Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Floristic Data Analysis
- 0: Non native species, the species is obligate to ruderal areas (e.g., Solanum eleagnifolium Cav.)
- 1–3: Native taxa that found in a wide variety of plant communities and very tolerant of disturbance, and found in disturbed sites (e.g., Chrysopogon gryllus (L.) Trin., Osyris alba L.).
- 4–6: Native taxa that typically associated with a specific plant community, but tolerate moderate disturbance (e.g., Teucrium polium L., Thymus vulgaris L.).
- 7–8: Native taxa that is typical of well-established communities, which have sustained only minor disturbances. These plants have a fidelity to native lands of high quality (e.g., Silene italica (L.) Pers., Sanicula europaea L.).
- 9–10: Native taxa with high degrees of fidelity to a narrow range of synecological parameters and restricted to narrow ecological conditions, with low tolerance of disturbance, rater 95% confident these plants were growing in an undisturbed or native land of high quality (e.g., Athyrium filix femina (L.) Roth, Saxifraga bulbifera L.).
2.3. Statistical Data Analysis
3. Results
3.1. Ecological Characteristics of the Studied Forest Ecosystems
3.2. Species Richness and Floristic Composition of the Studied Peri-Urban Ecosystems
3.2.1. Species Richness
3.2.2. Number of Plant Species Families per Ecosystem Type
3.2.3. Plant Biodiversity Index for the Studied Ecosystems
3.3. Patterns of Floristic Similarity and Beta Diversity between the Studied Forest Ecosystems
3.4. Disturbances, Alien and Ruderal Species
3.4.1. Recorded Disturbances
3.4.2. Presence of Adventitious, Invasive (Alien) and Ruderal Species in Each Ecosystem Type
3.4.3. Conservatism Values C of Plant Species Recorded in Each Ecosystem Type
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, P.A.L.D.; van den Bergh, J.C.J.M. Economic valuation of biodiversity: Sense or nonsense? Ecol. Econ. 2001, 39, 203–222. [Google Scholar] [CrossRef]
- United Nations. Available online: https://www.un.org/sustainabledevelopment/blog/2019/05/nature-decline-unprecedented-report/ (accessed on 23 March 2022).
- Pimm, S.L.; Russell, G.J.; Gittleman, J.L.; Brooks, T.M. The Future of Biodiversity. Science 1995, 269, 347350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Kallimanis, A.; Strid, A.; Dimopoulos, P. Plant Endemism Centres and Biodiversity Hotspots in Greece. Biology 2021, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Enquist, B.J.; Feng, X.; Boyle, B.; Maitner, B.; Newman, E.A.; Jørgensen, P.M.; Poehrdanz, P.R.; Thiers, B.M.; Burger, J.R.; Corlett, R.T. The commonness of rarity: Global and future distribution of rarity across land plants. Sci. Adv. 2019, 5, eaaz0414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamfeldt, L.; Hillebrand, H.; Jonsson, P.R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 2008, 89, 1223–1231. [Google Scholar] [CrossRef]
- Edwards, P.J.; Abivardi, C. The value of Biodiversity: Where ecology and economy blend. Biol. Conserv. 2009, 83, 239–246. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots; Zachos, F., Habel, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–22. [Google Scholar] [CrossRef]
- Medail, F.; Quezel, P. Hot-Spots Analysis for Conservation of Plant Biodiversity in the Mediterranean Basin. Ann. Mo. Bot. Gard. 1997, 84, 112–127. [Google Scholar] [CrossRef]
- Strid, A. The mountain flora of Greece with special reference to the Anatolian element. Proc. R. Soc. Edinb. B Biol. Sci. 1986, 89, 59–68. [Google Scholar] [CrossRef]
- Tzanoudakis, D.; Panitsa, M. The flora of Greek Islands. Ecol. Mediterr. 1995, 21, 195–212. [Google Scholar] [CrossRef]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Trigas, P.; Strid, A.; Dimopoulos, P. Plant Diversity Patterns and Conservation Implications under Climate-Change Scenarios in the Mediterranean: The Case of Crete (Aegean, Greece). Diversity 2010, 12, 270. [Google Scholar] [CrossRef]
- Brullo, S.; Giusso del Galdo, G.; Guarino, R. The orophilous communities of the Pino-Juniperetea class in the Central and Eastern Mediterranean area. Feddes Repert. 2001, 112, 261–308. [Google Scholar] [CrossRef]
- Musarella, C.M.; Brullo, S.; del Galdo, G.G. Contribution to the Orophilous Cushion-Like Vegetation of Central-Southern and Insular Greece. Plants 2020, 9, 1678. [Google Scholar] [CrossRef] [PubMed]
- Orsenigo, S.; Montagnani, C.; Fenu, G.; Gargano, D.; Peruzzi, L.; Abeli, T.; Alessandrini, A.; Bacchetta, G.; Bartolucci, F.; Bovio, M. Red Listing plants under full national responsibility: Extinction risk and threats in the vascular flora endemic to Italy. Biol. Conserv. 2018, 224, 213–222. [Google Scholar] [CrossRef]
- Iatrou, G.; Kokkalou, E. Rarity, conservation, importance and ethnopharmacological knowledge of the greek flora. In Identification of Wild Food and Non-Food Plants of the Mediterranean Region; Heywood, V.H., Skoula, M., Eds.; CIHEAM: Chania, Greece, 1997; pp. 65–75. [Google Scholar]
- Georgiadis, T.; Dimopoulos, P.; Dimitrellos, G. The Flora and Vegetation of the Acheron Delta (W Greece) Aiming at Nature Conservation. Phyton 1997, 37, 31–60. [Google Scholar]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic Plant Species Conservation: Biotechnological Approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, W.V. Biodiversity hotspots. Trends Ecol. Evol. 1998, 13, 275–280. [Google Scholar] [CrossRef]
- Kantsa, A.; Tscheulin, T.; Junker, R.R.; Petanidou, T.; Kokkini, S. Urban biodiversity hotspots wait to get discovered: The example of the city of Ioannina, NW Greece. Landsc. Urban Plan. 2013, 120, 129–137. [Google Scholar] [CrossRef]
- Heywood, V.H. The nature and composition of urban plant diversity in theMediterranean. Flora Mediterr. 2017, 27, 195–220. [Google Scholar] [CrossRef]
- Wade, T.G.; Riitters, K.H.; Wickham, J.D.; Jones, K.B. Distribution and Causes of Global Forest Fragmentation. Conserv. Ecol. 2003, 7, 7. Available online: https://www.fs.usda.gov/treesearch/pubs/5569 (accessed on 15 March 2022). [CrossRef]
- Godefroid, S.; Koedam, N. Distribution pattern of the flora in a peri-urban forest: An effect of the city-forest ecotone. Landsc. Urban Plan. 2003, 65, 169–185. [Google Scholar] [CrossRef]
- Malmivaara, M.; Löfström, I.; Vanha-Majamaa, I. Anthropogenic effects on understorey vegetation in Myrtillus type urban forests in southern Finland. Silva Fenn. 2002, 36, 367–381. [Google Scholar] [CrossRef] [Green Version]
- McNeely, J.A. Lessons from the past: Forests and biodiversity. Biodivers. Conserv. 1994, 3, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Referowska-Chodak, E. Pressures and Threats to Nature Related to Human Activities in European Urban and Suburban Forests. Forests 2019, 10, 765. [Google Scholar] [CrossRef] [Green Version]
- Patarkalashvili, Τ.Κ. Urban and Peri-Urban Forests of Tbilisi. Ann. Agrar. Sci. 2015, 13, 79–83. [Google Scholar] [CrossRef]
- Pauchard, A.; Aguayo, M.; Pena, E.; Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 2006, 127, 272–281. [Google Scholar] [CrossRef]
- Heinrichs, S.; Pauchard, A. Struggling to maintain native plant diversity in a peri-urban reserve surrounded by a highly anthropogenic matrix. Biodivers. Conserv. 2015, 24, 2769–2788. [Google Scholar] [CrossRef]
- Motard, E.; Muratet, A.; Clair-Maczulajtys, D.; Machon, N. Does the invasive species Ailanthus altissima threaten floristic diversity of temperate peri-urban forests? C. R. Biol. 2011, 334, 872–879. [Google Scholar] [CrossRef]
- Ballantyne, M.; Pickering, C.M. Tourism and recreation: A common threat to IUCN red-listed vascular plants in Europe. Biodivers. Conserv. 2013, 22, 3027–3044. [Google Scholar] [CrossRef] [Green Version]
- Hodgkin, T.; Bordoni, P. Climate Change and the Conservation of Plant Genetic Resources. J. Crop Improv. 2012, 26, 329–345. [Google Scholar] [CrossRef]
- Schueler, S.; Falk, W.; Koskela, J.; Lefevre, F.; Bozzano, M.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Chang. Biol. 2014, 20, 1498–1511. [Google Scholar] [CrossRef]
- Pence, V.C.; Ballesteros, D.; Walters, C.; Reed, B.M.; Philpott, M.; Kingsley, W.D.; Pritchard, H.W.; Culley, T.M.; Vanhove, A.C. Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. Biol. Conserv. 2020, 250, 108736. [Google Scholar] [CrossRef]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Franklin, J.F.; Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 2006, 131, 433–445. [Google Scholar] [CrossRef]
- Ganatsas, P.; Tsitsoni, T.; Zagas, T. Forest plant diversity in the Aspropotamos Site (GR 1440001) of the Natura 2000 network. In Proceedings of the 1st International Conference on Ecological Protection of the Planet Earth, Xanthi, Greece, 5–8 June 2001. [Google Scholar]
- Georghiou, K.; Delipetrou, P. Patterns and traits of the endemic plants of Greece. Bot. J. Linn. Soc. 2010, 162, 130–153. [Google Scholar] [CrossRef] [Green Version]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Strid, A.; Dimopoulos, P. Extinction Risk Assessment of the Greek Endemic Flora. Biology 2021, 10, 195. [Google Scholar] [CrossRef]
- Rawat, U.S.; Agarwal, N.K. Biodiversity: Concept, threats and conservation. Environ. Conserv. 2015, 16, 19–28. [Google Scholar] [CrossRef]
- Maloupa, E.; Krigas, N.; Grigoriadou, K.; Lazari, D.; Tsoktouridis, G. Conservation Strategies for Native Plant Species and their Sustainable Exploitation: Case of the Balkan Botanic Garden of Kroussia, N. Greece. In Floriculture and Ornamental Plant Biotechnology; da Silva, J.T.A., Ed.; Global Science Books: Carrollton, GA, USA, 2008; pp. 37–56. [Google Scholar]
- Abraham, E.M.; Aftzalanidou, A.; Ganopoulos, I.; Osathanunkul, M.; Xanthopoulou, A.; Avramidou, E.; Sarrou, E.; Aravanopoulos, F.; Madesis, P. Genetic diversity of Thymus sibthorpii Bentham in mountainous natural grasslands of Northern Greece as related to local factors and plant community structure. Ind. Crops Prod. 2018, 111, 651–659. [Google Scholar] [CrossRef]
- Mirazadi, Z.; Pilehvar, B.; AbrariVajari, K. Diversity indices or floristic quality index: Which one is more appropriate for comparison of forest integrity in different land uses? Biodivers. Conserv. 2017, 26, 1087–1101. [Google Scholar] [CrossRef]
- Spyreas, G. Floristic Quality Assessment: A critique, a defense, and a primer. Ecosphere 2019, 10, e02825. [Google Scholar] [CrossRef] [Green Version]
- Taft, J.B.; Wilhelm, G.S.; Ladd, D.M.; Masters, L.A. Floristic quality assessment for vegetation in Illinois: A method for assessing vegetation integrity. Erigenia 1997, 15, 3–95. [Google Scholar]
- Vrania, Ε.Κ.; Meliadis, Μ.Ι.; Karidas, H.Γ.; Gitas, Ι.Ζ. Detection of land use/land cover changes in the suburban forest of Sheikh Sou in Thessaloniki after the fire of 1997. Geotechnical Scientific Issues 1997, 22, 13–23. (In Greek) [Google Scholar]
- Aggelidou, Ε.; Galfa, O.; Fassas, T.; Giannakis, A. Management Plan of Thessaloniki Suburban Forest-Period 2019–2028; Thessaloniki Forest Service: Thessaloniki, Greece, 2018; p. 202. (In Greek) [Google Scholar]
- Spanos, I.; Ganatsas, P.; Tsakaldimi, M. Evaluation of postfire restoration in suburban forest of Thessaloniki, Northern Greece. Glob. Nest J. 2009, 12, 390–400. [Google Scholar] [CrossRef]
- Linara, Μ.; Kostoula, Ε. Management Plan of Chortiatis Public Forest for the Period 2010–2019; Thessaloniki Forest Service: Thessaloniki, Greece, 2010; p. 42. [Google Scholar]
- Chasapis, M.; Karagiannakidou, V.; Theodoropoulos, K. Phytosociological research of Quercus coccifera L. pseudomaquis on Mount Chortiatis, northern Greece. Isr. J. Plant Sci. 2004, 52, 357–381. [Google Scholar] [CrossRef]
- Karagiannakidou, V.; Raus, T. Vascular plants from Mount Chortiatis (Makedonia, Greece). Willdenowia 1996, 25, 487–559. [Google Scholar]
- Tsiftsis, S.; Giannakis, T.; Panajiotidis, S.; Eleftheriadou, E.; Theodoropoulos, K. Colchicum tulakii (Colchicaceae), a new secies from central Macedonia, northeastern Greece. Nord. J. Bot. 2021, 39. [Google Scholar] [CrossRef]
- Karidas, A.; Giannakis, T.; Antonopoulos, Z. A new locality for Colchicum soboliferum (Colchicaceae) from Macedonia, Greece. Parnass. Arch. 2017, 5, 57–59. [Google Scholar]
- Ganatsas, P.; Tsitsoni, T.; Tsakaldimi, M.; Zagas, T. Reforestation of degraded Kermes oak shrublands with planted pines: Effects on vegetation cover, species diversity and community structure. New For. 2012, 43, 1–11. [Google Scholar] [CrossRef]
- Krigas, N.; Kokkini, S. A survey of the alien vascular flora of the urban and suburban area of Thessaloniki, N Greece. Willdenowia 2004, 34, 81–99. [Google Scholar] [CrossRef]
- Panitsa, M.; Iliadou, E.; Kokkoris, I.; Kallimanis, A.; Patelodimou, C.; Strid, A.; Raus, T.; Bergmeier, E.; Dimopoulos, P. Distribution patterns of ruderal plant diversity in Greece. Biodivers. Conserv. 2019, 29, 869–891. [Google Scholar] [CrossRef]
- Parrotta, J.A. Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. J. Veg. Sci. 1995, 6, 627–636. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Roberts, M.R. Interactions between the herbaceous layer and overstory canopy of Eastern forests. In The Herbaceous Layer in Forests of Eastern North America, 2nd ed.; Gilliam, F.S., Roberts, M.R., Eds.; Oxford University Press: New York, NY, USA, 2003; pp. 198–223. [Google Scholar]
- Dell, J.E.; Richards, L.A.; O’Brien, J.J.; Loudermilk, E.L.; Hudak, A.T.; Pokswinski, S.M.; Bright, B.C.; Hiers, J.K.; Williams, B.W.; Dyer, L.A. Overstory-derived surface fuels mediate plant species diversity in frequently burned longleaf pine forests. Ecosphere 2017, 8, e01964. [Google Scholar] [CrossRef]
- Strid, A. The Greek mountain flora, with special reference to the CentraI European element. Bocconea 1995, 5, 99–112. [Google Scholar]
- Kokkoris, I.P.; Dimopoulos, P.; Xystrakis, F.; Tsiripidis, I. National scale ecosystem condition assessment with emphasis on forest types in Greece. One Ecosyst. 2018, 3, e25434. [Google Scholar] [CrossRef] [Green Version]
- Gaines, W.L.; Harrod, J.R.; Lehmkuhl, J.F. Monitoring biodiversity: Quantification and interpretation. In USDA Forest Service-General Technical Report PNW-GTR-443; Busch, D.E., Trexler, J.C., Eds.; USDA Forest Service: Portland, OR, USA, 1999; pp. 377–402. [Google Scholar]
- Landi, S.; Chiarucci, A. Is floristic quality assessment reliable in human-managed ecosystems? Syst. Biodivers. 2010, 8, 269–280. [Google Scholar] [CrossRef]
- Stefanović, J. Tourism of the Thessaloniki District. In Higher Education in Function of Development of Tourism in Serbia and Western Balkans, Proceedings of the 2nd International Conference, Užice, Serbia, 2–3 October 2015; Đuričić, M., Jovanović, M., Milutinović, N., Eds.; Business and Technical College of Vocational Studies: Užice, Serbia, 2015; pp. 371–384. [Google Scholar]
- Meo, I.D.; Paletto, A.; Cantiani, M.G. The attractiveness of forests: Preferences and perceptions in a mountain community in Italy. Ann. For. Res. 2015, 58, 145–156. [Google Scholar] [CrossRef]
- Skłodowski, J.; Gołos, P. Preferowany typdrzewostanu i czynniki decydujące o atrakcyjności turystycznej drzewostanu w opinii społecznej. Sylwan 2015, 159, 747–756. [Google Scholar]
- Margioula, K.A.; Abraham, E.M.; Kyriazopoulos, P.A.; Papadimitriou, M.; Parissi, M.Z. Floristic diversity of the understory in Pinus brutia plantations as affected by elevation and grazing intensity. In Ecosystem Services and Socio-Economic Benefits of Mediterranean Grasslands; Kyriazopoulos, P.A., López-Francos, A., Porqueddu, C., Sklavou, P., Eds.; CIHEAM-IAMZ: Zaragoza, Spain, 2016; pp. 399–402. [Google Scholar]
- Formozis, G.; Tsakaldimi, M.; Ganatsas, P. Are Mediterranean forest ecosystems under the threat of invasive species Solanum elaeagnifolium? iForest 2021, 14, 236–241. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Galatsidas, S.; Papalampros, L.; Day, M.A. Spatial Optimization and Tradeoffs of Alternative Forest Management Scenarios in Macedonia, Greece. Forests 2021, 12, 697. [Google Scholar] [CrossRef]
- Hatzichristaki, C.; Zagas, T. The contribution of natural and artificial regeneration at the restoration of fire-affected peri-urban forest of Thessaloniki (Northern Greece). Glob. Nest J. 2017, 19, 29–36. [Google Scholar] [CrossRef]
- Tsitsoni, T.; Ganatsas, P.; Zagas, T.; Tsakaldimi, M. Dynamics of postfire regeneration of Pinus brutia Ten. in an artificial forest ecosystem of northern Greece. Plant Ecol. 2004, 171, 165–174. [Google Scholar] [CrossRef]
- Thanasis, G.; Ganatsas, P.; Macheridis, I.A. Influence of fire-preventing silvicultural treatments on structure and growth of peri-urban forest of Thessaloniki. In Proceedings of the 18th Hellenic Forestry Conference, Edessa, Greece, 8–11 October 2017. [Google Scholar]
- Ares, A.; Neill, A.R.; Puettmann, K.J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. For. Ecol. Manag. 2010, 260, 1104–1113. [Google Scholar] [CrossRef]
- Thanasis, G.; Zagas, T.; Tsitsoni, T.; Ganatsas, P.; Papapetrou, P. Stand development and structural analysis of planted Pinus nigra stands in northern Greece. In Proceedings of the International Conference on Environmental Management, Engineering, Planning and Economics, Skiathos Island, Greece, 24–28 June 2007. [Google Scholar]
- Tsiripidis, I.; Bergmeier, E.; Dimopoulos, P. Geographical and ecological differentiation in Greek Fagus Forest vegetation. J. Veg. Sci. 2007, 18, 743–750. [Google Scholar] [CrossRef]
- Konstantinidis, P.; Tsiourlis, G.; Xofis, P.; Buckley, P. Taxonomy and ecology of Castanea sativa Mill forests in Greece. Plant Ecol. 2008, 195, 235–256. [Google Scholar] [CrossRef]
- Conodera, M.; Krebs, P.; Gehring, E.; Wunder, J.; Hülsmann, L.; Abegg, M.; Maringer, J. How future-proof is Sweet chestnut (Castanea sativa) in a global change context? For. Ecol. Manag. 2021, 494, 119320. [Google Scholar] [CrossRef]
- Dwyer, J.F. Predicting daily use of urban forest recreation sites. Landsc. Urban Plan. 1988, 15, 127–138. [Google Scholar] [CrossRef]
- Burnett, H.; Olsen, J.R.; Nicholls, N.; Mitchell, R. Change in time spent visiting and experiences of green space following on movement during the COVID-19 pandemic: A nationally representative cross-sectional study of UK adults. BMJ Open 2021, 11, e044067. [Google Scholar] [CrossRef]
- Derks, J.; Giessen, L.; Winkel, G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 2020, 118, 102253. [Google Scholar] [CrossRef]
- Weinbrenner, H.; Breithut, J.; Hebermehl, W.; Kaufmann, A.; Klinger, T.; Palm, T.; Wirth, K. “The Forest Has Become Our New Living Room”—The Critical Importance of Urban Forests During the COVID-19 Pandemic. Front. For. Glob. Chang. 2021, 4, 1–19. [Google Scholar] [CrossRef]
Plot N. | Ecosystem | Aspect | Average Tree Height (m) | Tree Layer | Shrub Layer | Ground Layer | Altitude (m) |
---|---|---|---|---|---|---|---|
Cover (%) | |||||||
1 | P. brutia | NW | 8 (0.76) | 46 | 13 | 30 | 222 |
2 | Maqui | E | 7 (1.08) | 4 | 12 | 40 | 287 |
3 | Maqui | SW | 1.2 (0.47) | 0 | 40 | 40 | 319 |
4 | P. brutia | W | 9 (0.82) | 85 | 2 | 15 | 302 |
5 | P. brutia | S | 10 (0.83) | 90 | 35 | 15 | 325 |
6 | Maqui | S | 3.5 (0.64) | 7 | 20 | 65 | 362 |
7 | P. brutia | S | 11 (0.91) | 70 | 10 | 25 | 268 |
8 | P. brutia | W | 13.5 (1.06) | 70 | 5 | 20 | 288 |
9 | Maqui | SW | 6 (1.04) | 4 | 60 | 50 | 266 |
10 | Maqui | S | 2 (0.32) | 0 | 40 | 70 | 269 |
11 | P. nigra | N | 10 (0.44) | 35 | 55 | 20 | 1007 |
12 | P. nigra | N | 9 (0.48) | 55 | 60 | 30 | 1024 |
13 | P. nigra | W | 20 (1.25) | 65 | 20 | 25 | 844 |
14 | P. nigra | W | 20 (1.08) | 50 | 30 | 10 | 872 |
15 | P. nigra | W | 21 (1.16) | 25 | 60 | 80 | 926 |
16 | F. sylvatica | E | 22 (1.22) | 95 | 10 | 15 | 1022 |
17 | Q. frainetto | NE | 20 (1.48) | 45 | 5 | 90 | 955 |
18 | Q. frainetto | S | 19 (1.40) | 85 | 5 | 50 | 1004 |
19 | F. sylvatica | N | 20 (1.26) | 95 | 15 | 50 | 997 |
20 | F. sylvatica | NE | 18 (1.08) | 85 | 10 | 50 | 1014 |
21 | Q. frainetto | E | 18 (1.41) | 90 | 5 | 35 | 1000 |
22 | C. sativa | N | 23 (1.19) | 80 | 5 | 30 | 1003 |
23 | F. sylvatica | N | 23 (1.10) | 95 | 10 | 5 | 984 |
24 | F. sylvatica | N | 22 (1.28) | 85 | 10 | 10 | 994 |
25 | C. sativa | N | 13 (0.65) | 90 | 5 | 40 | 917 |
26 | C. sativa | N | 11.5 (0.52) | 100 | 15 | 35 | 863 |
Ecosystem Type/Soil Characteristics | Pinus brutia Forest | Maqui Ecosystem | Pinus nigra Forest | Fagus sylvatica | Quercus frainetto | Castanea sativa |
---|---|---|---|---|---|---|
Soil depth (cm) | 29.5 | 18.9 | 34.8 | 63.2 | 50.1 | 58.4 |
Organic matter (%) | 3.4 | 3.1 | 4.0 | 5.5 | 4.5 | 5.8 |
pH | 7.2 | 7.2 | 6.9 | 6.7 | 6.6 | 6.7 |
Nitrogen (%) | 0.21 | 0.18 | 0.23 | 0.31 | 0.25 | 0.34 |
Soil texture | SL * | SL | SL | SL | SL | SL |
Ecosystem Type | Pinus brutia | Maqui | Pinus nigra | Fagus sylvatica | Quercus frainetto | Castanea sativa |
---|---|---|---|---|---|---|
Total plant richness | 54 | 54 | 70 | 55 | 83 | 73 |
Tree layer | ||||||
Number of species per plot Cover (%) | 1 72.2 | 0.6 5.0 | 1.4 46.0 | 1.8 91.0 | 1.33 73.33 | 2.67 90.0 |
Shrub layer | ||||||
Number of species per plot Cover (%) | 2.8 13.0 | 3.6 34.4 | 4.2 45.0 | 1.6 11.0 | 2.0 5.0 | 2.67 8.33 |
Ground layer | ||||||
Number of species per plot Cover (%) | 16.2 21.0 | 17.8 53.0 | 21.6 33.0 | 17.4 26.0 | 45.0 58.33 | 39.33 35.0 |
Plant Family | Pinus brutia | Maqui | Pinus nigra | Quercus frainetto | Fagus sylvatica | Castanea sativa |
---|---|---|---|---|---|---|
Number of Plant Species | ||||||
Alliaceae | 0 | 1 | 0 | 1 | 1 | 1 |
Amaranthaceae | 0 | 1 | 0 | 0 | 0 | 0 |
Anacardiaceae | 2 | 1 | 0 | 0 | 0 | 0 |
Apiaceae | 0 | 0 | 0 | 1 | 0 | 3 |
Aquifoliaceae | 0 | 0 | 0 | 0 | 1 | 1 |
Aristolochiaceae | 0 | 0 | 0 | 1 | 0 | 0 |
Asparagaceae | 2 | 3 | 3 | 2 | 1 | 2 |
Aspleniaceae | 0 | 0 | 1 | 4 | 0 | 1 |
Asteraceae | 8 | 9 | 6 | 5 | 3 | 7 |
Betulaceae | 0 | 0 | 1 | 0 | 0 | 2 |
Boraginaceae | 3 | 1 | 0 | 1 | 1 | 1 |
Brassicaceae | 0 | 3 | 1 | 2 | 2 | 2 |
Campanulaceae | 0 | 0 | 1 | 0 | 0 | 2 |
Caprifoliaceae | 1 | 0 | 1 | 1 | 0 | 0 |
Caryophyllaceae | 0 | 2 | 2 | 4 | 2 | 2 |
Cistaceae | 2 | 2 | 1 | 0 | 0 | 0 |
Crassulaceae | 0 | 2 | 1 | 0 | 0 | 0 |
Cupressaceae | 1 | 1 | 1 | 1 | 1 | 1 |
Dennstaedtiaceae | 0 | 0 | 0 | 0 | 1 | 1 |
Dispacaceae | 0 | 0 | 0 | 1 | 0 | 0 |
Ephedraceae | 0 | 1 | 0 | 0 | 0 | 0 |
Ericaceae | 0 | 0 | 1 | 0 | 0 | 0 |
Euphorbiaceae | 1 | 1 | 0 | 0 | 0 | 0 |
Fabaceae | 2 | 4 | 3 | 4 | 2 | 5 |
Fagaceae | 2 | 1 | 6 | 3 | 3 | 3 |
Gentianaceae | 0 | 1 | 0 | 0 | 0 | 0 |
Geraniaceae | 2 | 1 | 0 | 0 | 0 | 0 |
Hypericaceae | 0 | 1 | 1 | 2 | 1 | 1 |
Juncaceae | 0 | 0 | 3 | 1 | 2 | 1 |
Lamiaceae | 7 | 4 | 6 | 5 | 2 | 3 |
Liliaceae | 0 | 0 | 0 | 0 | 1 | 1 |
Morinaceae | 0 | 1 | 0 | 0 | 0 | 0 |
Oleaceae | 2 | 1 | 1 | 1 | 0 | 0 |
Orchidaceae | 0 | 0 | 1 | 3 | 4 | 3 |
Pinaceae | 1 | 1 | 2 | 0 | 0 | 0 |
Plantaginaceae | 1 | 0 | 2 | 1 | 2 | 2 |
Poaceae | 6 | 7 | 5 | 6 | 5 | 4 |
Polygonaceae | 0 | 0 | 1 | 1 | 1 | 1 |
Polypodiaceae | 0 | 0 | 0 | 1 | 0 | 1 |
Primulaceae | 0 | 0 | 1 | 3 | 3 | 2 |
Pteridaceae | 0 | 1 | 0 | 0 | 0 | 0 |
Ranunculaceae | 1 | 1 | 1 | 7 | 1 | 5 |
Resedaceae | 0 | 1 | 0 | 0 | 0 | 0 |
Rhamnaceae | 1 | 0 | 0 | 0 | 0 | 0 |
Rosaceae | 3 | 1 | 10 | 9 | 11 | 11 |
Rubiaceae | 1 | 0 | 1 | 2 | 1 | 1 |
Santalaceae | 1 | 1 | 0 | 0 | 0 | 0 |
Saxifragaceae | 0 | 0 | 1 | 0 | 0 | 1 |
Scrophulariaceae | 1 | 2 | 0 | 2 | 0 | 1 |
Ulmaceae | 0 | 0 | 0 | 1 | 1 | 0 |
Violaceae | 1 | 0 | 2 | 3 | 1 | 1 |
Ecosystem | Tree Layer | Shrub Layer | Grass Layer | Totally |
---|---|---|---|---|
Pinus brutia | 0.00d | 1.0026a | 2.6031c | 2.5748c |
Maqui | 0.00d | 1.0837a | 2.6865c | 2.8004bc |
Pinus nigra | 0.3195b | 1.0618a | 3.1802b | 2.9552b |
Quercus frainetto | 0.1625c | 0.8958a | 3.6791a | 3.6276a |
Castanea sativa | 0.5468a | 0.9981a | 3.5987a | 3.4825a |
Fagus sylvatica | 0.3074b | 0.6590b | 2.6110c | 2.4742c |
Sørensen Index | Pinus brutia | Maqui | Pinus nigra | Quercus frainetto | Fagus sylvatica | Castanea sativa |
---|---|---|---|---|---|---|
P. brutia | - | 0.3889 | 0.1129 | 0.0730 | 0.0550 | 0.0315 |
Maqui | 0.3889 | - | 0.1129 | 0.0876 | 0.0734 | 0.0315 |
P. nigra | 0.1129 | 0.1129 | - | 0.3529 | 0.336 | 0.3077 |
Q. frainetto | 0.0730 | 0.0876 | 0.3529 | - | 0.4348 | 0.4359 |
F. sylvatica | 0.0550 | 0.0734 | 0.336 | 0.4348 | - | 0.5312 |
C. sativa | 0.0315 | 0.0315 | 0.3077 | 0.4359 | 0.5312 | - |
Observed Disturbances and Problems | P. brutia | Maqui | P. nigra | F. sylvatica | Q. frainetto | C. sativa |
---|---|---|---|---|---|---|
Presence of litter and detritus | Χ | Χ | Χ | Χ | Χ | Χ |
Erosion or soil disturbances | Χ | Χ | Χ | Χ | Χ | Χ |
Presence of trails | Χ | Χ | Χ | Χ | Χ | Χ |
Motorcycles traffic | Χ | Χ | Χ | Χ | ||
Plant diseases and harmful insects | Χ | Χ | ||||
Presence of burned trunks | Χ | Χ | ||||
Presence of grazing of wild animals | Χ | Χ | Χ | |||
Presence of pets | Χ | Χ | Χ | Χ | Χ | |
Parking or passing of cars | Χ | Χ | Χ | Χ | ||
Presence of alien species | Χ | Χ | ||||
Plant foraging from visitors | Χ | Χ | Χ | |||
Recreation structures | Χ | Χ | Χ | Χ |
Presence of Native, Ivasive and Ruderal Species | Pinus brutia | Maqui | Pinus nigra | Fagus sylvatica | Quercus frainetto | Castanea sativa |
---|---|---|---|---|---|---|
Number of native species | 53 | 54 | 70 | 55 | 83 | 73 |
Number of non-native species | 1 | 0 | 0 | 0 | 0 | 0 |
Number of invasive species | 0 | 0 | 0 | 0 | 0 | 0 |
Percentage (%) of ruderal species | 24.07 | 24.07 | 8.57 | 9.09 | 13.25 | 6.85 |
For a = 0.05 | Pinus brutia | Maqui | Pinus nigra | Fagus sylvatica | Quercus frainetto | Castanea sativa |
---|---|---|---|---|---|---|
Mean of C values | 4.24 c | 4.31 c | 5.60 b | 6.40 a | 6.00 ab | 6.51 a |
Standard deviation | 1.34 | 1.58 | 1.92 | 2.05 | 1.94 | 2.02 |
Standard error | 0.18 | 0.21 | 0.23 | 0.28 | 0.21 | 0.24 |
Upper limit of CI | 3.88 | 3.89 | 5.15 | 5.86 | 5.58 | 6.04 |
Lower limit of CI | 4.60 | 4.74 | 6.05 | 6.94 | 6.42 | 6.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petaloudi, L.-M.; Ganatsas, P.; Tsakaldimi, M. Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece. Sustainability 2022, 14, 8497. https://doi.org/10.3390/su14148497
Petaloudi L-M, Ganatsas P, Tsakaldimi M. Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece. Sustainability. 2022; 14(14):8497. https://doi.org/10.3390/su14148497
Chicago/Turabian StylePetaloudi, Lydia-Maria, Petros Ganatsas, and Marianthi Tsakaldimi. 2022. "Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece" Sustainability 14, no. 14: 8497. https://doi.org/10.3390/su14148497