bakar Tahir, M.; Zaka, M.A.; Iqtidar, E. Photovoltaic distributed generation integrated electrical distribution system for development of sustainable energy using reliability assessment indices and levelized cost of electricity. Environ. Prog. Sustain. Energy 2022, e13815. [Google Scholar] [CrossRef]
- Tamoor, M.; Habib, S.; Bhatti, A.R.; Butt, A.D.; Awan, A.B.; Ahmed, E.M. Designing and Energy Estimation of Photovoltaic Energy Generation System and Prediction of Plant Performance with the Variation of Tilt Angle and Interrow Spacing. Sustainability 2022, 14, 627. [Google Scholar] [CrossRef]
- Tamoor, M.; Bhatti, A.R.; Farhan, M.; Miran, S. Design of On-Grid Photovoltaic System Considering Optimized Sizing of Photovoltaic Modules for Enhancing Output Energy. Eng. Proc. 2022, 19, 2. [Google Scholar]
- Banik, A.; Shrivastava, A.; Potdar, R.M.; Jain, S.K.; Nagpure, S.G.; Soni, M. Design, modelling, and analysis of novel solar PV system using MATLAB. Mater. Today Proc. 2022, 51, 756–763. [Google Scholar] [CrossRef]
- Bouakkaz, M.S.; Boukadoum, A.; Boudebbouz, O.; Fergani, N.; Boutasseta, N.; Attoui, I.; Necaibia, A. Dynamic performance evaluation and improvement of PV energy generation systems using Moth Flame Optimization with combined fractional order PID and sliding mode controller. Sol. Energy 2020, 199, 411–424. [Google Scholar] [CrossRef]
- Kraiem, H.; Aymen, F.; Yahya, L.; Triviño, A.; Alharthi, M.; Ghoneim, S.S.M. A Comparison between Particle Swarm and Grey Wolf Optimization Algorithms for Improving the Battery Autonomy in a Photovoltaic System. Appl. Sci. 2021, 11, 7732. [Google Scholar] [CrossRef]
- Chatzopoulos, T.; Domínguez, I.P.; Zampieri, M.; Toreti, A. Climate extremes and agricultural commodity markets: A global economic analysis of regionally simulated events. Weather Clim. Extrem. 2020, 27, 100193. [Google Scholar] [CrossRef]
- Yokomatsu, M.; Ishiwata, H.; Sawada, Y.; Suzuki, Y.; Koike, T.; Naseer, A.; Cheema, M.J.M. A multi-sector multi-region economic growth model of drought and the value of water: A case study in Pakistan. Int. J. Disaster Risk Reduct. 2020, 43, 101368. [Google Scholar] [CrossRef]
- Haider, S.; Ullah, K. Projected crop water requirement over agro-climatically diversified region of Pakistan. Agric. For. Meteorol. 2020, 281, 107824. [Google Scholar] [CrossRef]
- Mehmood, Q.; Mahmood, W.; Awais, M.; Rashid, H.; Rizwan, M.; Anjum, L.; Muneer, M.A.; Niaz, Y.; Hamid, S. Optimizing groundwater quality exploration for irrigation water wells using geophysical technique in semi-arid irrigated area of Pakistan. Groundw. Sustain. Dev. 2020, 11, 100397. [Google Scholar] [CrossRef]
- Sahoo, S.K. Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review. Renew. Sustain. Energy Rev. 2016, 59, 927–939. [Google Scholar] [CrossRef]
- Gao, X.; Liu, J.; Zhang, J.; Yan, J.; Bao, S.; Xu, H.; Qin, T. Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Appl. Energy 2013, 105, 182–193. [Google Scholar] [CrossRef]
- Chandel, S.S.; Nagaraju Naik, M.; Chandel, R. Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renew. Sustain. Energy Rev. 2015, 49, 1084–1099. [Google Scholar] [CrossRef]
- Bizon, N. Energy Harvesting from the Partially Shaded Photovoltaic Systems—Chapter 7. In Optimization of the Fuel Cell Renewable Hybrid Power Systems; Springer: New York, NY, USA, 2017; pp. 285–301. [Google Scholar]
- Shinde, V.B.; Wandre, S.S. Solar photovoltaic water pumping system for irrigation: A review. Afr. J. Agric. Res. 2015, 10, 2267–2273. [Google Scholar]
- Babkir, A. Comparative assessment of the feasibility for solar irrigation pumps in Sudan. Renew. Sustain. Energy Rev. 2018, 81, 413–420. [Google Scholar]
- Nallapaneni, M.K.; Jayanna, K.; Mallikarjun, P. Floatovoltaics: Towards improved energy efficiency, land and water management. Int. J. Civ. Eng. Technol. 2018, 9, 1089–1096. [Google Scholar]
- Pardo, M.Á.; Cobacho, R.; Bañón, L. Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries. Sustainability 2020, 12, 738. [Google Scholar] [CrossRef] [Green Version]
- O’Dwyer, E.; Panb, I.; Acha, S.; Shah, N. Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Appl. Energy 2019, 237, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Galindo, J.; Torok, S.; Salguero, F.; de Campos, S.; Romera, J.; Puig, V. Optimal Management of Water and Energy in Irrigation Systems: Application to the Bardenas Canal. IFAC-PapersOnLine 2017, 50, 6613–6618. [Google Scholar] [CrossRef]
- Hua, H.; Qin, Y.; Hao, C.; Cao, J. Optimal energy management strategies for energy Internet via deep reinforcement learning approach. Appl. Energy 2019, 239, 598–609. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, I.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, K.; Kaushik, N.; Sharma, S.; Mishra, S. Renewable energy in India: Current status and future potentials. Renew. Sustain. Energy Rev. 2010, 14, 2434–2442. [Google Scholar] [CrossRef]
- Mittal, M.L.; Sharma, C.; Singh, R. Estimates of emissions from coal fired thermal power plants in India. In Proceedings of the International Emission Inventory Conference, Tampa, FL, USA, 13–16 August 2012; pp. 1–22. [Google Scholar]
- Abu-Aligah, M. Design of Photovoltaic Water Pumping System and Compare it with Diesel Powered Pump. Jordan J. Mech. Ind. Eng. 2011, 5, 273–280. [Google Scholar]
- Raza, F.; Tamoor, M.; Miran, S.; Arif, W.; Kiren, T.; Amjad, W.; Hussain, M.I.; Lee, G.-H. The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study. Energies 2022, 15, 1198. [Google Scholar] [CrossRef]
- Ghoneim, A.A. Design optimization of photovoltaic powered water pumping systems. Energy Convers. Manag. 2006, 47, 1449–1463. [Google Scholar] [CrossRef]
- Gimeno-Sales, F.J.; Orts-Grau, S.; Escribá-Aparisi, A.; González-Altozano, P.; Balbastre-Peralta, I.; Martínez-Márquez, C.I.; Gasque, M.; Seguí-Chilet, S. PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies. Sustainability 2020, 12, 10651. [Google Scholar] [CrossRef]
- Raza, F.; Tamoor, M.; Miran, S. Socioeconomic and Climatic Impacts of Photovoltaic Systems Operating High-Efficiency Irrigation Systems: A Case Study of the Government Subsidy Scheme for Climate-Smart Agriculture in Punjab, Pakistan. Eng. Proc. 2021, 12, 36. [Google Scholar]
- Allouhi, A.; Buker, M.S.; El-houari, H.; Boharb, A.; Amine, M.B.; Kousksou, T.; Jamil, A. PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation. Renew. Energy 2019, 132, 798–812. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sengupta, T.K. Design and Fabrication of Solar-Powered Water Pumping Unit for Irrigation System. In Proceedings of the Computational Advancement in Communication Circuits and Systems, Online, 26 July 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 89–102. [Google Scholar]
- Glasnovic, Z.; Margeta, J. A model for optimal sizing of photovoltaic irrigation water pumping systems. Sol. Energy 2007, 81, 904–916. [Google Scholar] [CrossRef]
- Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. Design development and testing of a solar PV pump based drip system for orchards. Renew. Energy 2003, 28, 385–396. [Google Scholar] [CrossRef]
- Benghanem, M.; Daffallah, K.O.; Alamri, S.N.; Joraid, A.A. Effect of pumping head on solar water pumping system. Energy Convers. Manag. 2014, 77, 334–339. [Google Scholar] [CrossRef]
- Hamidat, A.; Benyoucef, B. Mathematic models of photovoltaic motor-pump systems. Renew. Energy 2008, 33, 933–942. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of photovoltaics—February 2019. Energies 2019, 12, 769. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Iqbal, M.T. Dynamic modelling of a solar water pumping system with energy storage. J. Sol. Energy 2018, 2018, 8471715. [Google Scholar] [CrossRef]
- Kraiem, H.; Flah, A.; Mohamed, N.; Messaoud, M.H.B.; Al-Ammar, E.A.; Althobaiti, A.; Alotaibi, A.A.; Jasiński, M.; Suresh, V.; Leonowicz, Z.; et al. Decreasing the Battery Recharge Time if Using a Fuzzy Based Power Management Loop for an Isolated Micro-Grid Farm. Sustainability 2022, 14, 2870. [Google Scholar] [CrossRef]
- Poompavai, T.; Kowsalya, M. Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review. Renew. Sustain. Energy Rev. 2019, 107, 108–122. [Google Scholar] [CrossRef]
- Odeh, I.; Yohanis, Y.G.; Norton, B.; Alsoud, M.; Odeh, D. Long-term field operation of photovoltaic solar water pumps. Int. J. Ambient. Energy 2018, 39, 467–476. [Google Scholar] [CrossRef]
- Dursun, M.; Özden, S. Optimization of soil moisture sensor placement for a PV-powered drip irrigation system using a genetic algorithm and artificial neural network. Electr. Eng. 2017, 99, 407–419. [Google Scholar] [CrossRef]
- Dursun, M.; Ozden, S. Application of solar powered automatic water pumping in Turkey. Int. J. Comput. Electr. Eng. 2012, 4, 161. [Google Scholar] [CrossRef] [Green Version]
- Carroquino, J.; Dufo-López, R.; Bernal-Agustín, J.L. Sizing of off-grid renewable energy systems for drip irrigation in Mediterranean crops. Renew. Energy 2015, 76, 566–574. [Google Scholar] [CrossRef]
- Bhosale, S.K. Development of a Solar-Powered Submersible Pump System Without the Use of Batteries in Agriculture. Indones. J. Educ. Res. Technol. 2022, 2, 57–64. [Google Scholar] [CrossRef]
- Durai, C.R.B.; Vipulan, B.; Khan, T.A.; Prakash, T.R. Solar powered automatic irrigation system. In Proceedings of the International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 22–23 February 2018; pp. 139–142. [Google Scholar]
- Wang, J.; Chen, R. An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrig. Sci. 2020, 38, 147–162. [Google Scholar] [CrossRef]
- Flores, J.H.N.; Faria, L.C.; Rettore Neto, O.; Diotto, A.V.; Colombo, A. Methodology for determining the emitter local head loss in drip irrigation systems. J. Irrig. Drain. Eng. 2021, 147, 06020014. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, Y.J.; Lee, J.Y.; Kim, H.H.; Jo, S.M.; Cha, S.S.; Park, C.G. Design, manufacture and field test of a surface water storage tank providing irrigation water to upland crops. Korean J. Agric. Sci. 2020, 47, 1057–1069. [Google Scholar]
- Khatib, T.; Saleh, A.; Eid, S.; Salah, M. Rehabilitation of Mauritanian oasis using an optimal photovoltaic based irrigation system. Energy Convers. Manag. 2019, 199, 111984. [Google Scholar] [CrossRef]
- Tamoor, M.; ZakaUllah, P.; Mobeen, M.; Zaka, M.A. Solar Powered Automated Irrigation System in Rural Area and their Socio Economic and Environmental Impact. Int. J. Sustain. Energy Environ. Res. 2021, 10, 17–28. [Google Scholar] [CrossRef]
- PVsyst. PVsyst Simulated Solar Water Pump. 2022. Available online: https://www.pvsyst.com/features/ (accessed on 3 January 2022).
- Food and Agriculture Organization. CropWat. 2022. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 5 January 2022).
Assessment | Variables | Output |
Water resource |
| Capacity of water Available pump type |
Total head |
| Water pump size |
Water demand |
| Storage size |
Solar resources |
| PV size |
Flowrate | Pump size | |
System Sizing | Input Data | |
Water Pump |
| |
PV Array |
|
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eto (mm/day) | 1.60 | 2.50 | 3.90 | 5.50 | 7.20 | 7.80 | 6.50 | 5.80 | 5.00 | 3.60 | 2.20 | 1.50 |
Kc | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
CWR (mm/day) | 1.36 | 2.13 | 3.32 | 4.68 | 6.12 | 6.63 | 5.53 | 4.93 | 4.25 | 3.06 | 1.87 | 1.28 |
Irrigation Efficiency % | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 |
Canopy factor | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 |
Application Rate mm/hour | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 |
No. of Zones | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Operation time (hrs/day) | 0.42 | 0.66 | 1.02 | 1.45 | 1.89 | 2.05 | 1.71 | 1.52 | 1.31 | 0.95 | 0.58 | 0.39 |
Total operational time (hours) | 0.42 | 0.66 | 1.02 | 1.45 | 1.89 | 2.05 | 1.71 | 1.52 | 1.31 | 0.95 | 0.58 | 0.39 |
Flow rate (lps) | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 |
Daily water requirement (Litres) | 10,444.8 | 16,320.0 | 25,459.2 | 35,904.0 | 47,001.6 | 50,918.4 | 42,432.0 | 37,862.4 | 32,640.0 | 23,500.8 | 14,361.6 | 9792.0 |
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eto (mm/day) | 1.60 | 2.50 | 3.90 | 5.50 | 7.20 | 7.80 | 6.50 | 5.80 | 5.00 | 3.60 | 2.20 | 1.50 |
Kc | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
CWR (mm/day) | 1.52 | 2.38 | 3.71 | 5.23 | 6.84 | 7.41 | 6.18 | 5.51 | 4.75 | 3.42 | 2.09 | 1.43 |
Irrigation Efficiency % | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 |
Canopy factor | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 |
Application Rate mm/hour | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 | 2.30 |
No. of Zones | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Operation time (hrs/day) | 0.47 | 0.73 | 1.15 | 1.62 | 2.11 | 2.29 | 1.91 | 1.70 | 1.47 | 1.06 | 0.65 | 0.44 |
Total operational time hours | 0.47 | 0.73 | 1.15 | 1.62 | 2.11 | 2.29 | 1.91 | 1.70 | 1.47 | 1.06 | 0.65 | 0.44 |
Flow rate (lps) | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 |
Daily volume requirement (Liters) | 11,673.6 | 18,240.0 | 28,454.4 | 40,128.0 | 52,531.2 | 56,908.8 | 47,424.0 | 42,316.8 | 36,480.0 | 26,265.6 | 16,051.2 | 10,944.0 |
Pump Set Data | |||||||
Manufacturer | Hyrdromech | Model No | 6SP30-8 | ||||
Pump Type (Submersible/Centrifugal) | Submersible | Pump Set Efficiency (%) | 55% | ||||
Operating Discharge of pump (LPS) | 6.9 | Motor power calculated (HP) | 9.02 | ||||
Maximum Discharge of pump (LPS) | 12 | Motor power selected (HP) | 10.00 | ||||
Operating Head of pump (m) | 55 | Motor power selected (kW) | 7.46 | ||||
PV Module Data (Electrical Data at STC) | VFD/Controller Data (Electrical Data at STC) | ||||||
PV Module Manufacturer | Canadian Solar | Model No | CS6U-325P | VFD Manufacturer | JnTech | Model No | JNP11-KH |
Peak Power Watts-Pmax (Wp) | 325 | Maximum Power Current-Imp | 8.78 | Maximum input DC Voltage to controller (V) | 900.0 | MPPT Voltage range (V) | 450~850 |
Power Tolerance-Pmax (W) | 0~+5 | Open Circuit Voltage -Voc | 45.5 | Max. Power can be connected (kW) | 17.2 | Per String Current (A) | 8.78 |
Maximum Power Voltage-Vmp | 37 | Short Circuit Current -Isc | 9.34 | Selected VFD Size (kW) | 11.0 | Total Current (A) | 17.6 |
PV Array Sizing | |||||||
Motor Capacity (hp) | Motor Capacity (kW) | PV Array Design Factor | PV Array Size (kW) based on motor rated voltage | ||||
For 340 V | For 380 V | ||||||
10.00 | 7.46 | 1.35 | - | 10.07 KW | |||
No. of PV Modules | VFD Sizing | ||||||
For 340 V | For 380 V | For 340 V | For 380 V | ||||
- | 32.00 | - | 11.00 kW | ||||
No. of Strings | Voc (DC Volt)/String on STC (Input DC Voltage) to VFD | Vmp (DC Voltage)/String on STC | |||||
For 340 V | For 380 V | For 340 V | For 380 V | For 340 V | For 380 V | ||
- | 2 | - | 728 V | - | 592 V |
Solar System Power (kW) | Pump Output Flowrate (LPS) | Solar System Power (kW) | Pump Output Flowrate (LPS) |
---|---|---|---|
0.00 | 0.00000 | 5.50 | 7.33000 |
0.50 | 0.00000 | 6.00 | 8.25000 |
1.00 | 0.00000 | 6.50 | 9.16600 |
1.50 | 0.00000 | 7.00 | 10.00000 |
2.00 | 1.66000 | 7.50 | 11.66000 |
2.50 | 2.50000 | 8.00 | 11.66000 |
3.00 | 3.16600 | 8.50 | 11.66000 |
3.50 | 4.00000 | 9.00 | 11.66000 |
4.00 | 4.75000 | 9.50 | 11.66000 |
4.50 | 5.50000 | 10.00 | 11.66000 |
5.00 | 6.33000 | 10.40 | 11.66000 |
Month | Average Daily Energy Generation (kWh) | Average Monthly Energy Generation (kWh) | Average Daily Sum of Global Irradiance (kWh/m2) | Average Monthly Sum of Global Irradiance (kWh/m2) |
---|---|---|---|---|
January | 3.15 | 97.8 | 4.13 | 128 |
February | 3.71 | 104 | 4.98 | 139 |
March | 4.71 | 146 | 6.55 | 203 |
April | 4.79 | 144 | 6.87 | 206 |
May | 4.82 | 149 | 7.13 | 221 |
June | 4.44 | 133 | 6.60 | 198 |
July | 4.07 | 126 | 5.94 | 184 |
August | 4.18 | 130 | 6.02 | 187 |
September | 4.37 | 131 | 6.26 | 188 |
October | 4.25 | 132 | 6.00 | 186 |
November | 3.65 | 110 | 4.97 | 149 |
December | 3.52 | 109 | 4.63 | 143 |
Year | 4.14 | 126 | 5.84 | 178 |
Total for year | 1510 | 2130 |
Month | Average Daily Energy Generation (kWh) | Average Monthly Energy Generation (kWh) | Average Daily Sum of Global Irradiance (kWh/m2) | Average Monthly Sum of Global Irradiance (kWh/m2) |
---|---|---|---|---|
January | 2.32 | 72.0 | 3.06 | 94.9 |
February | 2.98 | 83.5 | 3.97 | 111 |
March | 4.16 | 129 | 5.72 | 177 |
April | 4.65 | 139 | 6.60 | 198 |
May | 5.00 | 155 | 7.34 | 228 |
June | 4.73 | 142 | 6.98 | 210 |
July | 4.27 | 132 | 6.19 | 192 |
August | 4.19 | 130 | 5.99 | 186 |
September | 4.03 | 121 | 5.71 | 171 |
October | 3.52 | 109 | 4.92 | 153 |
November | 2.73 | 81.9 | 3.73 | 112 |
December | 2.43 | 75.3 | 3.24 | 100 |
Year | 3.75 | 114 | 5.29 | 161 |
Total for year | 1370 | 1930 |
Month | Average Daily Energy Generation (kWh) | Average Monthly Energy Generation (kWh) | Average Daily Sum of Global Irradiance (kWh/m2) | Average Monthly Sum of Global Irradiance (kWh/m2) |
---|---|---|---|---|
January | 3.94 | 122 | 5.15 | 160 |
February | 4.78 | 134 | 6.41 | 179 |
March | 6.25 | 194 | 8.69 | 269 |
April | 6.40 | 192 | 9.15 | 274 |
May | 6.48 | 201 | 9.51 | 295 |
June | 5.86 | 176 | 8.64 | 259 |
July | 5.10 | 158 | 7.38 | 229 |
August | 5.31 | 164 | 7.62 | 236 |
September | 5.68 | 170 | 8.13 | 244 |
October | 5.51 | 171 | 7.76 | 240 |
November | 4.63 | 139 | 6.27 | 188 |
December | 4.46 | 138 | 5.83 | 181 |
Year | 5.37 | 163 | 7.42 | 226 |
Total for year | 1960 | 2710 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miran, S.; Tamoor, M.; Kiren, T.; Raza, F.; Hussain, M.I.; Kim, J.-T. Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study. Sustainability 2022, 14, 8515. https://doi.org/10.3390/su14148515
Miran S, Tamoor M, Kiren T, Raza F, Hussain MI, Kim J-T. Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study. Sustainability. 2022; 14(14):8515. https://doi.org/10.3390/su14148515
Chicago/Turabian StyleMiran, Sajjad, Muhammad Tamoor, Tayybah Kiren, Faakhar Raza, Muhammad Imtiaz Hussain, and Jun-Tae Kim. 2022. "Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study" Sustainability 14, no. 14: 8515. https://doi.org/10.3390/su14148515
APA StyleMiran, S., Tamoor, M., Kiren, T., Raza, F., Hussain, M. I., & Kim, J.-T. (2022). Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study. Sustainability, 14(14), 8515. https://doi.org/10.3390/su14148515